首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacteriophages of lactobacilli   总被引:13,自引:0,他引:13  
Lactobacilli are members of the bacterial flora of lactic starter cultures used to generate lactic acid fermentation in a number of animal or plant products used as human or animals foods. They can be affected by phage outbreaks, which can result in faulty and depreciated products. Two groups of phages specific of Lactobacillus casei have been thoroughly studied. 1. The first group is represented by phage PL-1. This phage behaves as lytic in its usual host L. casei ATCC 27092, but can lysogenize another strain, L. casei ATCC 334. Bacterial receptors of this phage are located in a cell-wall polysaccharide and rhamnose is the main component of the receptors. Ca2+ and adenosine triphosphate (ATP) are indispensable to ensure the injection of the phage DNA into the bacterial cell. The phage DNA is double-stranded, mostly linear, but with cohesive ends which enables it to be circularized. The vegetative growth of PL-1 proceeds according to the classical mode. Cell lysis is produced by an N-acetyl-muramidase at the end of vegetative growth. 2. The second group is represented by the temperate phage phi FSW of L. casei ATCC27139. It has been shown how virulent phages originate from this temperate phage in Japanese dairy plants. The lysogenic state of phi FSW can be altered either by point mutations or by the insertion of a mobile genetic element called ISL 1, which comes from the bacterial chromosome. This is the first transposable element that has been described in lactobacilli. Lysogeny appears to be widespread among lactobacilli since one study showed that 27% of 148 strains studied, representing 15 species, produced phage particles after induction by mitomycin C. Similarly, 23 out of 30 strains of Lactobacillus salivarius are lysogenic and produce, after induction by mitomycin C, temperate phages, killer particles, or defective phages. Temperate phages have also been found in 10 out of 105 strains of Lactobacillus bulgaricus or Lactobacillus lactis after induction by mitomycin C. Phages so far studied of the latter 2 and closely related lactobacilli, either temperate or isolated as lytic, may be divided into 4 unrelated groups called a, b, c and d. Most of these phages are found in group a and an unquestionable relationship has already been shown between lytic phages and temperate phages that belong to this group. Lytic phage LL-H of L. lactis LL 23, isolated in Finland, is one of the most representative of those of group a and has been extensively studied on the molecular level.  相似文献   

2.
A total of 52 strains of Lactobacillus acidophilus were examined for production of bacteriocins. A majority (63%) demonstrated inhibitory activity against all members of a four-species grouping of Lactobacillus leichmannii, Lactobacillus bulgaricus, Lactobacillus helveticus, and Lactobacillus lactis. Four L. acidophilus strains with this activity also inhibited Streptococcus faecalis and Lactobacillus fermentum, suggesting a second system of antagonism. Under conditions eliminating the effects of organic acids and hydrogen peroxide, no inhibition of other gram-positive or -negative genera was demonstrated by L. acidophilus. The agent produced by L. acidophilus N2 and responsible for inhibition of L. leichmannii, L. bulgaricus, L. helveticus, and L. lactis was investigated. Ultrafiltration studies indicated a molecular weight of approximately 100,000 for the crude inhibitor. The agent was sensitive to proteolytic enzymes and retained full activity after 60 min at 100 degrees C (pH 5). Activity against sensitive cells was bactericidal but not bacteriolytic. These characteristics identified the inhibitory agent as a bacteriocin, designated lactacin B. Examination of strains of L. acidophilus within the six homology groupings of Johnson et al. (Int. J. Syst. Bacteriol. 30:53-68, 1980) demonstrated that production of the bacteriocin lactacin B could not be used in classification of neotype L. acidophilus strains. However, the usefulness of employing sensitivity to lactacin B in classification of dairy lactobacilli is suggested.  相似文献   

3.
Induction of interferon for a kind of dairy lactic acid bacteria, Lactobacillus acidophilus (L. acidophilus), was investigated in murine peritoneal macrophage (M phi) cultures. Lactobacillus acidophilus JCM 1034, 1132T, 1229 and 2125 induced IFN (12-34 I.U./ml) in M phi cultures in vitro. Strain 1132T- and 2125-induced IFNs were characterized as IFN alpha/beta by treatment with anti-IFNs serum. The results indicate that the inducing activity of IFNs may be one of the available biological parameters for designating the dairy products containing L. acidophilus as "physiologically functional foods."  相似文献   

4.
Different kinds of lactobacilli and Bifidobacteria fermented milk were fed to ovalbumin-specific IgE-elevated mice for 3 days, and after the final administration, changes in the ovalbumin-specific IgE values for each sample were compared to the value for non-fermented milk. Seven of the Lactobacillus-fermented milks caused a significant decrease in the serum ovalbumin-specific IgE levels. Above all, Lactobacillus acidophilus L92, Lactobacillus acidophilus CP1613, and Lactobacillus fermentum CP34 fermented milk had the most significant effects of decreasing the serum ovalbumin-specific IgE levels compared to a control group. The L. acidophilus L92 and L. fermentum CP34 cells also showed significant ovalbumin-specific IgE lowering activities. From these results, an active component seems to exist in the cells of L. acidophilus L92 and L. fermentum CP34 strains. Recovery of the radiolabeled L. acidophilus L92 and L. fermentum CP34 cells from the small intestine and the large intestine of the mouse 13 h after oral administration were higher than the recovery of any other strain.  相似文献   

5.
A procedure was developed to enumerate selectively Lactobacillus casei populations in yoghurt-type fermented milks that can also contain strains of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacterium infantis. Commercial LBS agar was acidified to pH 5.4, and the plates were incubated at 15°C for 14 days under anaerobic conditions. Acidification prevented the development of streptococci, and incubation at 15°C limited the development of the lactobacilli and the bifidobacteria. L. casei formed colonies on HHD medium which were different from those obtained with L. bulgaricus. Counts of L. casei on HHD confirmed results obtained on LBS - pH 5.4 medium and incubated at 15°C. L. casei did not form colonies on M17, nor did L. acidophilus or L. bulgaricus.  相似文献   

6.
7.
Six strains of lactobacilli belonging to three species (Lactobacillus casei, Lactobacillus acidophilus and Lactobacillus helveticus) were evaluated for probiotic attributes viz. acid tolerance, bile tolerance and cell surface hydrophobicity. All the six strains exhibited probiotic attributes with considerable degree of variation. Three Lactobacillus strains selected on the basis of probiotic attributes were used for preparing three different fermented milks. In order to evaluate the effect of feeding these probiotic fermented milks on macrophage cell function, an in-vivo trial was conducted in mice for a period of 2, 5 and 8?days. The control group of mice was fed with skim milk. The phagocytic activity of macrophages increased significantly (P?<?0.05) on feeding fermented milk prepared using L. acidophilus, L. casei and L. helveticus as compared to milk group (control) on 2nd, 5th and 8th day of feeding, respectively. Likewise, the release of ??-glucuronidase and ??-galactosidase from peritoneal macrophages increased significantly (P?<?0.05) on 2nd, 5th and 8th day of feeding as compared to their respective control group (milk). The results thus depict that feeding of probiotic fermented milk enhances phagocytic activity of the macrophages.  相似文献   

8.
98 Lactococcus lactis strains were isolated from traditional fermented milk products in Turkey tested against 60 lactococcal lytic phages to determine their resistance levels. While 82 L. lactis strains were sensitive against lactic phages at different levels, 16 L. lactis strains showed resistance to all phages tested. Types of phage resistance among 16 L. lactis strains were identified as phage adsorption inhibition in eight strains, restriction/modification in six strains and abortive infection (heat sensitive phage resistance) in two strains, using three broad-spectrum phages phi pll 98-32, phi pld 67-42 and phi pld 67-44.  相似文献   

9.
AIMS: To characterize lactobacilli isolated from the intestines of ducks or pigs with respect to the production of extracellular homopolysaccharides (HoPS) and oligosaccharides. METHODS AND RESULTS: Lactobacillus strains of duck or pig origin were screened for HoPS synthesis and >25% of the isolates produced fructans or glucans from sucrose. Glucan-forming strains were found within the species Lactobacillus reuteri and Lactobacillus animalis and fructan-forming strains were found within Lactobacillus mucosae, Lactobacillus crispatus and Lactobacillus acidophilus. The glucan-forming strains of L. reuteri but not L. animalis produced glucose-oligosaccharides in additon to the respective polymers, and two fructan-forming strains of L. acidophilus produced kestose. Genes coding for glycosyltransferases were detected by PCR and partially characterized by sequence analysis. CONCLUSIONS: A large proportion of lactobacilli from intestinal habitats produce HoPS from sucrose and polysaccharide formation is generally associated with the formation of glucose- and fructose oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization of the metabolic potential of intestinal lactobacilli contributes to the understanding of the molecular basis of autochthony in intestinal habitats. Moreover, this is the first report of glucose-oligosaccharide production during growth of lactobacilli, and one novel fructosyltransferase and one novel glucansucrase were partially characterized on the genetic level.  相似文献   

10.
The increasing interest in probiotic lactobacilli implicates the requirement of techniques that allow a rapid and reliable identification of these organisms. In this study, group-specific PCR and RAPD-PCR analyses were used to identify strains of the Lactobacillus casei and Lactobacillus acidophilus groups most commonly used in probiotic yogurts. Group-specific PCR with primers for the L. casei and L. acidophilus groups, as well as L. gasseri/johnsonii, could differentiate between 20 Lactobacillus strains isolated from probiotic yogurts and assign these into the corresponding groups. For identification of these strains to species or strain level, RAPD profiles of the 20 Lactobacillus strains were compared with 11 reference strains of the L. acidophilus and L. casei group. All except one strain could be attributed unambigously to the species L. acidophilus, L. johnsonii, L. crispatus, L. casei, and L. paracasei. DNA reassociation analysis confirmed the classification resulting from the RAPD-PCR.  相似文献   

11.
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools.  相似文献   

12.
Molecular taxonomy of Lactobacillus phages   总被引:4,自引:0,他引:4  
Forty-eight strains of lactobacilli used as starter strains in the dairy industry were examined for lysogeny after treatment with mitomycin C. Two strains of L. delbrueckii subsp. bulgaricus were able to produce active phages. These temperate phages as well as 4 virulent phages isolated during abnormal fermentations were compared to a previously characterized phage mv4 which is temperate. All these phages were shown to be partially homologous by DNA-DNA hybridization. Genes that code for viral proteins seem to be well conserved since 2 major virion polypeptides of 18 (or 19) kD and 34 kD could be detected in the protein composition of each phage. Immunoblotting studies of the 7 phages using serum raised against phage mv4 confirmed that the proteins of the different phages were related. All these phages can be classified in the previously constituted group a, which now comprises 4 temperate and 15 virulent phages. These results show that some virulent phages appearing during abnormal fermentations and some temperate phages isolated by appearing during abnormal fermentations and some temperate phages isolated by induction of starter strains can be closely related genetically. Five virulent phages of L. helveticus were also compared according to their restriction pattern and their DNA homology. They were shown to be related to one another, but unrelated to phages of other lactic acid bacteria species.  相似文献   

13.
Sixty-three strains of lactic streptococci isolated from commercial lactic streptococcal starter cultures were examined for lysogeny by treatment with ultraviolet light or mitomycin C. After treatment with the inducing agent, all strains, whether or not they lysed, were examined for evidence of phage release by electron microscopy. Thirty-eight strains yielded intact phages or phage particles of varying morphology. All the temperate phages had isometric heads and noncontractile tails; some had collars and structurally distinctive baseplates. Indicator host strains were found for phages induced from seven different strains. Three strains that released phages spontaneously yielded titers of 10(3) to 10(4) plaque-forming units per ml. When strains that spontaneously released phages were grown in mixed culture with indicator strains, increased phage titers of 10(6) to 10(7) plaque-forming units per ml were observed. These findings indicate that lysogenic lactic streptococcal strains may serve as a reservoir for phages that attack sensitive strains in mixed- or multiple-strain lactic starter cultures.  相似文献   

14.
Induction by mitomycin or high-temperature treatment resulted in the production of bacteriocins and phages in both phases of Xenorhabdus nematophilus A24, indicating lysogeny. Phage DNA purified from X. nematophilus A24 hybridized to several fragments of DraI-digested A24 chromosomal DNA, confirming that the phage genome was incorporated into the bacterial chromosome. Bacteriocins and phages were detected in cultures of most other Xenorhabdus spp. after mitomycin or high-temperature treatment. Xenorhabdus luminescens K80 was not lysed by these treatments, and no phages were seen associated with this strain. However, bacteriocins were detected in limited quantities in all Xenorhabdus cultures, including X. luminescens K80, without any induction. X. nematophilus A24 bacteriocins were antagonistic for other Xenorhabdus species but not for A24 or other strains of X. nematophilus.  相似文献   

15.
Induction by mitomycin or high-temperature treatment resulted in the production of bacteriocins and phages in both phases of Xenorhabdus nematophilus A24, indicating lysogeny. Phage DNA purified from X. nematophilus A24 hybridized to several fragments of DraI-digested A24 chromosomal DNA, confirming that the phage genome was incorporated into the bacterial chromosome. Bacteriocins and phages were detected in cultures of most other Xenorhabdus spp. after mitomycin or high-temperature treatment. Xenorhabdus luminescens K80 was not lysed by these treatments, and no phages were seen associated with this strain. However, bacteriocins were detected in limited quantities in all Xenorhabdus cultures, including X. luminescens K80, without any induction. X. nematophilus A24 bacteriocins were antagonistic for other Xenorhabdus species but not for A24 or other strains of X. nematophilus.  相似文献   

16.
Sixty-three strains of lactic streptococci isolated from commercial lactic streptococcal starter cultures were examined for lysogeny by treatment with ultraviolet light or mitomycin C. After treatment with the inducing agent, all strains, whether or not they lysed, were examined for evidence of phage release by electron microscopy. Thirty-eight strains yielded intact phages or phage particles of varying morphology. All the temperate phages had isometric heads and noncontractile tails; some had collars and structurally distinctive baseplates. Indicator host strains were found for phages induced from seven different strains. Three strains that released phages spontaneously yielded titers of 10(3) to 10(4) plaque-forming units per ml. When strains that spontaneously released phages were grown in mixed culture with indicator strains, increased phage titers of 10(6) to 10(7) plaque-forming units per ml were observed. These findings indicate that lysogenic lactic streptococcal strains may serve as a reservoir for phages that attack sensitive strains in mixed- or multiple-strain lactic starter cultures.  相似文献   

17.
Relationships between 5 Lactobacillus manufacturing strains, 458 cultures of indigenous lactobacilli isolated from the human digestive and vaginal tracts and 98 isolates from the feces of white rats and mice were under study. The study demonstrated that under the conditions of mixed in vitro cultivation of paired cultures, probiotic strains inhibited more than 60% of the indigenous lactobacilli isolates. L. acidophilus strain K3 III 24 had the widest spectrum of antagonistic activity. Antagonistic relationships between indigenous lactobacilli depended on the origin, individual features and the anatomical sites of the culture isolation. Based on these results it has to be suggested that probiotic lactobacilli are capable of inducing disbalance in the host indigenous lactoflora. While choosing probiotics the character of relationships between probiotic microorganisms and the indigenous lactobacilli of the future recipient is recommended to be preliminarily tested in vitro.  相似文献   

18.
AIMS: To characterize a group of closely related Lactococcus lactis subsp. lactis casein starter strains used commercially, which differ in their sensitivity to bacteriophages isolated from the same industrial environment. METHODS AND RESULTS: Nine strains of L. lactis, six of which had been used as starter cultures for lactic casein manufacture, were shown to be closely related by pulsed-field gel electrophoresis and total DNA profiles. Nineteen phages which propagated on one or more of these starter strains were isolated from industrial casein whey samples. The phages were all small isometric-headed and could be divided into five groups on the basis of host range on the nine strains. Most of the phages did not give a PCR product with primers designed to detect the two most common lactococcal small isometric phage species (936 and P335). The hosts could be divided into six groups depending on their phage sensitivity. Plasmids encoding genes for the cell envelope associated PI-type proteinase, lactose metabolism and specificity subunits of a type I restriction/modification system were identified. CONCLUSIONS: This work demonstrates how isolates of the same starter strain may come to be regarded as separate cultures because of their different origins, and how these closely related strains may differ in some of their industrially relevant characteristics. SIGNIFICANCE AND IMPACT OF THE STUDY: This situation may be very common among lactococci used as dairy starter cultures, and implies that the dairy industry worldwide depends on a small number of different strains.  相似文献   

19.
The aim of this study was to examine the hydrophobicities of 23 urogenital, dairy, poultry, and American Type Culture Collection isolates of lactobacilli and to determine the effect on hydrophobicity of serially passaging the strains in liquid medium. To this end, strains were grown after isolation and identification and then serially passaged up to 20 times. Hydrophobicity was assessed through contact angle measurements on lawns of cells by using water, formamide, methylene iodide, 1-bromonaphthalene, and hexadecane as wetting agents and through measurement of their partitioning in a hexadecane-water system. The hydrophobicities of these strains varied widely, with Lactobacillus casei strains being predominantly hydrophilic and L. acidophilus strains being mostly hydrophobic. For some isolates, serial passaging was accompanied by a clear loss of hydrophobic surface properties, whereas for other strains, cultures became heterogeneous in that some cells had already lost their hydrophobic surface properties while others were still hydrophobic. Adhesion of this collection of lactobacilli to hexadecane droplets in microbial adhesion to hexadecane (MATH) tests was driven by their aversion to water rather than by their affinity for hexadecane, as concluded from the fact that hexadecane contact angles were zero for all strains. Furthermore, adhesion of the lactobacilli to hexadecane in MATH tests occurred only when the water contact angle on the cells was above 60 degrees.  相似文献   

20.
The aim of this study was to examine the hydrophobicities of 23 urogenital, dairy, poultry, and American Type Culture Collection isolates of lactobacilli and to determine the effect on hydrophobicity of serially passaging the strains in liquid medium. To this end, strains were grown after isolation and identification and then serially passaged up to 20 times. Hydrophobicity was assessed through contact angle measurements on lawns of cells by using water, formamide, methylene iodide, 1-bromonaphthalene, and hexadecane as wetting agents and through measurement of their partitioning in a hexadecane-water system. The hydrophobicities of these strains varied widely, with Lactobacillus casei strains being predominantly hydrophilic and L. acidophilus strains being mostly hydrophobic. For some isolates, serial passaging was accompanied by a clear loss of hydrophobic surface properties, whereas for other strains, cultures became heterogeneous in that some cells had already lost their hydrophobic surface properties while others were still hydrophobic. Adhesion of this collection of lactobacilli to hexadecane droplets in microbial adhesion to hexadecane (MATH) tests was driven by their aversion to water rather than by their affinity for hexadecane, as concluded from the fact that hexadecane contact angles were zero for all strains. Furthermore, adhesion of the lactobacilli to hexadecane in MATH tests occurred only when the water contact angle on the cells was above 60 degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号