首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Body cooling before exercise (i.e. pre-cooling) reduces physiological strain in humans during endurance exercise in temperate and warm environments, usually improving performance. This study examined the effectiveness of pre-cooling humans by ice-vest and cold (3 degrees C) air, with (LC) and without (LW) leg cooling, in reducing heat strain and improving endurance performance in the heat (35 degrees C, 60% RH). Nine habitually-active males completed three trials, involving pre-cooling (LC and LW) or no pre-cooling (CON: 34 degrees C air) before 35-min cycle exercise: 20 min at approximately 65% VO2peak then a 15-min work-performance trial. At exercise onset, mean core (Tc, from oesophagus and rectum) and skin temperatures, forearm blood flow (FBF), heart rate (HR), and ratings of exertion, body temperature and thermal discomfort were lower in LW and LC than CON (P<0.05). They remained lower at 20 min [e.g. Tc: CON 38.4+/-0.2 (+/-S.E.), LW 37.9+/-0.1, and LC 37.8+/-0.1 degrees C; HR: 177+/-3, 163+/-3 and 167+/-3 b.p.m.), except that FBF was equivalent (P=0.10) between CON (15.5+/-1.6) and LW (13.6+/-1.0 ml.100 ml tissue(-1) x min(-1)). Subsequent power output was higher in LW (2.95+/-0.24) and LC (2.91+/-0.25) than in CON (2.52+/-0.28 W kg(-1), P=0.00, N=8), yet final Tc remained lower. Pre-cooling by ice-vest and cold air effectively reduced physiological and psychophysical strain and improved endurance performance in the heat, irrespective of whether thighs were warmed or cooled.  相似文献   

2.
Little research has been reported examining the effects of pre-cooling on high-intensity exercise performance, particularly when combined with strategies to keep the working muscle warm. This study used nine active males to determine the effects of pre-cooling the torso and thighs (LC), pre-cooling the torso (ice-vest in 3 degrees C air) while keeping the thighs warm (LW), or no cooling (CON: 31 degrees C air), on physiological strain and high-intensity (45-s) exercise performance (33 degrees C, 60% rh). Furthermore, we sought to determine whether performance after pre-cooling was influenced by a short exercise warm-up. The 45-s test was performed at different (P<0.05) mean core temperature [(rectal+oesophageal)/2] [CON: 37.3+/-0.3 (S.D.), LW: 37.1+/-0.3, LC: 36.8+/-0.4 degrees C] and mean skin temperature (CON: 34.6+/-0.6, LW: 29.0+/-1.0, LC: 27.2+/-1.2 degrees C) between all conditions. Forearm blood flow prior to exercise was also lower in LC (3.1+/-2.0 ml 100 ml tissue(-1) x min(-1)) than CON (8.2+/-2.5, P=0.01) but not LW (4.3+/-2.6, P=0.46). After an exercise warm-up, muscle temperature (Tm) was not significantly different between conditions (CON: 37.3+/-1.5, LW: 37.3+/-1.2, LC: 36.6+/-0.7 degrees C, P=0.16) but when warm-up was excluded, T(m) was lower in LC (34.5+/-1.9 degrees C, P=0.02) than in CON (37.3+/-1.0) and LW (37.1+/-0.9). Even when a warm-up was performed, torso+thigh pre-cooling decreased both peak (-3.4+/-3.8%, P=0.04) and mean power output (-4.1+/-3.8%, P=0.01) relative to the control, but this effect was markedly larger when warm-up was excluded (peak power -7.7+/-2.5%, P=0.01; mean power -7.6+/-1.2%, P=0.01). Torso-only pre-cooling did not reduce peak or mean power, either with or without warm-up. These data indicate that pre-cooling does not improve 45-s high-intensity exercise performance, and can impair performance if the working muscles are cooled. A short exercise warm-up largely removes any detrimental effects of a cold muscle on performance by increasing Tm.  相似文献   

3.
High-intensity (HI) resistance exercise augments postexercise glucose uptake to a greater degree than low-intensity (LO) resistance exercise; however, few studies have equated the work volumes between intensity levels. The purpose of this study was to compare the effect of acute HI and LO resistance exercise of equal work volume on glucose uptake in resistant-trained men. Fifteen healthy male (22.9 +/- 3.8 years old), resistance-trained (6.7 +/- 3.9 years) subjects completed three treatment sessions: CON (no-exercise control), HI (3 x 8, 85% 10-RM), and LO (3 x 15, 45% 10-RM). HI and LO sessions consisted of eight exercises. Glucose uptake was measured the following morning by using the hyperinsulinemic euglycemic clamp technique. Glucose disposal was measured by analyzing the glucose infusion rate during the final 30 minutes of steady-state blood glucose concentrations. Insulin sensitivity was calculated by dividing the glucose infusion rate by the average insulin infusion. Results indicate that fasting blood glucose levels were not significantly different among treatment sessions (CON = 80.5 +/- 5.3 versus HI = 77.0 +/- 4.9 versus LO = 77.1 +/- 6.0 mg.dL). Glucose uptake was not significantly different among treatment sessions (CON = 11.3 +/- 3.0 versus HI = 11.7 +/- 2.7 versus LO = 11.4 +/- 2.8 mg.kg FFM.min). Insulin sensitivity did not change among treatment sessions (CON = 0.26 +/- 0.09 versus HI = 0.28 +/- 0.07 versus LO = 0.27 +/- 0.06 (mg.kg FFM.min)/(uU.mL)). The data indicate that the resistance training sessions did not modify acute insulin sensitivity. This may have been because of the high levels of fitness of the subjects, which allowed for the cellular adaptations for enhanced insulin sensitivity and glucose uptake that are unaffected by this volume of acute exercise.  相似文献   

4.
The stimulus for the release of 72-kDa heat shock protein (HSP72) during exercise in humans is currently unclear. Recent evidence in an animal model is suggestive of an involvement of catecholamines. The present study, therefore, investigated the effect of caffeine supplementation, a known stimulator of sympathetic activity, on the extracellular (e)HSP72 response to prolonged exercise. Ten healthy male endurance-trained cyclists were recruited (age: 21 +/- 1 yr, maximum O(2) uptake 61.1 +/- 1.7 ml x kg(-1) x min(-1), mean +/- SE). Each subject was randomly assigned to ingest either 6 mg/kg body mass of caffeine (Caff) or placebo (Pla) 60 min before one of two 90-min bouts of cycling at 74 +/- 1% maximum O(2) uptake. Trials were performed at least 7 days apart in a counterbalanced design. Venous blood samples were collected by venepuncture at pretreatment, preexercise, postexercise, and 1 h postexercise. Serum caffeine and plasma catecholamines were determined using a spectrophotometric assay and high-performance liquid chromatography, respectively. Plasma HSP72 and cortisol were determined by ELISA. Serum caffeine concentrations were significantly increased throughout Caff, while no increases were detected in Pla. Caffeine supplementation and exercise was associated with a greater eHSP72 response than exercise alone (postexercise Caff 8.6 +/- 1.3 ng/ml; Pla 5.9 +/- 0.9 ng/ml). This greater eHSP72 response was associated with a greater epinephrine response to exercise in Caff. There was a significant increase in norepinephrine and cortisol, with no intertrial differences. The present data suggest that, in humans, catecholamines may be an important mediator of the exercise-induced increase in eHSP72 concentration.  相似文献   

5.
The contribution of hyperthermia to the differential leukocytosis of exercise remains obscure. This study examined changes in circulating sympathoadrenal hormone concentrations and patterns of leukocyte and lymphocyte subset (CD3(+), CD4(+), CD8(+), CD19(+), CD3(-)16(+)/56(+)) redistribution during exercise, with and without a significant rise of rectal temperature (T(re)). Ten healthy men [age 26.9 +/- 5.7 (SD) yr, body mass 76.0 +/- 10.9 kg, body fat 13.9 +/- 4.6%, peak O(2) consumption: 48.0 +/- 12.4 ml x kg(-1) x min(-1)] exercised for 40 min (65% peak O(2) consumption) during water immersion at 39 or 18 degrees C. T(re) increased from 37.2 to 39.3 degrees C (P < 0.0001) after 40 min of exercise in 39 degrees C water but was held constant to an increment of 0.5 degrees C during exercise in 18 degrees C water. Application of this thermal clamp reduced exercise-associated increments of plasma epinephrine (Epi) and norepinephrine (NE) by >50% (P < 0.05) and abolished the postexercise increase in cortisol. Thermal clamping also reduced the exercise-induced leukocytosis and lymphocytosis. Multiple regression demonstrated that T(re) had no direct association with lymphocyte subset mobilization but was significantly (P < 0.0001) correlated with hormone levels. Epi was an important determinant of total leukocytes, lymphocytes, and CD3(+), CD4(+), CD8(+), and CD3(-)CD16(+)/56(+) subset redistribution. The relationship between NE and lymphocyte subsets was weaker than that with Epi, with the exception of CD3(-)CD16(+)/56(+) counts, which were positively (P < 0.0001) related to NE. Cortisol was negatively associated with leukocytes, CD14(+) monocytes, and CD19(+) B- and CD4(+) T-cell subsets but was positively related to granulocytes. We conclude that hyperthermia mediates exercise-induced immune cell redistribution to the extent that it causes sympathoadrenal activation, with alterations in circulating Epi, NE, and cortisol.  相似文献   

6.
The effects of concentric (CON) and eccentric (ECC) contractions on Delta plasma volume (PV), heart rate (HR), and lactate in responses to protocols in different body positions were investigated. CON or ECC contractions were performed in either a single-exercise (6 sets of 12 repetitions of leg extensions completed at 80% of 12 repetition maximum [12RM] with 3-minute rest periods) or multiexercise (4 sets of 10 repetitions for both CON and ECC trials of bench press, leg extension, military press, and leg curl at 80% of 10RM with 90-second rest periods) protocols. HR and lactate increased significantly for both protocols from pre- to postexercise for CON but not ECC trials. DeltaPV was greater following both CON single-exercise (-11.48 +/- 1.38%) and multiexercise (-4.64 +/- 0.33%) trials vs. ECC single-exercise (-1.62 +/- 1.69%) and multiexercise (-1.26 +/- 1.20) trials. Data demonstrate ECC exercise in response to single and multiexercise protocols at the same absolute workload as CON exercise produces less cardiovascular stress.  相似文献   

7.
Marathon runners show increased circulating CD34+ cell counts and postexercise release of interleukin-6 (IL-6), granulocyte-colony stimulating factor (G-CSF) and flt3-ligand (Bonsignore MR, Morici G, Santoro A, Pegano M, Cascio L, Bonnano A, Abate P, Mirabella F, Profita M, Insalaco G, Gioia M, Vignola AM, Majolino I, Testa U, and Hogg JC. J Appl Physiol 93: 1691-1697, 2002). In the present study we hypothesized that supramaximal ("all-out") exercise may acutely affect circulating progenitors and reticulocytes and investigated possible mechanisms involved. Progenitor release was measured by flow cytometry (n = 20) and clonogenic assays (n = 6) in 20 young competitive rowers (13 M, 7 F, age +/- SD: 17.1 +/- 2.1 yr, peak O2 consumption: 56.5 +/- 11.4 ml.min(-1).kg(-1)) at rest and shortly after 1,000 m "all-out." Release of reticulocytes, cortisol, muscle enzymes, neutrophil elastase, and several cytokines/growth factors was measured. Supramaximal exercise doubled circulating CD34+ cells (rest: 7.6 +/- 3.0, all-out: 16.3 +/- 9.1 cells/mul, P < 0.001), and increased immature reticulocyte fractions; AC133+ cells doubled, suggesting release of angiogenetic precursors. Erythrocyte burst forming units and colony forming units for granulocytes-monocytes and all blood series increased postexercise by 3.4-, 5.5-, and 4.8-fold, respectively (P < 0.01 for all). All-out rowing acutely increased plasma cortisol, neutrophil elastase, flt3-ligand, hepatocyte growth factor, VEGF, and transforming growth factor-beta1, and decreased erythropoietin; K-ligand, stromal-derived factor-1, IL-6, and G-CSF were unchanged. Therefore, all-out exercise is a physiological stimulus for progenitor release in athletes. Release of reticulocytes and proangiogenetic cells and mediators suggests tissue hypoxia as possibly involved in progenitor mobilization.  相似文献   

8.
Pulmonary clearance of 99mTc-DTPA: influence of background activity   总被引:4,自引:0,他引:4  
To study the effects of circulatory occlusion on the time course and magnitude of postexercise O2 consumption (VO2) and blood lactate responses, nine male subjects were studied twice for 50 min on a cycle ergometer. On one occasion, leg blood flow was occluded with surgical thigh cuffs placed below the buttocks and inflated to 200 mmHg. The protocol consisted of a 10-min rest, 12 min of exercise at 40% peak O2 consumption (VO2 peak), and a 28-min resting recovery while respiratory gas exchange was determined breath by breath. Occlusion (OCC) spanned min 6-8 during the 12-min work bout and elicited mean blood lactate of 5.2 +/- 0.8 mM, which was 380% greater than control (CON). During 18 min of recovery, blood lactate after OCC remained significantly above CON values. VO2 was significantly lower during exercise with OCC compared with CON but was significantly higher during the 4 min of exercise after cuff release. VO2 was higher after OCC during the first 4 min of recovery but was not significantly different thereafter. Neither total recovery VO2 (gross recovery VO2 with no base-line subtraction) nor excess postexercise VO2 (net recovery VO2 above an asymptotic base line) was significantly different for OCC and CON conditions (13.71 +/- 0.45 vs. 13.44 +/- 0.61 liters and 4.93 +/- 0.26 vs. 4.17 +/- 0.35 liters, respectively). Manipulation of exercise blood lactate levels had no significant effect on the slow ("lactacid") component of the recovery VO2.  相似文献   

9.
Spaceflight and its bed rest analog [6 degrees head-down tilt (HDT)] decrease plasma and blood volume and aerobic capacity. These responses may be associated with impaired thermoregulatory responses observed during exercise and passive heating after HDT exposure. This project tested the hypothesis that dynamic exercise during 13 days of HDT bed rest preserves thermoregulatory responses. Throughout HDT bed rest, 10 subjects exercised for 90 min/day (75% of pre-HDT maximum heart rate; supine). Before and after HDT bed rest, each subject exercised in the supine position at the same workload in a 28 degrees C room. The internal temperature (Tcore) threshold for the onset of sweating and cutaneous vasodilation, as well as the slope of the relationship between the elevation in Tcore relative to the elevation in sweat rate (SR) and cutaneous vascular conductance (CVC; normalized to local heating maximum), were quantified pre- and post-HDT. Tcore thresholds for the onset of cutaneous vasodilation on the chest and forearm (chest: 36.79 +/- 0.12 to 36.94 +/- 0.13 degrees C, P = 0.28; forearm: 36.76 +/- 0.12 to 36.91 +/- 0.11 degrees C, P = 0.16) and slope of the elevation in CVC relative to Tcore (chest: 77.9 +/- 14.2 to 80.6 +/- 17.2%max/ degrees C; P = 0.75; forearm: 76.3 +/- 11.8 to 67.5 +/- 14.3%max/ degrees C, P = 0.39) were preserved post-HDT. Moreover, the Tcore threshold for the onset of SR (36.66 +/- 0.12 to 36.74 +/- 0.10 degrees C; P = 0.36) and the slope of the relationship between the elevation in SR and the elevation in Tcore (1.23 +/- 0.19 to 1.01 +/- 0.14 mg x cm(-2) x min(-1) x degrees C(-1); P = 0.16) were also maintained. Finally, after HDT bed rest, peak oxygen uptake and plasma and blood volumes were not different relative to pre-HDT bed rest values. These data suggest that dynamic exercise during this short period of HDT bed rest preserves thermoregulatory responses.  相似文献   

10.
To examine the role of a reduction in plasma volume (PV) on the cardiovascular and thermoregulatory responses to submaximal exercise, ten untrained males (VO2 peak = 3.96 +/- 0.14 L x min(-1); mean +/- SE) performed 60 min of cycle exercise at -61% of VO2 peak while on a diuretic (DIU) and under control (CON) conditions. Participants consumed either Novotriamazide (100 mg triameterene + 50 mg hydrochlorothiazide, a diuretic) or a placebo, in random order, for 4 days prior to the exercise. Diuretic resulted in a calculated 14.6% reduction (P < 0.05) in resting PV. Heart rate was higher (P < 0.05) at rest and throughout exercise for DIU compared with CON. No differences were observed for cardiac output (Qc) and stroke volume (SV) at rest for the two conditions, but during exercise both Qc and SV were lower (P < 0.05) with DIU. Exercise VO2 (L x min(-1)) for CON and DIU at 30 min (2.39 +/- 0.09 vs 2.43 +/- 0.08) and 60 min (2.56 +/- 0.08 vs 2.53 +/- 0.12) were similar between conditions. Whole body a-vO2 difference was significantly greater (P < 0.05) for DIU both at rest and during exercise as compared with CON. Rectal temperature (Tre) was significantly higher (P < 0.05) during DIU from 15 min to the end of exercise. Blood concentrations of norepinephrine were higher (P < 0.05) with DIU compared to CON at 15 min of exercise and beyond. For blood epinephrine, no differences were observed between DIU and CON. These results suggest that reductions in PV led to greater circulating concentrations of norepinephrine which likely resulted from increased cardiac and thermoregulatory stresses. In addition, reductions in PV do not appear to increase cardiovascular instability during prolonged dynamic exercise.  相似文献   

11.
We evaluated postexercise venous pooling as a factor leading to previously reported increases in the postexercise esophageal temperature threshold for cutaneous vasodilation (ThVD) and sweating (ThSW). Six subjects were randomly exposed to lower body positive pressure (LBPP) and to no LBPP after an exercise and no-exercise treatment protocol. The exercise treatment consisted of 15 min of upright cycling at 65% of peak oxygen consumption, and the no-exercise treatment consisted of 15 min upright seated rest. Immediately after either treatment, subjects donned a liquid-conditioned suit used to regulate mean skin temperature and then were positioned within an upright LBPP chamber. The suit was first perfused with 20 degrees C water to control and stabilize skin and core temperature before whole body heating. Subsequently the skin was heated ( approximately 4.0 degrees C/h) until cutaneous vasodilation and sweating occurred. Forearm skin blood flow and arterial blood pressure were measured noninvasively and were used to calculate cutaneous vascular conductance during whole body heating. Sweat rate response was estimated from a 5.0-cm2 ventilated capsule placed on the upper back. Postexercise ThVD and ThSW were both significantly elevated (0.27 +/- 0.04 degrees C and 0.25 +/- 0.04 degrees C, respectively) compared with the no-exercise trial without LBPP (P < 0.05). However, the postexercise increases in both ThVD and ThSW were reversed with the application of LBPP. Our results support the hypothesis that the postexercise warm thermal responses of cutaneous vasodilation and sweating are attenuated by baroreceptor modulation via lower body venous pooling.  相似文献   

12.
The hypothesis that exercise causes an increase in the postexercise esophageal temperature threshold for onset of cutaneous vasodilation through an alteration of active vasodilator activity was tested in nine subjects. Increases in forearm skin blood flow and arterial blood pressure were measured and used to calculate cutaneous vascular conductance at two superficial forearm sites: one with intact alpha-adrenergic vasoconstrictor activity (untreated) and one infused with bretylium tosylate (bretylium treated). Subjects remained seated resting for 15 min (no-exercise) or performed 15 min of treadmill running at either 55, 70, or 85% of peak oxygen consumption followed by 20 min of seated recovery. A liquid-conditioned suit was used to increase mean skin temperature ( approximately 4.0 degrees C/h), while local forearm temperature was clamped at 34 degrees C, until cutaneous vasodilation. No differences in the postexercise threshold for cutaneous vasodilation between untreated and bretylium-treated sites were observed for either the no-exercise or exercise trials. Exercise resulted in an increase in the postexercise threshold for cutaneous vasodilation of 0.19 +/- 0.01, 0.39 +/- 0.02, and 0.53 +/- 0.02 degrees C above those of the no-exercise resting values for the untreated site (P < 0.05). Similarly, there was an increase of 0.20 +/- 0.01, 0.37 +/- 0.02, and 0.53 +/- 0.02 degrees C for the treated site for the 55, 70, and 85% exercise trials, respectively (P < 0.05). It is concluded that reflex activity associated with the postexercise increase in the onset threshold for cutaneous vasodilation is more likely mediated through an alteration of active vasodilator activity rather than through adrenergic vasoconstrictor activity.  相似文献   

13.
After an acute bout of exercise, there is an unexplained elevation in systemic vascular conductance that is not completely offset by an increase in cardiac output, resulting in a postexercise hypotension. The contributions of the splanchnic and renal circulations are examined in a companion paper (Pricher MP, Holowatz LA, Williams JT, Lockwood JM, and Halliwill JR. J Appl Physiol 97: 2065-2070, 2004). The purpose of this study was to determine the contribution of the cutaneous circulation in postexercise hypotension under thermoneutral conditions (approximately 23 degrees C). Arterial blood pressure was measured via an automated sphygmomanometer, internal temperature was measured via an ingestible pill, and skin temperature was measured with eight thermocouples. Red blood cell flux (laser-Doppler flowmetry) was monitored at four skin sites (chest, forearm, thigh, and leg), and cutaneous vascular conductance (CVC) was calculated (red blood cell flux/mean arterial pressure) and scaled as percent maximal CVC (local heating to 43 degrees C). Ten subjects [6 men and 4 women; age 23 +/- 1 yr; peak O(2) uptake (Vo(2 peak)) 45.8 +/- 2.0 ml.kg(-1).min(-1)] volunteered for this study. After supine rest (30 min), subjects exercised on a bicycle ergometer for 1 h at 60% of their Vo(2 peak) and were then positioned supine for 90 min. Exercise elicited a postexercise hypotension reaching a nadir at 46.0 +/- 4.5 min postexercise (77 +/- 1 vs. 82 +/- 2 mmHg preexercise; P < 0.05). Internal temperature increased (38.0 +/- 0.1 vs. 36.7 +/- 0.1 degrees C preexercise; P < 0.05), remaining elevated at 90 min postexercise (36.9 +/- 0.1 degrees C vs. preexercise; P < 0.05). CVC at all four skin sites was elevated by the exercise bout (P < 0.05), returning to preexercise values within 50 min postexercise (P > 0.05). Therefore, although transient changes in CVC occur postexercise, they do not appear to play an obligatory role in mediating postexercise hypotension under thermoneutral conditions.  相似文献   

14.
This study investigated the cardiovascular and metabolic responses to prolonged wheelchair exercise in a group of highly trained, traumatic paraplegic men. Six endurance-trained subjects with spinal cord lesions from T10 to T12/L3 underwent a maximal incremental exercise test in which they propelled their own track wheelchairs on a motor-driven treadmill to exhaustion to determine maximal O2 uptake (VO2max) and related variables. One week later each subject exercised in the same wheelchair on a motorized treadmill at 60-65% of VO2max for 80 min in a thermoneutral environment (dry bulb 22 degrees C, wet bulb 17 degrees C). Approximately 10 ml of venous blood were withdrawn both 20 min and immediately before exercise (0 min), after 40 and 80 min of exercise, and 20 min postexercise. Venous blood was analyzed for hematocrit (Hct), hemoglobin (Hb), and lactate, and the separated plasma was analyzed for glucose, K+, Na+, Cl-, free fatty acid (FFA), and osmolality. VO2, CO2 production (VCO2), minute ventilation (VE), respiratory exchange ratio (R), net efficiency, and wheelchair strike rate were determined at four intervals throughout the exercise period. Data were analyzed with an analysis of variance repeated-measures design and a Scheffé post hoc test. VO2max was 47.5 +/- 1.8 (SE) ml.min-1.kg-1 with maximal VE BTPS and maximal heart rate (HR) being 100.1 +/- 3.8 l/min and 190 +/- 1 beats/min, respectively. During prolonged exercise there were no significant changes in VO2, VCO2, VE, R, net efficiency, wheelchair strike rate, and lactate, glucose, and Na+ concentrations. Significant increases occurred in HR, FFA, K+, Cl-, osmolality, Hb, and Hct throughout exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Maximal dynamic exercise results in a postexercise hyperglycemia in healthy young subjects. We investigated the influence of maximal exercise on glucoregulation in non-insulin-dependent diabetic subjects (NIDDM). Seven NIDDM and seven healthy control males bicycled 7 min at 60% of their maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. In both groups, glucose production (Ra) increased more with exercise than did glucose uptake (Rd) and, accordingly, plasma glucose increased. However, in NIDDM subjects the increase in Ra was hastened and Rd inhibited compared with controls, so the increase in glucose occurred earlier and was greater [147 +/- 21 to 169 +/- 19 (30 min postexercise) vs. 90 +/- 4 to 100 +/- 5 (SE) mg/dl (10 min postexercise), P less than 0.05]. Glucose levels remained elevated for greater than 60 min postexercise in both groups. Glucose clearance increased during exercise but decreased postexercise to or below (NIDDM, P less than 0.05) basal levels, despite increased insulin levels (P less than 0.05). Plasma epinephrine and glucagon responses to exercise were higher in NIDDM than in control subjects (P less than 0.05). By use of the insulin clamp technique at 40 microU.m-2.min-1 of insulin with plasma glucose maintained at basal levels, glucose disposal in NIDDM subjects, but not in controls, was enhanced 24 h after exercise. It is concluded that, because of exaggerated counter-regulatory hormonal responses, maximal dynamic exercise results in a 60-min period of postexercise hyperglycemia and hyperinsulinemia in NIDDM. However, this event is followed by a period of increased insulin effect on Rd that is present 24 h after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Skeletal muscle hormone-sensitive lipase (HSL) activity is increased by contractions and increases in blood epinephrine (EPI) concentrations and cyclic AMP activation of the adrenergic pathway during prolonged exercise. To determine the importance of hormonal stimulation of HSL activity during the onset of moderate- and high-intensity exercise, nine men [age 24.3 +/- 1.2 yr, 80.8 +/- 5.0 kg, peak oxygen consumption (VO2 peak) 43.9 +/- 3.6 ml x kg(-1) x min(-1)] cycled for 1 min at approximately 65% VO2 peak, rested for 60 min, and cycled at approximately 90% VO2 peak for 1 min. Skeletal muscle biopsies were taken pre- and postexercise, and arterial blood was sampled throughout exercise. Arterial EPI increased (P < 0.05) postexercise at 65% (0.45 +/- 0.10 to 0.78 +/- 0.27 nM) and 90% VO2 peak (0.57 +/- 0.34 to 1.09 +/- 0.50 nM). HSL activity increased (P < 0.05) following 1 min of exercise at 65% VO2 peak [1.05 +/- 0.39 to 1.78 +/- 0.54 mmol x min(-1) x kg dry muscle (dm)(-1)] and 90% VO2 peak (1.07 +/- 0.24 to 1.91 +/- 0.62 mmol x min(-1) x kg dm(-1)). Cyclic AMP content also increased (P < 0.05) at both exercise intensities (65%: 1.52 +/- 0.67 to 2.75 +/- 1.12, 90%: 1.85 +/- 0.65 to 2.64 +/- 0.93 micromol/kg dm). HSL Ser660 phosphorylation (approximately 55% increase) and ERK1/2 phosphorylation ( approximately 33% increase) were augmented following exercise at both intensities, whereas HSL Ser563 and Ser565 phosphorylation were not different from rest. The results indicate that increases in arterial EPI concentration during the onset of moderate- and high-intensity exercise increase cyclic AMP content, which results in the phosphorylation of HSL Ser660. This adrenergic stimulation contributes to the increase in HSL activity that occurs in human skeletal muscle in the first minute of exercise at 65% and 90% VO2 peak.  相似文献   

17.
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n=9, 1 mg/day) or placebo (n=9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59+/-2 vs. 71+/-2 beats/min, P<0.01). In both groups, exercise produced significant decreases in systolic BP (145+/-3 vs. 154+/-3 mmHg, P=0.01), diastolic BP (71+/-3 vs. 75+/-2 mmHg, P=0.04), mean BP (89+/-2 vs. 93+/-2 mmHg, P=0.02), MSNA (29+/-2 vs. 35+/-1 bursts/min, P<0.01), and FVR (33+/-4 vs. 55+/-10 units, P=0.01), whereas it increased FBF (2.7+/-0.4 vs. 1.6+/-0.2 ml x min(-1) x 100 ml(-1), P=0.02) and did not change HR (64+/-2 vs. 65+/-2 beats/min, P=0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.  相似文献   

18.
The effects of a single bout of exercise to exhaustion on pancreatic insulin secretion were determined in seven untrained men by use of a 3-h hyperglycemic clamp with plasma glucose maintained at 180 mg/100 ml. Clamps were performed either 12 h after an intermittent treadmill run at approximately 77% maximum O2 consumption or without prior exercise. Arterialized blood samples for glucose, insulin, and C-peptide determination were obtained from a heated hand vein. The peak insulin response during the early phase (0-10 min) of the postexercise clamp was higher (81 +/- 8 vs. 59 +/- 9 microU/ml; P less than 0.05) than in the nonexercise clamp. Incremental areas under the insulin (376 +/- 33 vs. 245 +/- 51 microU.ml-1.min) and C-peptide (17 +/- 2 vs. 12 +/- 1 ng.ml-1.min) curves were also greater (P less than 0.05) during the early phase of the postexercise clamp. No differences were observed in either insulin concentrations or whole body glucose disposal during the late phase (15-180 min). Area under the C-peptide curve was greater during the late phase of the postexercise clamp (650 +/- 53 vs. 536 +/- 76 ng.ml-1.min, P less than 0.05). The exercise bout induced muscle soreness and caused an elevation in plasma creatine kinase activity (142 +/- 32 vs. 305 +/- 31 IU/l; P less than 0.05) before the postexercise clamp. We conclude that in untrained men a bout of running to exhaustion increased pancreatic beta-cell insulin secretion during the early phase of the hyperglycemic clamp. Increased insulin secretion during the late phase of the clamp appeared to be compensated by increased insulin clearance.  相似文献   

19.
The contribution of heat and exercise related stress to the release of heat shock protein 72 (HSP72) is currently unknown. The purpose of the present study was to determine the combined and independent effects of heat and exercise on the extracellular (e)HSP72 response. Eleven moderately trained male volunteers [means +/- SD: age 21 +/- 4 yr; body mass 75.7 +/- 7.7 kg; maximal oxygen uptake ((.)Vo(2 max)) 57.8 +/- 3.3 ml.kg(-1).min(-1)] completed four 2-h, heat-manipulated, water-immersion trials. Trials were exercise-induced heat (EIH; rectal temperature change +2.2 degrees C), clamped exercise (CEx; 0 degrees C), passive heating (PHT; +2.3 degrees C), and control (Con; 0 degrees C). Exercise trials (EIH and CEx) comprised deep-water running at 58.5 +/- 2.4 and 59.1 +/- 1.7% (.)vo(2)max. eHSP72 and catecholamine concentrations were determined by ELISA and HPLC, respectively, pre- and postimmersion. All trials induced an eHSP72 response (P < 0.05) with postimmersion values significantly greater on EIH compared with other trials (6.0 +/- 3.4; CEx 3.8 +/- 2.6; PHT 2.7 +/- 2.1; Con 2.2 +/- 1.9 ng/ml). Exercising with a thermal clamp blunted the eHSP72 response, but postimmersion values were also greater than Con. PHT induced a large catecholamine response, but postimmersion eHSP72 values did not reach significance vs. Con. Given that exercising with a thermal clamp evoked a significant increase in plasma eHSP72 concentration, exercise-related stressors other than heat appeared influential in stimulating HSP72 release. Moreover, the catecholamine data from PHT suggest neither epinephrine nor norepinephrine was solely responsible for eHSP72 release.  相似文献   

20.
This study examined the immunological responses to cold exposure together with the effects of pretreatment with either passive heating or exercise (with and without a thermal clamp). On four separate occasions, seven healthy men [mean age 24.0 +/- 1.9 (SE) yr, peak oxygen consumption = 45.7 +/- 2.0 ml. kg(-1). min(-1)] sat for 2 h in a climatic chamber maintained at 5 degrees C. Before exposure, subjects participated in one of four pretreatment conditions. For the thermoneutral control condition, subjects remained seated for 1 h in a water bath at 35 degrees C. In another pretreatment, subjects were passively heated in a warm (38 degrees C) water bath for 1 h. In two other pretreatments, subjects exercised for 1 h at 55% peak oxygen consumption (once immersed in 18 degrees C water and once in 35 degrees C water). Core temperature rose by 1 degrees C during passive heating and during exercise in 35 degrees C water and remained stable during exercise in 18 degrees C water (thermal clamping). Subsequent cold exposure induced a leukocytosis and granulocytosis, an increase in natural killer cell count and activity, and a rise in circulating levels of interleukin-6. Pretreatment with exercise in 18 degrees C water augmented the leukocyte, granulocyte, and monocyte response. These results indicate that acute cold exposure has immunostimulating effects and that, with thermal clamping, pretreatment with physical exercise can enhance this response. Increases in levels of circulating norepinephrine may account for the changes observed during cold exposure and their modification by changes in initial status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号