首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
G. Felix  F. Meins Jr. 《Planta》1986,167(2):206-211
A highly sensitive and specific rocket immunoassay was used to measure the content of an endo-type -1,3-glucanase (EC 3.2.1.39) in tissues of Nicotiana tabacum L. cv. Havana 425. We show that the accumulation of -1,3-glucanase in cultured pith-parenchyma tissue is blocked by combinations of the auxin, -naphthaleneacetic acid (NAA), and the cytokinin, kinetin. When tissues pre-incubated for 7 d on complete medium containing 2.0 mg·l-1 NAA and 0.3 mg·l-1 kinetin are transferred onto medium without hormones or with either hormone added separately, the -1,3-glucanase content expressed per mg soluble protein increases approx. ten fold over a 7-d period. Under these inductive conditions, up to approx. 5% of the soluble protein is -1,3-glucanase. The induction is inhibited by >90% when tissues are cultured over the same period on medium containing both hormones. This -1,3-glucanase is developmentally regulated in the intact plant. It is a major component of the soluble protien in the lower leaves and roots but is not detectable in leaves near the top of the plant.Abbreviation NAA -naphthaleneacetic acid  相似文献   

3.
Beta-1,3-glucanase is one of the pathogenesis-related (PR) proteins involved in plant defense responses. A peach beta-1,3-glucanase gene, designated PpGns1, has been isolated and characterized. The deduced amino acid sequence of the product of PpGns indicates that it is a basic isoform (pI 9.8), and contains a putative signal peptide of 38 amino acids but has no C-terminal extension. Amino acid sequence comparisons revealed that PpGns1 is 69% and 67% identical to citrus and soybean beta-1,3-glucanases, respectively. Southern analysis of total genomic DNA also indicates that at least three genes for beta-1,3-glucanases exist in peach, forming a small gene family. Characterization of four additional clones by PCR has identified a second beta-1,3-glucanase gene, PpGns2. PpGns2 has been partially sequenced, and when compared to PpGns1, it shows high sequence homology, 96% and 99% nucleotide identity in the first and (partial) second exons, respectively. The deduced partial sequence of the PpGns2 product displays only two differences from PpGns1 in the signal peptide and one in the (partial) mature protein (141 amino acids). The 5'-flanking promoter regions of these two genes share 90% identity in nucleotide sequences interrupted by five major gaps (4-109 nt long). The promoter region contains various sequences similar to cis-regulatory elements present in different stress-induced plant genes. In leaves and stems of peach shoot cultures grown in vitro, PpGns1 is induced within 12 h after exposure to a culture filtrate of Xanthomonas campestris pv. pruni or ethephon. However, it is not induced following treatment with mercuric chloride.  相似文献   

4.
Glucan endo-1,3--glucosidases (-1,3-glucanases) have been implicated in several developmental processes and they may also play a direct role in the plant's defense against fungal pathogens. In an effort to characterize the glucanase gene family, complementary DNA clones encoding an acidic form of -1,3-glucanase have been isolated from tobacco. The cDNA was expressed in E. coli and shown to encode a -1,3-glucanase activity. The protein sequence encoded by the cDNA was found to match the partial protein sequence of PR-35, a previously characterized -1,3-glucanase [29]. The protein encoded by the cDNA was purified from the extracellular fluid of TMV-infected tobacco leaves and found by immunological methods to correspond to glucanase PR-Q' [10]. From a detailed analysis of the cDNA it is clear that this glucanase represents a third structural class of enzyme which differs substantially from both the basic, vacuolar glucanase and the acidic, extracellular forms (PR-2, PR-N and PR-O). It has previously been demonstrated that the basic form of -1,3-glucanase is synthesized as a pre-pro-enzyme and upon maturation the 21 amino acid signal peptide and a 22 amino acid carboxy-terminal peptide are removed. This processing event has been proposed to be involved with the vacuolar localization of the enzyme. By comparing the deduced protein structure of PR-Q' to that of the basic form it is evident that this extracellular enzyme is missing the carboxy-terminal 22 amino acids. The role of a conserved phenylalanine-glycine dipeptide in the processing of glucanases and other pathogenesis-related proteins from tobacco is discussed.  相似文献   

5.
6.
Infection of tobacco by tobacco mosaic virus (TMV) induces coordinate expression of genes encoding acidic and basic -1,3-glucanase isoforms. These genes are differentially expressed in response to other treatments. Salicylate treatment induces acidic glucanase mRNA to a higher level than basic glucanase mRNA. Ethylene treatment and wounding strongly induce the basic glucanase genes but have little effect on genes encoding the acidic isoforms. Furthermore, the basic glucanase genes are constitutively expressed in roots and lower leaves of healthy plants, whereas the acidic glucanase genes are not. In order to investigate how these expression patterns are established, we fused promoter regions of an acidic and a basic glucanase gene to the -glucuronidase (GUS) reporter gene and examined expression of these constructs in transgenic tobacco plants.A fragment of 1750 bp and two 5-truncated fragments of 650 bp and 300 bp of the acidic glucanase promoter were tested for induction of GUS gene expression after salicylate treatment and TMV infection. Upstream sequences of 1750 bp and 650 bp were sufficient for induction of the reporter gene by salicylate treatment and TMV infection, but the activity of the 300 bp fragment was strongly reduced. The results suggest that the 1750 bp upstream sequence of the acidic glucanase gene contains multiple regulatory elements.For the basic glucanase promoter it is shown that 1476 bp of upstream sequences were able to drive expression in response to TMV infection and ethylene treatment, but no response was found to incision wounding. Furthermore, high GUS activity was found in lower leaves and roots of healthy transgenic plants, carrying the 1476 bp basic glucanase promoter/GUS construct. When the promoter was truncated up to position –446 all activity was lost, indicating that the region between –1476 and –446 of the basic glucanase promoter is necessary for organ-specific and developmentally regulated expression as well as for induced expression in response to infection and other stress treatments.  相似文献   

7.
The class I β-1,3-glucanases are basic, vacuolar enzymes implicated in the defense of plants against pathogen infection. The tobacco (Nicotiana tabacum L.) enzyme is synthesized as a preproprotein with an N-terminal signal peptide for targeting to the lumen of the endoplasmic reticulum and an N-glycosylated C-terminal extension which is lost during protein maturation. The transport and processing of β-1,3-glucanase in cellsuspension cultures of the tobacco cultivar Havana 425 was investigated by pulse-chase labelling and cell fractionation. We verified that mature β-1,3-glucanase is localized in the vacuole of the suspension-cultured cells. Comparison of the time course of processing in homogenates, the soluble fraction, and membrane fractions indicates that proglucanase is transported from the endoplasmic reticulum via the Golgi compartment to the vacuole. Processing to the mature form occurs in the vacuole. Treatment of cells with tunicamycin, which inhibits N-glycosylation, and digestion of the 35S-labelled processing intermediates with endoglycosidase H indicate that β-1,3-glucanase has a single N-glycan attached to the C-terminal extension. Glycosylation is not required for proteolytic processing or correct targeting to the vacuole.  相似文献   

8.
Studies on the constitutive β-1,3-glucanase were conducted in submerged as well as in the stationary culture conditions, in the presence and in the absence of lactose and glucose as main carbon sources. In the absence of lactose or glucose, expression of β-1,3-glucanase was observed at 96?h in extracellular, periplasmic, cell wall bound and internal fractions during submerged fermentation. In shake flask culture, enzyme was found in all subcellular fractions using optimal glucose concentration. When Trichoderma harzianum was grown on media containing 55?kg lactose/m3 in submerged culture, activity was found in extracellular, cell wall bound and in the periplasmic fractions. The relative distribution of the enzyme in the cell is independent of the nature of the carbon source and its concentration.  相似文献   

9.
The class I -1,3-glucanases are antifungal vacuolar proteins implicated in plant defense that show developmental, hormonal, and pathogenesis-related regulation. The tobacco enzymes are encoded by a small gene family with members derived from ancestors related to the present-day species Nicotiana sylvestris and N. tomentosiformis. We studied the expression in transgenic tobacco plants of a chimeric -glucuronidase (GUS) reporter gene fused to 1.6 kb of upstream sequence of the tobacco class I -1,3-glucanase B (GLB) gene, which is of N. tomentosiformis origin. Expression of the GUS reporter gene and the accumulation of class I -1,3-glucanase and its mRNA showed very similar patterns of regulation. In young seedlings the reporter gene was expressed in the roots. In mature tobacco plants it was preferentially expressed in lower leaves and roots and was induced in leaves by ethylene treatment and by infection with tobacco mosaic virus (TMV). Furthermore, it was down-regulated in cultured leaf discs by combinations of the hormones auxin and cytokinin. Histological studies of GUS activity showed that the GLB promoter shows highly localized expression in roots of seedlings. It is also expressed in a ring of cells around necrotic lesions induced by TMV infection, but not in cells immediately adjacent to the lesions or in the lesions themselves. The results of deletion analyses suggest that multiple positive and negative elements in the GLB promoter regulate its activity. The region from –1452 to –1193 containing two copies of the heptanucleotide AGCCGCC, which is highly conserved in plant-stress and defense-related genes, is necessary for high level expression in leaves. Additional regions important for organ-specific and regulated expression were: –568 to –402 for ethylene induction of leaves; –402 to –211 for expression in lower leaves and cultured leaf discs and for TMV induction of leaves; and –211 to –60 for expression in roots.  相似文献   

10.
We have studied the effect of ethylene on the localization of the basic isoforms of glucan endo-1,3--glucosidase (-1,3-glucanase, EC 3.2.1.39) and endo-chitinase (chitinase, EC 3.2.1.14) in leaves of Nicotiana tabacum L. cv. Havana 425. Comparisons of the enzyme contents of the lower epidermis of the leaf, leaf expiants with the lower epidermis removed, and intercellular wash fluid indicate that both enzymes are localized inside epidermal cells of untreated leaves. Ethylene treatment (20 l·l-1, 4d) induced a marked -10- to 30-fold-coordinated accumulation of the enzymes. This was due primarily to induction of the basic isoforms inside chlorenchyma cells of the leaf interior. The localization of basic -1,3-glucanase was confirmed by immunofluorescence histochemistry and immunogold cytochemistry. Immunolabelling was confined to electron-dense bodies of the cell vacuole. No extracellular immunolabelling was detected in control or ethylene-treated leaves. We conclude that ethylene changes the cell-type-specific distribution but not the intracellular compartmentation of the two enzymes. These results support the generalization that basic isoforms of chitinase and -1,3-glucanase are intracellular whereas the acidic isoforms are secreted into the extracellular space.Abbreviations IgG immunoglobulin G - IWF intercellular wash fluid - PBS 0.14 M NaCl, 0.1 M K2HPO4, pH 7.5 - TMV tobacco mosaic virus We thank Monique Seldran and Alfred Milani for expert technical help, Patricia Ahl-Goy, Ciba-Geigy, AG, Basel for supplying IWF from TMV-infected leaves, and our colleagues Thomas Boller and Lilian Sticher for their comments and criticism.  相似文献   

11.
Stage-specific extracts of Lilium anthers undergoing meiosis exhibited sharp peaks of both endolytic and exolytic β-1,3-glucanase activity at the time of in situ callose breakdown. The endo- and exo-β-1,3-glucanase activities, attributable to different enzymes, were found to have molecular weights of 32,000 and 62,000, respectively. The majority of exoglucanase activity was found in the outer somatic layers of the anther, whereas the majority of endoglucanase activity was located in the immediate surroundings of the meiocytes. The action of both glucanase activities on callose wall removal was monitored. It was shown that endo-β-1,3-glucanase, but not exoglucanase, was able to effect callose wall removal. To the extent that detection of glucanase activity in extracts reflects its activity in vivo, the endoglucanase enzyme may be considered as the immediate agent of callose wall breakdown and, hence, as a critical regulator in the initiation of the development of the gametophyte stage.  相似文献   

12.
To begin biochemical and molecular studies on the biosynthesis of the type II arabinogalactan chains on arabinogalactan-proteins (AGPs), we adopted a bioinformatic approach to identify and systematically characterise the putative galactosyltransferases (GalTs) responsible for synthesizing the beta-(1,3)-Gal linkage from CAZy GT-family-31 from Arabidopsis thaliana. These analyses confirmed that 20 members of the GT-31 family contained domains/motifs typical of biochemically characterised beta-(1,3)-GTs from mammalian systems. Microarray data confirm that members of this family are expressed throughout all tissues making them likely candidates for the assembly of the ubiquitously found AGPs. One member, At1g77810, was selected for further analysis including location studies that confirmed its presence in the Golgi and preliminary enzyme substrate specificity studies that demonstrated beta-(1,3)-GalT activity. This bioinformatic/molecular study of CAZy GT-family-31 was validated by the recent report of Strasser et al. (Plant Cell 19:2278-2292, 2007) that another member of this family (At1g26810; GALT1) encodes a beta-(1,3)-GalT involved in the biosynthesis of the Lewis a epitope of N-glycans in Arabidopsis thaliana.  相似文献   

13.
Grape berries are considered recalcitrant materials in proteomic analysis, because berry tissues contain large amounts of secondary metabolites, especially phenolic compounds, which severely interfere with protein extraction and electrophoresis separation. We report hereby a PVPP/TCA-based protein extraction protocol for grape berries. Phenolic compounds in berry extracts were removed with repeated PVPP cleanups, and proteins were recovered with TCA precipitation. Protein resolution in 2-D gels was gradually improved with the increase of PVPP cleanup steps. By the protocol, about 760 protein spots of berry tissues were clearly resolved in 2-D gels with CBB staining. This protocol was also used to analyze β-1,3-glucanase (EC 3.2.1.39) in berry tissues. An anti-synthetic peptide antibody was prepared against 15 amino acid sequence residing on the surface of β-1,3-glucanase molecule. It detected two major spots in 2-D blots of berry extracts. The spots were identified by MALDI-TOF analysis as β-1,3-glucanase. The present study validates that β-1,3-glucanase is present in higher abundance in berry skins than in pulps, and in red berries than in white berries. Therefore, β-1,3-glucanase displays a tissue-specific expression. The preferential accumulation of β-1,3-glucanase in skins may be relevant to berry ripening.  相似文献   

14.
Ethylene induced chitinase (EC 3.2.1.14) and -1,3-glucanase (EC 3.2.1.29) to a similar extent in primary leaves of bean seedlings (Phaseolus vulgaris cv. Saxa). Both enzymes were purified from ethylene-treated leaves, and monospecific antibodies were raised aginst them. Ethylene treatments strongly increased the amount of immunore-active chitinase and -1,3-glucanase. Ethylene enhanced synthesis of chitinase in vivo, as tested by immunoprecipitation after pulse-labelling with [35S]methionine. RNA was isolated from bean leaves and translated in a rabbit reticulocyte lysate system in vitro. The chitinase and the -1,3-glucanase antiserum each precipitated a single polypeptide from the translation products. The precipitated polypeptides were 1500 and 4000 daltons larger, respectively, than native chitinase and native -1,3-glucanase, indicating that the two enzymes were synthesized as precursors in vitro. The translatable mRNAs for both enzymes increased at least tenfold within 2 h in response to a treatment with ethylene. When ethylene was withdrawn after 8 h of incubation, the translatable mRNAs for both enzymes decreased somewhat more slowly, reaching the basal level about 25 h later. In all cases, there was a close correlation between the levels of translatable mRNA for chitinase and -1,3-glucanase. A putative -1,3-glucanase cDNA clone, pCH16, was isolated by hybrid-selected translation. The amount of -1,3-glucanase mRNA, as measured by RNA blot analysis using pCH16 as a probe, increased rapidly in response to ethylene and decreased again after withdrawal of ethylene, indicating that the amount of hybridizable RNA and of translatable mRNA for -1,3-glucanase were correlated. In conclusion, the results indicate that chitinase and -1,3-glucanase are regulated co-ordinately at the level of mRNA.Abbreviations poly(A)+ RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

15.
The Nicotiana tabacum ap24 gene encoding a protein with antifungal activity toward Phytophthora infestans has been characterized. Analysis of cDNA clones revealed that at least three ap24-like genes are induced in tobacco upon infection with tobacco mosaic virus. Amino acid sequencing of the purified protein showed that AP24 is synthesized as a preproprotein from which an amino-terminal signal peptide and a carboxyl-terminal propeptide (CTPP) are cleaved off during post-translational processing. The functional role of the CTPP was investigated by expressing chimeric genes encoding either wild-type AP24 or a mutant protein lacking the CTPP. Plants expressing the wild-type construct resulted in proteins properly sorted to the vacuole. In contrast, the proteins produced in plants expressing the mutant construct were secreted extracellularly, indicating that the CTPP is necessary for targeting of AP24 to the vacuoles. Similar results were obtained for vacuolar chitinases and -1,3-glucanases of tobacco. The extracellularly targeted mutant proteins were shown to have retained their biological activity. Together, these results suggest that within all vacuolar pathogenesis-related proteins the targeting information resides in a short carboxyl-terminal propeptide which is removed during or after transport to the plant vacuole.  相似文献   

16.
In Arabidopsis tissues, the pool of tubulin protein is provided by the expression of multiple -tubulin and -tubulin genes. Previous evidence suggested that the TUA2 -tubulin gene was expressed in all organs of mature plants. We now report a more detailed analysis of TUA2 expression during plant development. Chimeric genes containing TUA2 5-flanking DNA fused to the -glucuronidase (GUS) coding region were used to create transgenic Arabidopsis plants. Second-generation progeny of regenerated plants were analyzed by histochemical assay to localize GUS expression. GUS activity was seen throughout plant development and in nearly all tissues. The blue product of GUS activity accumulated to the highest levels in tissues with actively dividing and elongating cells. GUS activity was not detected in a few plant tissues, suggesting that, though widely expressed, the TUA2 promoter is not constitutively active.  相似文献   

17.
We have isolated cDNA clones representing mRNAs encoding chitinase and 1,3--glucanase in cotton (Gossypium hirsutum L.) leaves. The chitinase clones were sequenced and found to encode a 28,806 Da protein with 71% amino acid sequence similarity to the SK2 chitinase from potato (Solanum tuberosum). The 1,3--glucanase clones encoded a 37,645 Da protein with 57.6% identity to a 1,3--glucanase from soybean (Glycine max). Northern blot analyses showed that chitinase mRNA is induced in plants treated with ethaphon or salicylic acid, whereas the levels of 1,3--glucanase mRNA are relatively unaffected. Southern blots of cotton genomic DNA and genomic clones indicated chitinase is encoded by a small gene family of which two members, Chi 2;1 and Chi 2;2, were characterized. These genes share 97% sequence identity in their transcribed regions. The genes were found to have three exons which are 309, 154 and 550 bp long, and two introns 99 and 154 bp in length. The 5-flanking regions of Chi 2;1 and Chi 2;2 exhibit a large degree of similarity and may contain sequences important for gene response to chemical agents and fungal attack.  相似文献   

18.
19.
《Phytochemistry》1996,43(1):29-37
The lutoid-body (bottom) fraction of latex from the rubber tree (Hevea brasiliensis) contains a limited number of major proteins. These are, besides the chitin-binding protein hevein, its precursor and the C-terminal fragment of this precursor, proteins with enzymic activities: three hevamine components, which are basic, vacuolar, chitinases with lysozyme activity, and a β-1,3-glucanase. Lutoid-body fractions from three rubber-tree clones differed in their contents of these enzyme proteins. The hevamine components and glucanase were isolated and several enzymic and structural properties were investigated. These enzymes are basic proteins and cause coagulation of the negatively charged rubber particles. The coagulation occurs in a rather narrow range of ratios of added protein to rubber particles, which indicates that charge neutralization is the determining factor. Differences in coagulation of rubber particles by lutoid-body fractions from various rubber clones can be explained by their content of hevamine and glucanase. Glucanase from the lutoid-body fraction may dissolve callus tissue and this may explain the observation that rubber-tree clones with a high glucanase content in this fraction produce more latex than clones with little glucanase. Sequence studies of two CNBr peptides of the glucanase indicate that this protein is homologous with glucanases from other plants, and that a C-terminal peptide, possibly involved in vacuolar targeting, may have been cleaved off.  相似文献   

20.
Molecular-sieve chromatography of an extract from ungerminated rye indicated the presence of enzymes which hydrolysed cellobiose, laminaribiose and the β-glucans cellodextrin, laminarin and barley β-glucan. A purified endo-β-1,3-glucanase was prepared from the extract by ammonium sulphate fractionation and molecular-sieve chromatography on Biogel P60. The substrate specificity and some properties of the enzyme are reported and the in vivo role of the enzyme is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号