首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polo-like kinases are serine/threonine kinases crucial for mitosis and DNA integrity. Plk1, the most well studied member of this family, is upregulated in several cancers, as well as in dividing cells with peak expression during G2/M phase. Recently, employing lesional skin from patients with cutaneous T-cell lymphoma (CTCL), we showed that Plk1 was increased mainly in advanced lesions. In this study, employing western blot and quantitative RT-PCR analyses, we demonstrated that Plk1 was overexpressed in multiple CTCL cell lines (HH, Hut78, MyLa, SeAx and SZ4). Further, a genetic knockdown (by short hairpin RNA) or enzyme activity inhibition (via a small molecule inhibitor, GW843682X) was found to result in a decrease in cell growth, viability and proliferation. Plk1 inhibition in CTCL cells also resulted in: (1) increased G2/M phase cell cycle arrest, (2) alteration in key mitotic proteins, (3) apoptosis and (4) multiple mitotic errors. Given our findings, clinical trials of Plk1 inhibitors in CTCL may be a promising area for further translational investigation. We speculate that overexpression of Plk1 may prove to be relevant to the progression and prognosis of CTCL through its direct impact on the regulation of tumor cell proliferation and indirect influence on the acquisition of somatic mutations by proliferating tumor cells.  相似文献   

2.
The 2 histone deacetylase inhibitors (HDACIs) approved for the treatment of cutaneous T-cell lymphoma (CTCL) including mycosis fungoides/sezary syndrome (MF/SS), suberoylanilide hydroxamic acid (SAHA) and romidepsin, are associated with low rates of overall response and high rates of adverse effects. Data regarding combination treatments with HDACIs is sparse. Butyroyloxymethyl diethylphosphate (AN-7) is a novel HDACI, which was found to have selective anticancer activity in several cell lines and animal models. The aim of this study was to compare the anticancer effects of AN-7 and SAHA, either alone or combined with doxorubicin, on MF/SS cell lines and peripheral blood lymphocytes (PBL) from patients with Sezary syndrome (SPBL). MyLa cells, Hut78 cells, SPBL, and PBL from healthy normal individuals (NPBL) were exposed to the test drugs, and the findings were analyzed by a viability assay, an apoptosis assay, and Western blot. AN-7 was more selectively toxic to MyLa cells, Hut78 cells, and SPBL (relative to NPBL) than SAHA and also acted more rapidly. Both drugs induced apoptosis in MF/SS cell lines, SAHA had a greater effect on MyLa cell line, while AN-7 induced greater apoptosis in SPBL; both caused an accumulation of acetylated histone H3, but AN-7 was associated with earlier kinetics; and both caused a downregulation of the HDAC1 protein in MF/SS cell lines. AN-7 acted synergistically with doxorubicin in both MF/SS cell lines and SPBL, and antagonistically with doxorubicin in NPBL. By contrast, SAHA acted antagonistically with doxorubicin on MF/SS cell lines, SPBL, and NPBL, leaving <50% viable cells. In conclusion, AN-7 holds promise as a therapeutic agent in MF/SS and has several advantages over SAHA. Our data provide a rationale for combining AN-7, but not SAHA, with doxorubicin to induce the cell death in MF/SS.  相似文献   

3.
Abstract

The objective of this study was to determine the relative susceptibilities to the damaging effects of hydrogen peroxide of DNA in the mitochondrial and nuclear compartments of two murine germ cell lines. We used a quantitative polymerase chain reaction assay (QPCR) to measure gene- and mitochondrial-specific DNA damage and examined for the presence of alkali-labile sites using alkaline gel electrophoresis. No DNA damage was observed in a nuclear gene (β-globin) in response to hydrogen peroxide treatment. In addition, no increase in alkali-labile sites was observed. However, mitochondrial DNA suffered extensive damage which increased in a dose-dependent manner. These results demonstrate that the nuclear DNA in these germ cell lines is relatively resistant to peroxide-mediated DNA damage, and that mitochondrial DNA is a sensitive biomarker for oxidative stress in these cells.  相似文献   

4.
5.
6.
7.
BackgroundAdenosine receptors are involved in tumor growth, progression, and response to therapy. Among them, A2B receptor is highly expressed in various tumors. Furthermore, ionizing radiation induces translocation of epidermal growth factor receptor (EGFR), which promotes DNA repair and contributes to radioresistance. We hypothesized that A2B receptor might be involved in the translocation of EGFR.MethodsWe investigated whether A2B receptor is involved in EGFR translocation and DNA damage response (γH2AX/53BP1 focus formation) of lung cancer cells by means of immunofluorescence studies. Radiosensitivity was evaluated by colony formation assay after γ-irradiation.ResultsA2B receptor was expressed at higher levels in cancer cells than in normal cells. A2B receptor antagonist treatment or A2B receptor knockdown suppressed EGFR translocation, γH2AX/53BP1 focus formation, and colony formation of lung cancer cell lines A549, calu-6 and NCI-H446, compared with a normal cell line (beas-2b). γ-Irradiation-induced phosphorylation of src and EGFR was also attenuated by suppression of A2B receptor expression.ConclusionActivation of A2B receptor mediates γ-radiation-induced translocation of EGFR and phosphorylation of src and EGFR, thereby promoting recovery of irradiated lung cancer cells from DNA damage.General significanceOur results indicate that A2B receptors contribute to radiation resistance in a cancer-cell-specific manner, and may be a promising target for radiosensitizers in cancer radiotherapy.  相似文献   

8.
Melanoma cell lines are commonly defective for the G2‐phase cell cycle checkpoint that responds to incomplete catenation of the replicated chromosomes. Here, we demonstrate that melanomas defective for this checkpoint response are less sensitive to genotoxic stress, suggesting that the defective cell lines compensated for the checkpoint loss by increasing their ability to cope with DNA damage. We performed an siRNA kinome screen to identify kinases responsible and identified PI3K pathway components. Checkpoint‐defective cell lines were three‐fold more sensitive to small molecule inhibitors of PI3K. The PI3K inhibitor PF‐05212384 promoted apoptosis in the checkpoint‐defective lines, and the increased sensitivity to PI3K inhibition correlated with increased levels of activated Akt. This work demonstrates that increased PI3K pathway activation is a necessary adaption for the continued viability of melanomas with a defective decatenation checkpoint.  相似文献   

9.
BackgroundTo overcome the hurdles of cisplatin, majorly its toxicity and resistance, there has been extensive search for alternative anti-cancer metal-based compounds. Here, three Cu(II)-complexes, Cu(Sal-Gly)(phen), Cu(Sal-Gly)(pheamine), Cu(Sal-Gly)(phepoxy) are characterized for their interaction with DNA, cytotoxicity and mechanism of action.MethodsThe binding ability of the complexes to Calf-Thymus DNA was evaluated by competition fluorescence studies with thiazole-orange, UV–Vis and circular dichroism spectroscopic titrations. Cytotoxicity was evaluated by MTT analysis. The DNA damage was analyzed through cleavage of supercoiled DNA via agarose gel-electrophoresis, and 8-oxo-guanidine and ɣH2AX staining in cells. Apoptosis was detected via DNA condensation/fragmentation, mitochondrial membrane potential, Annexin V staining and caspase 3/7 activity. Formation of reactive oxygen species was determined by DCFDA- and GSSG/GSH-analysis.ResultsBinding constants to DNA were evaluated as 1.7 × 106 (Cu(Sal-Gly)(phen)), 2.5 × 106 (Cu(Sal-Gly)(pheamine)) and 3.2 × 105 (Cu(Sal-Gly)(phepoxy)). All compounds induced DNA damage. Apoptosis was the main form of cell death. There was an increase in ROS, which is most likely responsible for the observed DNA-damage. Although the compounds were cytotoxic to all tested cancer cell lines, only Cu(Sal-Gly)(pheamine) displayed significantly lower toxicity towards non-cancer cells, its associated phenotypes differing from the other two Cu-complexes. Thus, Cu(Sal-Gly)(pheamine) was further assayed for molecular changes in response to drug treatment using a custom designed RT-qPCR array. Results showed that Harakiri was significantly upregulated. Presence of p53 was not required for apoptosis in response to Cu-complexes.Conclusions and general significanceThese Cu-complexes, namely Cu(Sal-Gly)(pheamine), may be considered promising anticancer agents with activity in cancer cells even with deficient p53 status.  相似文献   

10.
Melanoma cell lines and normal human melanocytes (NHM) were assayed for p53-dependent G1 checkpoint response to ionizing radiation (IR)-induced DNA damage. Sixty-six percent of melanoma cell lines displayed a defective G1 checkpoint. Checkpoint function was correlated with sensitivity to IR with checkpoint-defective lines being radio-resistant. Microarray analysis identified 316 probes whose expression was correlated with G1 checkpoint function in melanoma lines (P≤0.007) including p53 transactivation targets CDKN1A, DDB2, and RRM2B. The 316 probe list predicted G1 checkpoint function of the melanoma lines with 86% accuracy using a binary analysis and 91% accuracy using a continuous analysis. When applied to microarray data from primary melanomas, the 316 probe list was prognostic of 4-yr distant metastasis-free survival. Thus, p53 function, radio-sensitivity, and metastatic spread may be estimated in melanomas from a signature of gene expression.  相似文献   

11.
A defective response to DNA damage is observed in several human autosomal recessive ataxias with oculomotor apraxia, including ataxia-telangiectasia. We report that senataxin, defective in ataxia oculomotor apraxia (AOA) type 2, is a nuclear protein involved in the DNA damage response. AOA2 cells are sensitive to H2O2, camptothecin, and mitomycin C, but not to ionizing radiation, and sensitivity was rescued with full-length SETX cDNA. AOA2 cells exhibited constitutive oxidative DNA damage and enhanced chromosomal instability in response to H2O2. Rejoining of H2O2-induced DNA double-strand breaks (DSBs) was significantly reduced in AOA2 cells compared to controls, and there was no evidence for a defect in DNA single-strand break repair. This defect in DSB repair was corrected by full-length SETX cDNA. These results provide evidence that an additional member of the autosomal recessive AOA is also characterized by a defective response to DNA damage, which may contribute to the neurodegeneration seen in this syndrome.  相似文献   

12.
Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM‐dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM‐dependent checkpoint arrest, and over‐expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM‐dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over‐express PLK1, and a significant proportion of melanomas have high levels of PLK1 over‐expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM‐dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected.  相似文献   

13.
BackgroundConsidering the importance of cellular mechanics in the birth and evolution of cancer towards increasingly aggressive stages, we compared nano-mechanical properties of non-tumoral (WPMY-1) and highly aggressive metastatic (PC-3) prostate cell lines both on cell aggregates, single cells, and membrane lipids.MethodsCell aggregate rheological properties were analyzed during dynamic compression stress performed on a homemade rheometer. Single cell visco-elasticity measurements were performed by Atomic Force Microscopy using a cantilever with round tip on surface-attached cells. At a molecular level, the lateral diffusion coefficient of total extracted lipids deposited as a Langmuir monolayer on an air-water interface was measured by the FRAP technique.ResultsAt cellular pellet scale, and at single cell scale, PC-3 cells were less stiff, less viscous, and thus more prone to deformation than the WPMY-1 control. Interestingly, stress-relaxation curves indicated a two-step response, which we attributed to a differential response coming from two cell elements, successively stressed. Both responses are faster for PC-3 cells. At a molecular scale, the dynamics of the PC-3 lipid extracts are also faster than that of WPMY-1 lipid extracts.ConclusionsAs the evolution of cancer towards increasingly aggressive stages is accompanied by alterations both in membrane composition and in cytoskeleton dynamical properties, we attribute differences in viscoelasticity between PC-3 and WPMY-1 cells to modifications of both elements.General significanceA decrease in stiffness and a less viscous behavior may be one of the diverse mechanisms that cancer cells adopt to cope with the various physiological conditions that they encounter.  相似文献   

14.
Activation of NF-κB (nuclear factor of kappa light chain gene enhancer in B cells) in response to DNA damage is considered to contribute to repair of genetic lesions, increased cell survival and cytokine release. The molecular mechanisms orchestrating this cytoplasmic event involve core components of the nuclear DNA damage response machinery, including ATM-kinase (ataxia telangiectasia mutated kinase) and PARP-1 (poly (ADP-ribose) polymerase 1). The physiological consequences of defective NF-κB activation in this context, however, remain poorly investigated. Here we report on the role of the ‘p53-induced protein with a death domain'', PIDD, which appears rate limiting in this process, as is PARP-1. Despite impaired NF-κB activation, DNA damage did not increase cell death or reduce clonal survival of various cell types lacking PIDD, such as mouse embryonic fibroblasts or stem and progenitor cells of the hematopoietic system. Furthermore, lymphomagenesis induced by γ-irradiation (IR) was unaffected by deficiency for PIDD or PARP-1, indicating that loss of DNA damage-triggered NF-κB signalling does not affect IR-driven tumorigenesis. However, loss of either gene compromised cytokine release after acute IR injury. Hence, we propose that NF-κB''s most notable function after DNA damage in primary cells is related to the release of cytokines, thereby contributing to sterile inflammation.  相似文献   

15.
The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with current chemotherapeutic approaches.  相似文献   

16.
An important quality control mechanism eliminates meiocytes that have experienced recombination failure during meiosis. The culling of defective oocytes in Caenorhabditis elegans meiosis resembles late oocyte elimination in female mammals. Here we show that topoisomerase 3 depletion generates DNA lesions in both germline mitotic and meiotic compartments that are less capable of triggering p53 (cep-1)–dependent apoptosis, despite the activation of DNA damage and apoptosis signaling. Elimination of nonhomologous, alternative end joining and single strand annealing repair factors (CKU-70, CKU-80, POLQ-1, and XPF-1) can alleviate the apoptosis block. Remarkably, the ability of single mutants in the other members of the Bloom helicase-topoisomerase-RMI1 complex to elicit apoptosis is not compromised, and depletion of Bloom helicase in topoisomerase 3 mutants restores an effective apoptotic response. Therefore, uncontrolled Bloom helicase activity seems to direct DNA repair toward normally not used repair pathways, and this counteracts efficient apoptosis. This implicates an as-yet undescribed requirement for topoisomerase 3 in mounting an effective apoptotic response to ensure germ cell quality control.  相似文献   

17.
Sporadic human tumors and the hereditary cancer predisposition syndrome Li-Fraumeni are frequently associated with mutations in the p53 tumor suppressor gene that compromise its ability to function as a DNA damage checkpoint. A subset of Li-Fraumeni patients with wild-type p53 alleles have mutations in chk2/hcds1, one of the genes signaling the presence of DNA damage to the p53 protein. This suggests that p53 may be kept inactive in human cancer by mutations targeting DNA damage signaling pathways. Melanoma cells are highly radioresistant, yet they express wild-type p53 protein, raising the possibility of defects in the pathways that activate p53 in response to DNA damage. We have described a chk2/hcds1-independent DNA damage signaling pathway that targets Ser-376 within the COOH terminus of p53 for dephosphorylation and leads to increased p53 functional activity. We now report that in several human melanoma cell lines that express wild-type p53, the phosphorylation state of Ser-376 was not regulated by DNA damage. In these cell lines, neither the endogenous wild-type p53 protein nor high levels of ectopic wild-type p53 led to cell cycle arrest or apoptosis. Thus, defective activation of p53 in response to DNA damage may underlie the radioresistance of human melanoma cells.  相似文献   

18.
Fanconi Anemia (FA) is a cancer-susceptibility syndrome characterized by cellular sensitivity to DNA inter-strand cross-link (ICL)-inducing agents. The Fanconia Anemia D2 (FANCD2) protein is implicated in repair of various forms of DNA damage including ICLs. Studies with replicating extracts from Xenopus eggs indicate a role for FANCD2 in processing and repair of DNA replication-associated double stranded breaks (DSB). We have investigated the role of FANCD2 in cell cycle progression of cultured human cells. Similar to Xenopus cell-free extracts, we show that chromatin association of FANCD2 in human cells is coupled to ongoing DNA replication. siRNA depletion experiments demonstrate that FANCD2 is necessary for efficient DNA synthesis. However, in contrast with Xenopus extracts, FANCD2-deficiency does not elicit a DNA damage response, and does not affect the elongation phase of DNA synthesis, suggesting that FANCD2 is dispensable for repair of replication-associated DNA damage. Using synchronized cultures of primary untransformed human dermal fibroblasts we demonstrate that FANCD2 is necessary for efficient initiation of DNA synthesis. Taken together, our results suggest a novel role for the FA pathway in regulation of DNA synthesis and cell cycle progression. Inefficient DNA replication may contribute to the genome instability and cancer-propensity of FA patients.  相似文献   

19.
FAS (TNF receptor superfamily member 6, also known as CD95) plays a major role in T-cell apoptosis and is often dysregulated in CTCL. We searched for structural alterations of the FAS gene with the potential to affect its function. Although several heterozygous FAS promoter single nucleotide polymorphisms (SNPs) were detected, the only homozygous one was the −671 GG SNP present in 24/80 CTCL cases (30%). This SNP maps to an interferon response element activated by STAT-1. EMSA and supershift EMSA showed decreased CTCL nuclear protein/STAT-1 binding to oligonucleotides bearing this SNP. Luciferase reporters showed significantly less interferon-alfa responsive expression by FAS promoter constructs containing this SNP in multiple CTCL lines. Finally, FAS was upregulated by interferon-alfa in wildtype CTCL cells but not those bearing the −671 GG SNP. These findings indicate that many CTCL patients harbor the homozygous FAS promoter −671 GG SNP capable of blunting its response to interferon. This may have implications for CTCL pathogenesis, racial incidence and the response of patients to interferon-alfa therapy. In contrast, functionally significant mutations in FAS coding sequences were detected uncommonly. Among CTCL lines with the potential to serve as models of FAS regulation, FAS-high MyLa had both FAS alleles, FAS-low HH was FAS-hemizygous and FAS-negative SeAx was FAS-null.  相似文献   

20.
AimsHeme oxygenase (HO) and metallothionein (MT) genes are rapidly upregulated in the liver by pro-inflammatory cytokines and/or endotoxin as protection against cellular stress and inflammation. Gadolinium chloride (GdCl3)-induced Kupffer cell blockade has beneficial consequences in endotoxemia following bile duct ligation. Herein we further characterized the effects of Kupffer cell inhibition on the activation of the antioxidant defense system (HO and MT gene expressions, and antioxidant enzyme activities) in response to endotoxemia and obstructive jaundice.Main methodsThe isoform-specific expression of MT and HO genes was assessed (RT-PCR) in rat livers following 3-day bile duct ligation, 2-h lipopolysaccharide treatment (1 mg/kg) or their combination, with or without GdCl3 pretreatment (10 mg/kg, 24 h before endotoxin). Lipid peroxidation, DNA damage and hepatic antioxidant enzyme activities were also assessed.Key findingsAll these challenges induced similar extents of DNA damage, whereas the lipid peroxidation increased only when endotoxemia was combined with biliary obstruction. The MT and HO mRNA levels displayed isoform-specific changes: those of MT-1 and HO-2 did not change appreciably, whereas those of MT-2 and HO-1 increased significantly in 2-h endotoxemia, with or without obstructive jaundice. Among the enzymes reflecting the endogenous protective mechanisms, the catalase and copper/zinc-superoxide dismutase levels decreased, while that of Mn-SOD slightly increased. Interestingly, GdCl3 alone induced lipid peroxidation, DNA damage and MT-2 expression. In response to GdCl3, HO-1 induction was significantly lower in each model.SignificanceDespite its moderate hepatocellular toxicity, the ameliorated stress-induced hepatic reactions provided by GdCl3 may contribute to its protective effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号