首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Scanning electron microscopy (SEM) and histological techniques were used to observe and study the setae structures of two gecko species (G. gecko and G. swinhonis) and the relationships between these structures and the adhesive forces. The SEM results showed that the setae of these two species were densely distributed in an orderly fashion, and branched with curved tips. The setae of G. gecko had cluster structures, each cluster containing 4–6 setae whose terminal branches curved towards the center of the toes at ∼ 10°, the tips of the branches like spatulae and densely arrayed at an interval of less than 0.2–0.3 μm. On the contrary, the branch tips in the setae of G. swinhonis were curled, and the terminal parts of setae curved towards the center of the toes at various angles. Usually the setae of these gecko species branch twice at the top at intervals greater than that of G. gecko. The histological observation found that inside the setae of these two species there were plenty of unevenly distributed contents, such as epithelia, fat cells, pigmental cells and muscle tissue, but no gland cells existed. The results of functional experiments suggested that modifying the structure of gecko’s setae could reduce its adhesive ability dramatically, demonstrating the positive correlation between the structure of the gecko’s setae and its adhesive ability. The above results provide important information in designing bio-mimic setae and bio-gecko robots.  相似文献   

2.
Ultrahydrophobicity indicates a non-adhesive default state in gecko setae   总被引:1,自引:0,他引:1  
Geckos may represent the world’s most demanding adhesives application. The adhesive setae on the toes of climbing geckos must adhere strongly yet avoid fouling or attachment at inappropriate times. We tested the hypothesis that gecko setae are non-adhesive in their unloaded default state by comparing the water droplet contact angle (θ) of isolated setal arrays to the smooth surface of eye spectacle scales of tokay geckos (Gekko gecko). At equilibrium, θ was 98.3 ± 3.4° in spectacle scales of live geckos and 93.3 ± 3.5° in isolated spectacles. Isolated setal arrays were ultrahydrophobic, with θ of 160.6 ± 1.3° (means ± SD). The difference in θ of setal arrays and smooth spectacles indicates a very low contact fraction. Using Cassie’s law of surface wettability, we infer that less than 6.6% of the surface of unloaded setae is solid and at least 93.4% is air space. We calculated that the contact fraction must increase from 6.6% in the unloaded state to 46% in the loaded state to account for previously measured values of adhesion. Thus gecko setae may be non-sticky by default because only a very small contact fraction is possible without mechanically deforming the setal array.  相似文献   

3.
Locomotion on horizontal and vertical substrates requires effective attachment systems. In three clades of arboreal and rupicolous Iguanidae, Gekkota and Scincidae adhesive systems consisting of microscopic hair‐like structures (setae) have been evolved independently. Also the substrate contacting sites on toes and tails of chameleons (Chamaeleonidae) are covered with setae. In the present comparative scanning electron microscopy study, we show that representatives from the chamaeleonid genera Calumma, Chamaeleo, Furcifer, and Trioceros feature highly developed setae that are species‐specific and similar on their feet and tail. These 10 μm long, unbranched setae rather resemble those in anoline and scincid lizards than the larger and branched setae of certain gecko species. In contrast to the thin triangular tips of other lizards, all examined species of the genera Furcifer and Calumma and one of the five examined species of the genus Trioceros have spatulate tips. All other examined species of genera Trioceros and Chamaeleo bear setae with narrowed, fibrous tips. Unlike the setae of other lizards, chamaeleonid setal tips do not show any orientation along the axis of the toes, but they are flexible to bend in any direction. With these differences, the chameleon's unique microstructures on the zygodactylous feet and prehensile tail rather increase friction for arboreal locomotion than being a shear‐induced adhesive system as setal pads of other lizards. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Biomechanical models of the gecko adhesive system typically focus on setal mechanics from a single gecko species, Gekko gecko. In this study, we compared the predictions from three mathematical models with experimental observations considering an additional gecko species Phelsuma grandis, to quantify interspecific variation in setal micromechanics. We also considered the accuracy of our three focal models: the frictional adhesion model, work of detachment model, and the effective modulus model. Lastly, we report a novel approach to quantify the angle of toe detachment using the Weibull distribution. Our results suggested the coupling of frictional and adhesive forces in isolated setal arrays, first observed in G. gecko is also present in P. grandis although P. grandis displayed a higher toe detachment angle, suggesting they produce more adhesion relative to friction than G. gecko. We also found the angle of toe detachment accurately predicts a species’ maximum performance limit when fit to a Weibull distribution. When considering the energy stored during setal attachment, we observed less work to remove P. grandis arrays when compared with G. gecko, suggesting P. grandis arrays may store less energy during attachment, a conclusion supported by our model estimates of stored elastic energy. Our predictions of the effective elastic modulus model suggested P. grandis arrays to have a lower modulus, E eff, but our experimental assays did not show differences in moduli between the species. The considered mathematical models successfully estimated most of our experimentally measured performance values, validating our three focal models as template models of gecko adhesion (see Full and Koditschek in J Exp Biol 202(23):3325–3332, 1999), and suggesting common setal mechanics for our focal species and possibly for all fibular adhesives. Future anchored models, built upon the above templates, may more accurately predict performance by incorporating additional parameters, such as variation in setal length and diameter. Variation in adhesive performance may affect gecko locomotion and as a result, future ecological observations will help to determine how species with different performance capabilities use their habitat.  相似文献   

5.
Armored skin resulting from the presence of bony dermal structures, osteoderms, is an exceptional phenotype in gekkotans (geckos and flap-footed lizards) only known to occur in three genera: Geckolepis, Gekko, and Tarentola. The Tokay gecko (Gekko gecko LINNAEUS 1758) is among the best-studied geckos due to its large size and wide range of occurrence, and although cranial dermal bone development has previously been investigated, details of osteoderm development along a size gradient remain less well-known. Likewise, a comparative survey of additional species within the broader Gekko clade to determine the uniqueness of this trait has not yet been completed. Here, we studied a large sample of gekkotans (38 spp.), including 18 specimens of G. gecko, using X-rays and high-resolution computed tomography for visualizing and quantifying the dermal armor in situ. Results from this survey confirm the presence of osteoderms in a second species within this genus, Gekko reevesii GRAY 1831, which exhibits discordance in timing and pattern of osteoderm development when compared with its sister taxon, G. gecko. We discuss the developmental sequence of osteoderms in these two species and explore in detail the formation and functionality of these enigmatic dermal ossifications. Finally, we conducted a comparative analysis of endolymphatic sacs in a wide array of gekkotans to explore previous ideas regarding the role of osteoderms as calcium reservoirs. We found that G. gecko and other gecko species with osteoderms have highly enlarged endolymphatic sacs relative to their body size, when compared to species without osteoderms, which implies that these membranous structures might fulfill a major role of calcium storage even in species with osteoderms.  相似文献   

6.
One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko’s adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2–100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic “model gecko” system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of adhesion in animals with dry adhesion systems.  相似文献   

7.
The digital adhesive pads that allow gecko lizards to climb vertical surfaces result from the modification of the oberhautchen layer of the epidermis in normal scales. This produces sticky filaments of 10–100 μm in length, called setae that are composed of various proteins. The prevalent types, termed corneous beta proteins (CBPs), have a low molecular weight (12–20 kDa) and contain a conserved central region of 34 amino acids with a beta-conformation. This determines their polymerization into long beta-filaments that aggregate into corneous beta-bundles that form the framework of setae. Previous studies showed that the prevalent CBPs in the setae of Gekko gecko are cysteine-rich and are distributed from the base to the tip of adhesive setae, called spatulae. The molecular analysis of these proteins, although the three-dimensional structure remains undetermined, indicates that most of them are charged positively and some contain aromatic amino acids. These characteristics may impede adhesion by causing the setae to stick together but may also potentiate the van der Waals interactions responsible for most of the adhesion process on hydrophobic or hydrophilic substrates. The review stresses that not only the nanostructural shape and the high number of setae present in adhesive pads but also the protein composition of setae influence the strength of adhesion to almost any type of substrate. Therefore, formulation of dry materials mimicking gecko adhesiveness should also consider the chemical nature of the polymers utilized to fabricate the future dry adhesives in order to obtain the highest performance.  相似文献   

8.
 In this study a ground-dwelling (Eublepharis macularius) and a highly specialised climbing (Gekko gecko) lizard were chosen as study objects. The fore- and hindlimbs of two individuals of each species were dissected, and muscle masses, mean fibre lengths, cross-sectional areas and moment arms were determined. Special attention was paid to general muscle architecture (origin, insertion, fibre orientation, etc.) and pennation angles. Using these variables (cross sectional areas and moment arms), maximal moments exertable across the shoulder/hip, elbow/knee and wrist/ankle were calculated for both species. In accordance with the biomechanical predictions related to the preferred locomotor substrate of each species (i.e. level running for E. macularius and climbing for G. gecko), the results of this study indicate that climbers such as G. gecko generally possess powerful retractor muscles crossing the shoulder and hip joints. Additionally, the specialised climber is able to exert higher flexion moments across the elbow, which prevents the animals from falling backwards. However, G. gecko appears to be constrained in its ankle extension capabilities by the presence of the adhesive toe pads. The level-running species, on the other hand, shows a relatively stronger development of the extensor muscles in the lower limbs, allowing these lizards to run in an erect posture. In general, both species show large similarities on a gross morphological level as expected when considering their phylogenetic relatedness. Adaptations to their preferred locomotor substrate only become apparent when considering the functional properties (i.e. joint moments) of the appendicular musculature. Accepted: 30 November 1998  相似文献   

9.
蜣螂与壁虎刚毛的比较及改形对其功能的影响   总被引:11,自引:0,他引:11  
脱附与粘附是工程作业的两个相互矛盾的难题,土壤和物料的粘附严重降低了机械的作业效率和质量,没有粘附又使某些机械无法工作或运行。目前世界流行的脱附技术,包括向界面注入空气的充气法、向界面注入溶液的充液法、利用机械或超声波的振动法、施加电场的电渗法、施加磁场的磁  相似文献   

10.
Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control.  相似文献   

11.
Two European species of Gracilaria possess flattened blades borne on cylindrical axes, namely, G. multipartita, known primarily from the Atlantic coast, and G. corallicola from the Mediterranean Sea. They are sister species that cluster with G. armata, G. bursa-pastoris and G. longa in rbcL analyses with strong bootstrap support. Blades of G. multipartita taper towards the tips, whereas those of G. corallicolla have broadly rounded tips. Spermatangia of G. corallicola are borne in shallow conceptacles (textorii-type) and data from the literature indicate that the same is true of G. multipartita. Cystocarp morphology is similar, with the gonimoblast filaments initially elongated, narrow and densely filled with cytoplasm, and with tubular nutritive cells issuing initially from lower gonimoblast cells and fusing with cells in the lowermost regions of the outer pericarp. Tetrasporangia are initiated terminally and displaced laterally with the production of side branches from the subterminal cell. The diagnostic characters of the Gracilariaceae are reviewed from a developmental perspective.  相似文献   

12.
Effects of temperature and salinity on the growth of the two agarophytes, Gracilaria verrucosa (Hudson) Papenfuss and Gracilaria chorda Holmes were examined in Korea. Both species grew over a wide range of temperatures (10–30 C) and salinities (5–35‰), and grew well at 17–30 C and a salinity of 15–30‰. In culture, G. verrucosa grew faster than G. chorda and their maximum growth rates were 4.95% day−1 (30 C, 25‰) and 4.47% day−1 (at 25 C, 25‰), respectively. In the field population the maximum growth and fertility of G. chorda were observed in summer. The growth rate of G. verrucosa was slightly higher than that of G. chorda for 2 weeks on the cultivation rope and in culture but it was much lower after being contaminated with epiphytes. The biomass of the epiphytes was 0.82 g dry wt. per host plant in G. verrucosa and 0.001 g in G. chorda. G. chorda exhibited resistance to epiphytism and grew 7 times in length and the dry weight increased 15 times after 55 days. In conclusion, G. chorda appears to be a good agarophyte with a fast growth rate and resistance to epiphytesm, and compared with G. verrucosa, has good potential for commercial cultivation.  相似文献   

13.
14.
Photographic polytene chromosome maps from pupal trichogen cells of four tsetse species, Glossina austeni, G. pallidipes, G. morsitans morsitans and G. m. submorsitans were constructed and compared. The homology of chromosomal elements between the species was achieved by comparing banding patterns. The telomeric and subtelomeric chromosome regions were found to be identical in all species. The pericentromeric regions were found to be similar in the X chromosome and the left arm of L1 chromosome (L1L) but different in L2 chromosome and the right arm of L1 chromosome (L1R). The L2 chromosome differs by a pericentric inversion that is fixed in the three species, G. pallidipes, G. morsitans morsitans and G. m. submorsitans. Moreover, the two morsitans subspecies appeared to be homosequential and differ only by two paracentric inversions on XL and L2L arm. Although a degree of similarity was observed across the homologous chromosomes in the four species, the relative position of specific chromosome regions was different due to chromosome inversions established during their phylogeny. However, there are regions that show no apparent homology between the species, an observation that may be attributed to the considerable intra—chromosomal rearrangements that have occurred following the species divergence. The results of this comparative analysis support the current phylogenetic relationships of the genus Glossina.  相似文献   

15.
Based on analyses with cryo‐scanning and transmission electron microscopy, the present study reports on the morphology and ultrastructure of the attachment structures of the green stinkbug Nezara viridula L. (Heteroptera: Pentatomidae), a cosmopolitan pest of different crops in most areas of the world. In addition, the presence and distribution of large proportions of the elastic protein resilin in these structures was revealed by confocal laser scanning microscopy. The attachment structures of each leg comprise two sclerotised claws, a pair of smooth flexible pulvilli and a hairy adhesive pad located at the ventral side of the basitarsus. No sexual dimorphism is evident. Contact areas of resting individuals on a smooth surface show that N. viridula creates contact to the substrate with the ventral surface of (a) the distal portions of the pulvilli, (b) the setae of the hairy adhesive pad, (c) the two paraempodia representing mechanosensory setae, and (d) the tips of the claws. Each pulvillus is a sac‐like structure formed by complex cuticular layers that vary in their structure and resilin content. The dorsal side consists of sclerotised chitinous material, while the ventral cuticle consists mainly of resilin and shows a very thin epicuticle and a thick exocuticle. The setae of the hairy adhesive pad are pointed and socketed. They exhibit a pronounced longitudinal gradient in the material composition, with large proportions of resilin being present in the setal tips. In most of these setae, especially in those of the distal‐most part of the pad, also a transverse gradient in the material composition is visible.  相似文献   

16.
描述了产自贵州的竹亚科一新种:黎平玉山竹(Yushania lipingensis Z. X. Zhang, Y. H. TongZ. Yang)。本种形态上与显耳玉山竹(Y. auctiaurita T. P. Yi)接近,但区别在于该种箨鞘背面密被向上的黄褐色或紫色疣基刺毛,箨耳及叶耳明显弯曲呈镰刀形,鞘口繸毛发达,通常呈放射状,箨舌先端截平,不圆拱,边缘密生短纤毛,箨片腹面被微柔毛,叶片次脉通常5~6对。  相似文献   

17.
Mechanisms of adhesion in geckos   总被引:7,自引:0,他引:7  
The extraordinary adhesive capabilities of geckos have challengedexplanation for millennia, since Aristotle first recorded hisobservations. We have discovered many of the secrets of geckoadhesion, yet the millions of dry, adhesive setae on the toesof geckos continue to generate puzzling new questions and valuableanswers. Each epidermally-derived, keratinous seta ends in hundredsof 200 nm spatular tips, permitting intimate contact with roughand smooth surfaces alike. Prior studies suggested that adhesiveforce in gecko setae was directly proportional to the waterdroplet contact angle (  相似文献   

18.
 The following crosses were made using four recognized species/subspecies and a new population of Guizotia, referred to as Chelelu after the name of the locality in Ethiopia from which it was collected: G. scabra subsp. schimperi × Chelelu, Chelelu × G. scabra subsp. scabra, G. zavattarii × G. arborescens and Chelelu × G. zavattarii (all accessions with 2n=30). Plant morphology as well as mitotic and meiotic chromosome analysis confirmed the hybrid nature of the obtained progeny. At metaphase I of meiosis, the F1 hybrid plants (2n=30) showed a mean of about 95%, 31%, 63% and 0.50% of the pollen mother cells with 15 bivalents, and a mean of about 14.95, 13.75, 14.40 and 7.86 bivalents per cell, respectively. The respective mean pollen stainability was about 67%, 19%, 31% and 2%. From the results it was concluded that Chelelu is more closely related to G. scabra subsp. schimperi than to G. scabra subsp. scabra but more to the latter than to G. zavattarii. Guizotia zavattarii and G. arborescens are closely related to each other. Based on the cytological observations made, the probable basic chromosome number for the genus is discussed. Received November 5, 1999 Accepted August 21, 2001  相似文献   

19.
Diagnostic morphological characters of the juvenile Panchaetothripinae in New Zealand are illustrated. Keys developed enable colonies with only immature stages to be identified without needing to rear adults. Live larvae or larvae in ethanol are distinguished by the presence of expanded tips of body setae (Parthenothrips dracaenae), the absence of setae at the abdomen tip (Hercinothrips bicinctus), setae at abdomen tip not longer than abdominal tip width (Heliothrips haemorrhoidalis) and abdominal tip setae longer than abdominal tip width (Sigmothrips aotearoana, endemic species). The presence or absence of spine-like setae on abdominal segments 9 and 10, and the number and length of setae on the wing buds, enable identification of pupae. Abdominal spine-like setae were on the prepupa and pupa of H. bicinctus and S. aotearoana, species that pupate off the plant, and are probably defensive structures. This is the first record of spine-like setae on segment 10 of terebrantian pupae.  相似文献   

20.
A new Myrothecium species isolated from beach sand in the Bonin Islands, Japan, is characterized by dark green sporodochia composed of conidiophores with verticillate phialides and ovate and ellipsoidal, often curved conidia on their apexes mixed with erect, straight setae, and seta-like conidiophores with terminal polytomous structures composed of 2–8 digitate polyphialides bearing single globose conidia at each apex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号