首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Interaction of the human antimicrobial peptide LL-37 with lipid monolayers has been investigated by a range of complementary techniques including pressure-area isotherms, insertion assay, epifluorescence microscopy, and synchrotron x-ray scattering, to analyze its mechanism of action. Lipid monolayers were formed at the air-liquid interface to mimic the surface of the bacterial cell wall and the outer leaflet of erythrocyte cell membrane by using phosphatidylglycerol (DPPG), phosphatidylcholine (DPPC), and phosphatidylethanolamine (DPPE) lipids. LL-37 is found to readily insert into DPPG monolayers, disrupting their structure and thus indicating bactericidal action. In contrast, DPPC and DPPE monolayers remained virtually unaffected by LL-37, demonstrating its nonhemolytic activity and lipid discrimination. Specular x-ray reflectivity data yielded considerable differences in layer thickness and electron-density profile after addition of the peptide to DPPG monolayers, but little change was seen after peptide injection when probing monolayers composed of DPPC and DPPE. Grazing incidence x-ray diffraction demonstrated significant peptide insertion and lateral packing order disruption of the DPPG monolayer by LL-37 insertion. Epifluorescence microscopy data support these findings.  相似文献   

2.
The efficiency of methylene blue (MB) and acridine orange (AO) for photodynamic therapy (PDT) is increased if encapsulated in liposomes. In this paper we determine the molecular-level interactions between MB or AO and mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DPPG) and cholesterol (CHOL) using surface pressure isotherms and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). To increase liposome stability, the effects from adding the surfactants Span® 80 and sodium cholate were also studied. Both MB and AO induce an expansion in the mixed monolayer, but this expansion is less significant in the presence of either Span® 80 or sodium cholate. The action of AO and MB occurred via coupling with phosphate groups of DPPC or DPPG. However, the levels of chain ordering and hydration of carbonyl and phosphate in headgroups depended on the photosensitizer and on the presence of Span® 80 or sodium cholate. From the PM-IRRAS spectra, we inferred that incorporation of MB and AO increased hydration of the monolayer headgroup, except for the case of the monolayer containing sodium cholate. This variability in behaviour offers an opportunity to tune the incorporation of AO and MB into liposomes which could be exploited in the release necessary for PDT.  相似文献   

3.
This article addresses the interactions of the synthetic antimicrobial peptide dermaseptin 01 (GLWSTIKQKGKEAAIAAA‐ KAAGQAALGAL‐NH2, DS 01) with phospholipid (PL) monolayers comprising (i) a lipid‐rich extract of Leishmania amazonensis (LRE‐La), (ii) zwitterionic PL (dipalmitoylphosphatidylcholine, DPPC), and (iii) negatively charged PL (dipalmitoylphosphatidylglycerol, DPPG). The degree of interaction of DS 01 with the different biomembrane models was quantified from equilibrium and dynamic liquid‐air interface parameters. At low peptide concentrations, interactions between DS 01 and zwitterionic PL, as well as with the LRE‐La monolayers were very weak, whereas with negatively charged PLs the interactions were stronger. For peptide concentrations above 1 µg/ml, a considerable expansion of negatively charged monolayers occurred. In the case of DPPC, it was possible to return to the original lipid area in the condensed phase, suggesting that the peptide was expelled from the monolayer. However, in the case of DPPG, the average area per lipid molecule in the presence of DS 01 was higher than pure PLs even at high surface pressures, suggesting that at least part of DS 01 remained incorporated in the monolayer. For the LRE‐La monolayers, DS 01 also remained in the monolayer. This is the first report on the antiparasitic activity of AMPs using Langmuir monolayers of a natural lipid extract from L. amazonensis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

5.
The interaction of the hepatitis G synthetic peptide E2(99-118) with cell membrane phospholipids of different characteristics such as dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) was studied by Langmuir isotherms. Epifluorescence microscopy and Atomic force microscopy (AFM) was also used to study interactions with DPPC. Compression isotherms of DPPC/E2(99-118) and DPPG/E2(99-118) mixed monolayers showed negative deviation from ideallity consistent with the existence of attractive interactions. The incorporation of the peptide in DPPC monolayer was also confirmed in epifluorescence microscopy and AFM studies. The peptide retarded the formation of DPPC domains and did not let the phospholipid get organized. No important differences in the interactions with DPPC (neutral) or DPPG (anionic) were found, thus suggesting that electrostatics forces do not have a predominant influence in these interactions.  相似文献   

6.
The effects of pulmonary surfactant protein SP-B on the properties of monolayers of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), and a mixture of DPPC:DPPG (7:3, mol:mol) were studied using spread films at the air-water interface. The addition of SP-B to the phospholipid monolayers gave positive deviations from additivity of the mean areas in the films. At low protein concentrations (less than 45% amino acid residues which corresponds to 0.5 mol% or 10 weight% SP-B) monolayers of SP-B/DPPC, SP-B/DPPG and SP-B/(DPPC:DPPG) collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At higher concentrations of SP-B in the protein-lipid monolayers, kink points appeared in the isotherms at about 40-45 mN.m-1, implying possible exclusion of material from the films, hence, changes in the original monolayer compositions. Calculated analyses of the monolayer compositions as a function of surface pressure indicated that nearly pure SP-B, associated with small amounts of phospholipid (2-3 lipid molecules per SP-B dimer), was lost from SP-B/DPPC, SP-B/DPPG, and SP-B/(DPPC:DPPG) films at surface pressures higher than 40-45 mN.m-1. The results are consistent with a low effectiveness of SP-B in removing saturated phospholipids, DPPC or DPPG, from the spread SP-B/phospholipid films.  相似文献   

7.
Pulmonary surfactant is a lipid:protein complex containing dipalmitoyl-phosphatidylcholine (DPPC) as the major component. Recent studies indicate adsorbed surfactant films consist of a surface monolayer and a monolayer-associated reservoir. It has been hypothesized that the monolayer and its functionally contiguous reservoir may be enriched in DPPC relative to bulk phase surfactant. We investigated the compositional relationship between the monolayer and its reservoir using paper-supported wet bridges to transfer films from adsorbing dishes to clean surfaces on spreading dishes. Spreading films appear to form monolayers in the spreading dishes. We employed bovine lipid extract surfactant [BLES(chol)] containing [3H]DPPC and either [14C]palmitoyl, oleoyl-phosphatidylcholine (POPC), [14C]dipalmitoyl-phosphatidylglycerol (DPPG), [14C]palmitoyl, oleoyl-phosphatidylglycerol (POPG), or [14C]cholesterol. Radiolabeled phosphatidylglycerols were prepared using phospholipase D. The studies demonstrated that the [3H]DPPC-[14C] POPC ratios were the same in the prepared BLES dispersions as in Langmuir-Blodgett films, indicating a lack of DPPC selectivity during film formation. Furthermore, identical 3H-14C isotopic ratios were observed with DPPC and either 14C-labeled POPC, DPPG, POPG, or cholesterol in the original dispersions, the bulk phases in adsorption dish D1, and monolayers recovered from spreading dish D2. These relationships remained unperturbed with 2-fold increases in bulk concentrations in D1 and 10-fold variations in D1-D2 surface area. These results indicate adsorbed surfactant monolayers and their associated reservoirs possess similar lipid compositions and argue against selective adsorption of DPPC.  相似文献   

8.
We investigate miscibility transitions of two different ternary lipid mixtures, DOPC/DPPC/Chol and POPC/PSM/Chol. In vesicles, both of these mixtures of an unsaturated lipid, a saturated lipid, and cholesterol form micron-scale domains of immiscible liquid phases for only a limited range of compositions. In contrast, in monolayers, both of these mixtures produce two distinct regions of immiscible liquid phases that span all compositions studied, the alpha-region at low cholesterol and the beta-region at high cholesterol. In other words, we find only limited overlap in miscibility phase behavior of monolayers and bilayers for the lipids studied. For vesicles at 25 degrees C, the miscibility phase boundary spans portions of both the monolayer alpha-region and beta-region. Within the monolayer beta-region, domains persist to high pressures, yet within the alpha-region, miscibility phase transition pressures always fall below 15 mN/m, far below the bilayer equivalent pressure of 32 mN/m. Approximately equivalent phase behavior is observed for monolayers of DOPC/DPPC/Chol and for monolayers of POPC/PSM/Chol. As expected, pressure-area isotherms of our ternary lipid mixtures yield smaller molecular area and compressibility for monolayers containing more saturated acyl chains and cholesterol. All monolayer experiments were conducted under argon. We show that exposure of unsaturated lipids to air causes monolayer surface pressures to decrease rapidly and miscibility transition pressures to increase rapidly.  相似文献   

9.
Ege C  Lee KY 《Biophysical journal》2004,87(3):1732-1740
The amyloid beta (A beta) peptide is the major component found in the amyloid deposits in the brains of Alzheimer's disease patients. In vitro studies have demonstrated that the aggregation of A beta can take place at three orders of magnitude lower concentrations in the presence of phospholipid molecules compared to bulk peptide studies, suggesting that membrane lipids may mediate A beta toxicity. To understand the interaction of A beta with lipid membranes, we have examined A beta 40 with anionic dipalmitoylphosphatidylglycerol (DPPG), zwitterionic dipalmitoylphosphatidylcholine (DPPC), and cationic dipalmitoyltrimethylammonium propane (DPTAP) monolayers under different subphase conditions. We have used a constant surface pressure insertion assay to assess the degree of peptide insertion into the lipids. Simultaneously, we monitored the surface morphology of the monolayers with fluorescence microscopy. We have also performed dual-probe fluorescence measurements where both the peptide and lipid are tagged with chromophores. Isotherm measurements show that A beta inserts into both DPTAP and DPPG monolayers under physiologically relevant conditions. Insertion into DPPC occurs at lipid densities below that found in a bilayer. The level of insertion is inversely proportional to the lipid packing density. Our results indicate that lipids need not be anionic to interact with A beta. Electrostatic effects involved in A beta 40-lipid interaction are discussed.  相似文献   

10.
Our study highlights the tight relationship between protein binding to monolayers and the phase-state of the phospholipids. Interaction of mitochondrial creatine kinase with phospholipidic membranes was analysed using a two-phase monolayer system containing anionic phospholipids under chain mismatch conditions. Monolayers were made up of mixtures of DMPC/DPPG or DPPC/DMPG containing 40% negatively charged phospholipids which is approximately the negative charge content of the mitochondrial inner membrane. Langmuir isotherms of these monolayers showed that they underwent a phase transition from a liquid expanded state to a liquid-condensed phase at about 2 mN/m and 5 mN/m respectively. Interface morphology modifications caused by injection of mtCK under these monolayers at low or high surface pressure were monitored by Brewster angle microscopy. This work provides evidence that the presence at the air/water interface of discrete domains with increased charge density, may lead to difference in partition of soluble proteins such as mtCK, interacting with the lipid monolayer. Conversely these proteins may help to organize charged phospholipid domains in a membrane.  相似文献   

11.
Puroindolines, cationic and cystine-rich low molecular weight lipid binding proteins from wheat seeds, display unique foaming properties and antimicrobial activity. To unravel the mechanism involved in these properties, the interaction of puroindoline-a (PIN-a) with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) monolayers was studied by coupling Langmuir-Blodgett and imaging techniques. Compression isotherms of PIN-a/phospholipid monolayers and adsorption of PIN-a to lipid monolayers showed that the protein interacted strongly with phospholipids, especially with the anionic DPPG. The electrostatic contribution led to the formation of a highly stable lipoprotein monolayer. Confocal laser scanning microscopy and atomic force microscopy showed that PIN-a was mainly inserted in the liquid-expanded phase of the DPPC, where it formed an aggregated protein network and induced the fusion of liquid-condensed domains. For DPPG, the protein partitioned in both the liquid-expanded and liquid-condensed phases, where it was aggregated. The extent of protein aggregation was related both to the physical state of phospholipids, i.e., condensed or expanded, and to the electrostatic interactions between lipids and PIN-a. Aggregation of PIN-a at air-liquid and lipid interfaces could account for the biological and technological properties of this wheat lipid binding protein.  相似文献   

12.
Research on lipid/drug interactions at the nanoscale underpins the emergence of synergistic mechanisms for topical drug administration. The structural understanding of bio-mimetic systems employing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a lung surfactant model mixed with antibiotics, as well as their biophysical properties, is of critical importance to modulate the effectiveness of therapeutic agents released directly to the airways. In this paper, we investigate the structural details of the interaction between Levofloxacin, ‘a respiratory quinolone’, and the macrolide Clarithromycin, with DPPC monolayers at the air-water interface, using a combination of Brewster angle microscopy, polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS), surface pressure isotherms and neutron reflectometry (NR) to describe the structural details of this interaction. The results allowed association of changes in the π-A isotherm profile with changes in the molecular organization and the co-localization of the antibiotics within the lipid monolayer by NR measurements. Overall, both antibiotics are able to increase the thickness of the acyl tails in DPPC monolayers with a corresponding reduction in tail tilt as well as to interact with the phospholipid headgroups as shown by PM-IRRAS experiments. The effects on the DPPC monolayers are correlated with the physical-chemical properties of each antibiotic and dependent on its concentration.  相似文献   

13.
The interaction of the hydrophobic pulmonary surfactant protein SP-C with dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and DPPC:DPPG (7:3, mol:mol) in spread monolayers at the air-water interface has been studied. At low concentrations of SP-C (about 0.5 mol% or 3 weight%protein) the protein-lipid films collapsed at surface pressures of about 70 mN.m-1, comparable to those of the lipids alone. At initial protein concentrations higher than 0.8 mol%, or 4 weight%, the isotherms displayed kinks at surface pressures of about 50 mN.m-1 in addition to the collapse plateaux at the higher pressures. The presence of less than 6 mol%, or 27 weight%, of SP-C in the protein-lipid monolayers gave a positive deviation from ideal behavior of the mean areas in the films. Analyses of the mean areas in the protein-lipid films as functions of the monolayer composition and surface pressure showed that SP-C, associated with some phospholipid (about 8-10 lipid molecules per molecule of SP-C), was squeezed out from the monolayers at surface pressures of about 55 mN.m-1. The results suggest a potential role for SP-C to modify the composition of the monolayer at the air-water interface in the alveoli.  相似文献   

14.
Atomistic molecular dynamics simulations and structural bioinformatics tools enable the identification of the exact mode of interaction between model pulmonary surfactant components. Two nanosecond long simulations of the N-terminal region of human surfactant protein-B (SP-B(1-25)) in dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) monolayers of different lipid surface densities reveal the preferential affinity of SP-B(1-25) for anionic phospholipids. In particular, arginine 12 and lysine 24 interact strongly and with high specificity with the phosphate group of the DPPG lipids, stabilizing the position, the orientation, and the secondary structure of the peptide in the monolayer. The peptide lies at an oblique angle to the interfacial plane, ranging between 47 degrees and 62 degrees, increasing with decreasing lipid surface density. In DPPC monolayers the interaction is largely determined by hydrophobic interactions. The non-specific nature of DPPC-SP-B(1-25) interactions allows for significant flexibility in the topology of the peptide in the lipid matrix. Bioinformatics tools are employed to generalize the simulation results to the sequences of SP-B(1-25) in other organisms. The importance of specific residues, and the role of the largely helical and amphiphilic nature of the peptide in the functionality of SP-B(1-25) are established. The synergy of classical mechanics tools with bioinformatics methods greatly enhances the molecular-level interpretation of pulmonary surfactant action and facilitates the development of design rules for synthetic surfactant analogues.  相似文献   

15.
This paper addresses the cooperative interaction of two phenothiazine drugs, viz. trifluoperazine (TFP) and chlorpromazine (CPZ), with phospholipid monolayers as the model membrane system. Surface pressure and surface potential isotherms were obtained for mixed Langmuir monolayers of either dipalmitoyl-phosphatidyl-choline (DPPC) or dipalmitoyl-phosphatidyl-glycerol (DPPG) co-spread with TFP or CPZ. The changes in monolayer behavior caused by incorporation of a few molar ratio of drug molecules were practically within the experimental dispersion for the zwitterionic DPPC, and therefore a more refined analysis will be required to probe the interactions in an unequivocal way. For the charged DPPG, on the other hand, the surface pressure and the dipole moment were significantly affected even for TFP or CPZ concentrations as low as 0.002 molar ratio. Overall, the effects from CPZ and TFP are similar, but small differences exist which are probably due to the different protonation properties of the two drugs. For both drugs, changes are more prominent at the liftoff of the surface pressure, i.e. at the gas-condensed phase transition, with the surface pressure and surface potential isotherms becoming more expanded with the drug incorporation. With DPPG/CPZ monolayers, in particular, an additional phase transition appears at higher CPZ concentrations, which resembles the effects from increasing the subphase temperature for a pure DPPG monolayer. The dipole moment for DPPG/CPZ and DPPG/TFP monolayers decreases with the drug concentration, which means that the effects from the charged drugs are not associated with changes in the double-layer potential. Otherwise, the effective dipole moment should increase with the drug concentration. The changes caused in surface pressure and dipole moment by small concentrations of TFP or CPZ can only be explained by some cooperative effect through which the contribution from DPPG molecules changes considerably, i.e. even DPPG molecules that are not neighbor to a CPZ or TFP molecule are also affected. Such changes may occur either through a significant reorientation of the DPPG molecules or to a change in their hydration state. We discuss the cooperativity semi-quantitatively by estimating the number of lipid molecules affected by the drug interaction. CPZ and TFP also affect the morphology of DPPG monolayers, which was confirmed with Brewster angle microscopy. The biological implications from the cooperative, non-specific interaction of CPZ and TFP with membranes are also commented upon.  相似文献   

16.
Several protein transport processes in the cell are mediated by signal sequence peptides located at the N-terminal side of the mature protein sequence. To date, the specific interaction and the stability of these peptides at the amphipathic interface of biological membranes and the relevance of the peptide conformation when they interact with lipids is not clear. We report the surface properties and the peptide–lipid interaction of three signal sequence peptides at the air–NaCl 145 mM interface by using the Langmuir monolayer approach. These synthetic peptides have a natural sequence with a non-periodic amphiphilicity, where hydrophobic and hydrophilic residues are located on opposed sides of the peptide primary sequence. We show that signal sequence peptides form insoluble monolayers of high stability against lateral compression. At close packing, peptide molecular area, surface potential and the high stability of the peptide monolayer are indicative that signal sequence peptides are compatible with a β-sheet conformation at the interface. Structure was confirmed with PM-IRRAS and transmission FT-IR studies. The peptides show lateral miscibility with either POPC (a liquid-expanded lipid) or DPPC (a liquid-condensed lipid) in mixed peptide–lipid monolayers. This indicates that signal sequence peptides studied are laterally miscible with phospholipids independent of the phase state of the lipid.  相似文献   

17.
To improve the understanding of the membrane uptake of an amphipathic and positively charged vector peptide, we studied the interactions of this peptide with different phospholipids, the nature of whose polar headgroups and physical states were varied. Three lipids were considered: dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and dioleoylphosphatidylglycerol (DOPG). The approach was carried out by three complementary methods: compression isotherms of monolayers and atomic force microscopy observations associated with Fourier transform infrared investigations. From analysis of the compression isotherms, it was concluded that the peptide interacts with all lipids and with an expansion of the mean molecular area, implying that both components form nonideal mixtures. The expansion was larger in the case of DOPG than for DPPC and DPPG because of an alpha to beta conformational transition with an increase in the peptide molar fraction. Atomic force microscopy observations showed that the presence of small amounts of peptide led to the appearance of bowl-like particles and that an increase in the peptide amounts generated the formation of filaments. In the case of DOPG, filaments were found at higher peptide molar fractions than already observed for DOPC because of the presence of negatively charged lipid headgroups.  相似文献   

18.
In situ polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) at the air-water interface has been used to determine secondary structure of the pulmonary surfactant model peptide, Hel 13-5, in the absence and the presence of phospholipid monolayers. Herein, fully saturated phospholipids of DPPC and DPPG are utilized to understand the effect of specific interaction between anionic DPPG and cationic Hel 13-5 on the peptide secondary structure. The spectrum frequency in the amide region (1500-1700 cm− 1) obtained from PM-IRRAS has been confirmed by comparing with that from ATR-FTIR for the corresponding bulk films. The PM-IRRAS spectra of single Hel 13-5 monolayers indicate the α-helical contour in the amide region, which coincides with the result from CD measurements in aqueous solutions. In the presence of phospholipid monolayers, however, Hel 13-5 changes its conformation from the α-helix to the extended β-sheet as surface pressure increases upon compression at the interface, and this interconversion is found to be irreversible even during expansion process of monolayers. Furthermore, it is notable that the electrostatic interaction between DPPG and Hel 13-5 inhibits to some extent the interconversion to the β-sheet during compression. These features are completely different from the bulk behavior, which demonstrates different roles of native proteins in the bulk phase and at the interface for pulmonary functions. In addition, the conformational variation of Hel 13-5 does not indicate close correlation with surface activity, which is common characteristic even for reversible hysteresis curves in pulmonary surfactant systems. This suggests that the secondary structure of native proteins is not strongly related to the surface activity during respiration. This work contributes to secondary structure determination of Hel 13-5 in the phospholipid domains in situ at the air-water interface and will provide insight into the molecular and physiological mechanism for SP-B and SP-C actions across the interface.  相似文献   

19.
Pulmonary surfactant, a thin lipid/protein film lining mammalian lungs, functions in vivo to reduce the work of breathing and to prevent alveolar collapse. Analogues of two hydrophobic surfactant proteins, SP-B and SP-C, have been incorporated into therapeutic agents for respiratory distress syndrome, a pathological condition resulting from deficiency in surfactant. To facilitate rational design of therapeutic agents, a molecular level understanding of lipid interaction with surfactant proteins or their analogues in aqueous monolayer films is necessary. The current work uses infrared reflection-absorption spectroscopy (IRRAS) to determine peptide conformation and the effects of S-palmitoylation on the lipid interactions of a synthetic 13 residue N-terminal peptide [SP-C13(palm)(2)] of SP-C, in mixtures with 1,2-dipalmitoylphosphatidylcholine (DPPC) or 1,2-dipalmitoylphosphatidylglycerol (DPPG). Two Amide I' features, at approximately 1655 and approximately 1639 cm(-1) in the peptide IRRAS spectra, are assigned to alpha-helical peptide bonds in hydrophobic and aqueous environments, respectively. In binary DPPC/SP-C13(palm)(2) films, the proportion of hydrated/hydrophobic helix increases reversibly with surface pressure (pi), suggestive of the peptide being squeezed out from hydrophobic regions of the monolayer. No such effect was observed for DPPG/peptide monolayers, indicative of stronger, probably electrostatic, interactions. Depalmitoylation produced a weakened interaction with either phospholipid as deduced from IRRAS spectra and from pi-area isotherms. S-Palmitoylation may modulate peptide hydration and conformation in the N-terminal region of SP-C and may thus permit the peptide to remain in the film at the high surface pressures present during lung compression. The unique capability of IRRAS to detect the surface pressure dependence of protein or peptide structure/interactions in a physiologically relevant model for surfactant is clearly demonstrated.  相似文献   

20.
The influence of the hydrophobic proteins SP-B and SP-C, isolated from pulmonary surfactant, on the morphology of binary monomolecular lipid films containing phosphocholine and phosphoglycerol (DPPC and DPPG) at the air-water interface has been studied using epifluorescence and dark-field microscopy. In contrast to previously published studies, the monolayer experiments used the entire hydrophobic surfactant protein fraction (containing both the SP-B and SP-C peptides) at physiologically relevant concentrations (approximately 1 wt %). Even at such low levels, the SP-B/C peptides induce the formation of a new phase in the surface monolayer that is of lower intrinsic order than the liquid condensed (LC) phase that forms in the pure lipid mixture. This presumably leads to a higher structural flexibility of the surface monolayer at high lateral pressure. Variation of the subphase pH indicates that electrostatic interaction dominates the association of the SP-B/C peptides with the lipid monolayer. As evidenced from dark-field microscopy, monolayer material is excluded from the DPPC/DPPG surface film on compression and forms three-dimensional, surface-associated structures of micron dimensions. Such exclusion bodies formed only with SP-B/C peptides. This observation provides the first direct optical evidence for the squeeze-out of pulmonary surfactant material in situ at the air-water interface upon increasing monolayer surface pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号