首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of gold nanoparticles was carried out using Pongammia pinnata (pongam) leaf extract and their anticancer and antimycobacterial activities were studied. Gold nanoparticle formation was confirmed by UV–vis, XRD and HR-TEM. The anticancer efficacies of the biogenic gold nanoparticles were analyzed using cytotoxicity, cell morphology analysis, oxidative DNA damage, apoptosis detection and toxicity studies. Biogenic gold nanoparticles inhibited breast cancer cell line (MCF-7) proliferation with an efficacy of IC50 of 1.85 μg/mL. The antimycobacterial potential of the biogenic gold nanoparticles was screened against M. tuberculosis by Luciferase Reporter Phage (LRP) assay. The gold nanoparticles showed inhibition against sensitive M. tuberculosis with the minimum inhibitory concentration (MIC) of 10 μg/mL whereas no inhibition was found against the rifampicin resistant M. tuberculosis.  相似文献   

2.
Gold nanoparticles offer a great promise in clinical research. Despite various applications of the metal nanoparticles it is challenging to implement in vivo in clinical applications. This aspect is deprived of understanding the biological mechanisms that occurs in the cells. In this report we have evaluated application of AuNP on the safety profile at different doses (100, 200, and 500 μg/kg Bwt/day) on intravenous administration in rats regularly for 28 days. The study was performed based on the OECD test guideline 407. No clinical signs and mortalities were observed in any groups of rat treated with AuNP. No evidence of toxicity was observed in any of the diverse studies performed which is noteworthy. The study includes survival, behavior, animal weight, organ morphology, blood biochemistry and tissue histology. The results indicate that tissue accumulation pattern of gold nanoparticles depends on the surface, size and doses of the nanoparticle. The accumulation of the particles does not produce subacute physiological damage.  相似文献   

3.

Background

Many in vitro studies have revealed that the interference of dye molecules in traditional nanoparticle cytotoxicity assays results in controversial conclusions. The aim of this study is to establish an extensive and systematic method for evaluating biological effects of gold nanoparticles in mammalian cell lines.

Methods

We establish the cell-impedance measurement system, a label-free, real-time cell monitoring platform that measures electrical impedance, displaying results as cell index values, in a variety of mammalian cell lines. Cytotoxic effects of gold nanoparticles are also evaluated with traditional in vitro assays.

Results

Among the six cell lines, gold nanoparticles induce a dose-dependent suppression of cell growth with different levels of severity and the suppressive effect of gold nanoparticles was indirectly associated with their sizes and cellular uptake. Mechanistic studies revealed that the action of gold nanoparticles is mediated by apoptosis induction or cell cycle delay, depending on cell type and cellular context. Although redox signaling is often linked to the toxicity of nanoparticles, in this study, we found that gold nanoparticle-mediated reactive oxygen species generation was not sustained to notably modulate proteins involved in antioxidative defense system.

Conclusion

The cell-impedance measurement system, a dye-free, real-time screening platform, provides a reliable analysis for monitoring gold nanoparticle cytotoxicity in a variety of mammalian cell lines. Furthermore, gold nanoparticles induce cellular signaling and several sets of gene expression to modulate cellular physical processes.

General significance

The systematic approach, such as cell-impedance measurement, analyzing the toxicology of nanomaterials offers convincing evidence of the cytotoxicity of gold nanomaterials.  相似文献   

4.
The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode-respiring Geobacter sulfurreducens biofilms. We found that AuNPs are generated in the extracellular matrix of Geobacter biofilms and have an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode-respiring G. sulfurreducens biofilms reduce Au3+ to AuNPs. From FTIR spectra, it appears that reduced sugars were involved in the bioreduction and synthesis of AuNPs and that amine groups acted as the major biomolecules involved in binding.  相似文献   

5.
The intrinsic physical properties of the noble metal nanoparticles,which are highly sensitive to the nature of their local molecular environment,make such systems ideal for the detection of molecular recognition events.The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles.In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization.A brief discussion of the three common methods of functionalization:Electrostatic adsorption;Chemisorption;Affinity-based coordination is given.In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition.In the main section the various types of capping agents for molecular recognition;nucleic acid coatings,protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications.Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition.For the proteins the recognition properties of antibodies form the core of the section.With respect to the supramolecular systems the cyclodextrins,calix[n]arenes,dendrimers,crown ethers and the cucurbitales are treated in depth.Finally a short section deals with the possible toxicity of the nanoparticles,a concern in public health.  相似文献   

6.
A new gold nanoparticle-based construct has been designed to hydrophobic drugs delivery into cancer cells. Cyclodextrin scaffolds adsorbed on polyethyleneimine-coated gold nanoparticles (AuNP@PEI@CD) have been used to encapsulate hydrophobic tetrapyrrolic compounds consisting of gold complexes of 5,10,15,20-tetraphenyl porphyrin (AuTPPCl) and 5-(4-acetoxyphenyl)-10,15,20-triphenyl porphyrin (AuTPPOAcCl). These two nanoparticles have been tested for their cytotoxic activities against the two colorectal cancer cell lines HT-29 and HCT-116 and have shown significant increases in toxicity when compared to the corresponding non-vectorized tetrapyrrolic macrocycles.  相似文献   

7.
We described a new and sensitive method for the determination of mercury ions (Hg2+) on the basis of fluorescence correlation spectroscopy (FCS) and recognition of oligonucleotides. In this assay, 30‐nm gold nanoparticles (GNPs) were modified with oligonucleotides containing thymine bases (T) as fluorescent probes, and the principle of this assay was based on the specific binding of Hg2+ by two DNA thymine bases. When two GNPs labelled with different oligonucleotides were mixed with a sample containing Hg2+, the T‐Hg2+‐T binding reaction should cause GNPs to form dimers (or oligomers), which would lead to a significant increase in the characteristic diffusion time of GNPs in the detection volume. The FCS method is a single molecule detection method and can sensitively detect the change in the characteristic diffusion time of GNPs before and after binding reactions. The quantitative analysis was performed according to the relation between the change in the characteristic diffusion time of GNPs and the concentration of Hg2+. Under optimal conditions, the linear range of this method was from 0.3 nM to 100 nM, and the detection limit was 0.14 nM for Hg2+. This new method was successfully applied for direct determination of Hg2+ levels in water and cosmetics samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The nonlinear optical properties of protein-modified gold nanoparticles has been studied by the hyper-Rayleigh scattering (HRS) technique. HRS signals from the nanoparticles coated with goat-anti-human IgG have been obtained when pumped with a laser pulse with a wavelength of 1064 nm. The HRS signals of gold nanoparticles with IgG were larger than those of bare gold nanoparticles. This can be explained by a noncentrosymmetric effect. It was also found that the HRS signals from the IgG-coated gold nanoparticles could be greatly increased when the antigen was added due to gold nanoparticle aggregation. Our experiment found that the HRS method could produce a measurable signal with 10 microg/ml antigen added, while the colorimetric method using UV spectrum detection required 100 microg/ml of added antigen. The results show that the HRS measurement of immunogold nanoparticles could become a potential immunoassay in determining small levels of antigen in aqueous samples.  相似文献   

9.
金纳米颗粒凭借其独特的光学和电化学特性,广泛应用于信息存储、化学传感、医学成像、药物传输以及生物标记等领域。近年来,生物法合成金纳米颗粒因其环境友好、绿色低毒等特点引起研究者的广泛关注。研究表明,多种微生物包括细菌、放线菌、真菌和病毒等均具有合成金纳米颗粒的能力。本文综述了微生物介导合成金纳米颗粒的特性、机制及应用,并对未来发展趋势进行了展望。  相似文献   

10.
The present study evaluates the cytogenetic effects of both silver and gold nanoparticles on the root cells of Allium cepa. In this study, the root cells of Allium cepa were treated with both gold and silver nanoparticles of different concentrations (1?mg/L, 5?mg/L and 10?mg/L) along with control for 72?h. Experimental results revealed that after 72?h of exposure, a significant decrease in mitotic index (MI) from 68% (control) to 52.4% (1?mg/L), 47.3% (5?mg/L) and 41.4% (10?mg/L) for gold nanoparticles and 57.1% (1?mg/L), 53% (5?mg/l), 55.8% (10?mg/L) for silver nanoparticles. Through minute observation of the photograph, it was recorded that some specific chromosomal abnormalities such as stickiness of chromosome, chromosome breaks, nuclear notch, and clumped chromosome at different exposure conditions. Therefore, present results clearly suggest that Allium cepa root tip assay could be a viable path through which negative impact of both gold and silver nanoparticles can be demonstrated over a wide range of concentrations.  相似文献   

11.
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.  相似文献   

12.
AimA study on the possibility to use gold nanoparticles in mammography, both for a better image diagnostics and radiotherapy, is presented and discussed. We evaluate quantitatively the increment of dose released to the tumor enriched with Au-NPs with respect to the near healthy tissues, finding that for X-rays the increase can reach two orders of greater intensity.BackgroundGold nanoparticles continue to be investigated for their potential to improve existing therapies and to develop novel therapies. They are simple to obtain, can be functionalized with different chemical approaches, are stable, non-toxic, non-immunogenic and have high permeability and retention effects in the tumor cells. The possibility to use these for breast calcified tumors to be better treated by radiotherapy is presented as a possible method to destroy the tumor.Materials and methodsThe nanoparticles can be generated in water using the top-down method, should have a size of the order of 10–20 nm and be treated to avoid their coalescence. Under diagnostic X-ray monitoring, the solution containing nanoparticles can be injected locally inside the tumor site avoiding injection in healthy tissues. The concentrations that can be used should be of the order of 10 mg/ml or higher.ResultsAn enhancement of the computerized tomography diagnostics using 80–150 keV energy is expected, due to the higher mass X-ray coefficient attenuation with respect to other contrast media. Due to the increment of the effective atomic number of the biological tissue containing the gold nanoparticles, also an improvement of the radiotherapy effect using about 30 keV X-ray energy is expected, due to the higher photoelectric cross sections involved.ConclusionsThe study carried out represents a feasibility proposal for the use of Au-nanoparticles for mammographic molecular imaging aimed at radiotherapy of tumor nodules but no clinical results are presented.  相似文献   

13.
The present study demonstrated the in vitro embryotoxicity assessment of gold nanoparticles (AuNPs) and copper nanoparticles (CuNPs) prepared from the leaves extract of Angelica keiskei (Miq.) Koidz. and addressed their mode of antibacterial mechanisms. Both AuNPs and CuNPs were rapidly synthesized and the formations were observed within 1 h and 24 h, respectively. Further the morphological images of the nanoparticles were confirmed through transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The high-resolution X-ray diffraction (HR-XRD) analysis of the biosynthesized AuNPs and CuNPs were matched with joint committee on powder diffraction standards (JCPDS) file no of 04-0784 and 89-5899, respectively. A strong prominent Au and Cu signals were observed through energy dispersive spectroscopy (EDS) analysis. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed the responsible phytochemicals for the synthesis of AuNPs and CuNPs. In order to assess the toxic effects of AuNPs and CuNPs, bactericidal activity was performed against few of the test pathogens in which the effective inhibition was observed against Gram-negative bacteria than the Gram-positive bacteria. The mode of action and interaction of nanoparticles were performed on the bacterial pathogens and the results concluded that the interaction of nanoparticles initially initiated on the surface of the cell wall adherence followed by ruptured the cells and caused the cell death. In addition to the antibacterial activity, in vitro embryotoxicity studies were performed against zebrafish embryos and the results confirmed that 200 µg/ml concentration of AuNPs showed the embryotoxicity, whereas 2 µg/ml of CuNPs resulted the embryotoxicity. Furthermore, the morphological anomalies of zebrafish embryos revealed the toxic nature of the synthesized nanoparticles.  相似文献   

14.
Despite their large secretome and wide applications in bioprocesses, fungi remain underexplored in metal nanoparticles (MNP) biosynthesis. Previous studies have shown that cell surface proteins of Rhizopus oryzae play a crucial role in biomineralization of Au(III) to produce gold nanoparticles (AuNPs). Therefore, it is hypothesized that purified cell surface protein may produce in vitro AuNPs with narrow size distribution for biomedical and biocatalytic applications. However, different protein extraction methods might affect protein stability and the AuNP biosynthesis process. Herein, we have explored the extraction of cell surface proteins from R. oryzae using common detergents and reducing agent (sodium dodecyl sulfate (SDS) Triton X-100, and 1,4-dithiothreitol (DTT)) and their effect on the size and shape of the biosynthetic AuNPs. The surface proteins extracted with reducing agent (DTT) and non-ionic detergent (Triton X-100) produce spherical AuNPs with a mean particle size of 16 ± 7 nm, and 19 ± 4 nm, respectively, while the AuNPs produced by the surface protein extracted by ionic detergent (SDS) are flower-like AuNPs with broader size distribution of 43 ± 19 nm. This synthetic approach does not require use of any harsh chemicals, multistep preparation and separation process, favouring environmental sustainability. The biosynthetic AuNPs thus formed, are stable in different physiological buffers and hemocompatible, making them suitable for biomedical applications.  相似文献   

15.
A sensitive chronocoulometric aptasensor for the detection of thrombin has been developed based on gold nanoparticle amplification. The functional gold nanoparticles, loaded with link DNA (LDNA) and report DNA (RDNA), were immobilized on an electrode by thrombin aptamers performing as a recognition element and capture probe. LDNA was complementary to the thrombin aptamers and RDNA was noncomplementary, but could combine with [Ru(NH3)6]3+ (RuHex) cations. Electrochemical signals obtained by RuHex that bound quantitatively to the negatively charged phosphate backbone of DNA via electrostatic interactions were measured by chronocoulometry. In the presence of thrombin, the combination of thrombin and thrombin aptamers and the release of the functional gold nanoparticles could induce a significant decrease in chronocoulometric signal. The incorporation of gold nanoparticles in the chronocoulometric aptasensor significantly enhanced the sensitivity. The performance of the aptasensor was further increased by the optimization of the surface density of aptamers. Under optimum conditions, the chronocoulometric aptasensor exhibited a wide linear response range of 0.1–18.5 nM with a detection limit of 30 pM. The results demonstrated that this nanoparticle-based amplification strategy offers a simple and effective approach to detect thrombin.  相似文献   

16.
Gold nanoparticles (AuNPs) are widely studied nanomaterials for their potential employment in advanced biomedical applications, such as selective molecular imaging and targeted drug delivery. AuNPs are generally low cost and highly biocompatible, can be easily functionalized with a wide variety of functional ligands, and have been demonstrated to be effective in enhancing ultrasound contrast at clinical diagnostic frequencies. Therefore, AuNPs might be used as contrast agents in echographic imaging. In this work, we have developed a AuNPs -based system for the in vitro molecular imaging of ovarian carcinoma cells that express high levels of glypican-3 protein (GPC-3) on their surface. In this regard, a novel GPC-3 targeting peptide was designed and conjugated to fluorescent AuNPs nanoparticles. The physicochemical properties, acoustic behavior, and biocompatibility profile of the functionalized AuNPs were characterized. Then, the binding and uptake of both naked and functionalized AuNPs were analyzed by laser scanning confocal microscopy in human HeLa cells (ovarian carcinoma) cell line. The results obtained showed that GPC-3-functionalized fluorescent AuNPs significantly enhanced the ultrasound contrast and were effectively bound and taken up by HeLa cells without affecting their viability.  相似文献   

17.
Effects of methanol extracts of Xanthium strumarium on different cancer cell lines and on the mortality rates of Aedes caspius, Culex pipiens (Diptera: Culicidae) were investigated. Among the cell lines tested, the Jurkat cell line was the most sensitive to the methanol extract and ethyl acetate fraction, with reported LC50 values of 50.18 and 48.73 μg/ml respectively. Conversely, methanol extracts were not that toxic to the A549 cell line though the toxicity increased on further purification. The percentage of growth inhibition was dose dependent for the methanol extract and ethyl acetate fraction. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The results showed that methanol extracts of plant seeds caused 100% mortality of mosquito larvae at a concentration of 1000 μg/ml after 24 h of treatment. The LC50 and LC90 values of X. strumarium were found to be 531.07 and 905.95 μg/ml against Ae. caspius and 502.32 and 867.63 μg/ml against Cx. Pipiens, respectively. From the investigations, it was concluded that the crude extract of X. strumarium showed a weak potential for controlling the larval instars of Ae. caspius and Cx. pipiens. However, on further purification the extract lost the larvicidal activity. The ethyl acetate fraction showed higher toxicity to all cell lines tested when compared to the methanol extract. The ethyl acetate fraction investigated in this study appears to have a weak larvicidal activity but a promising cytotoxic activity. Future studies will include purification and investigation in further detail of the action of X. strumarium on Cancer Cell Lines and mosquitoes.  相似文献   

18.
【目的】考察菌株Trichosporon montevideense WIN合成纳米金的催化特性及应用。【方法】利用活性WIN菌作用不同浓度HAu Cl_4(1、2和4 mmol/L)合成纳米金的特性,分别利用活性WIN菌和灭活WIN菌合成纳米金,分析合成纳米金的形貌、粒径及其催化特性。【结果】HAu Cl_4浓度为1 mmol/L时,菌株WIN合成了纳米金,HAu Cl_4浓度为2 mmol/L和4 mmol/L时,菌株WIN合成了纳米金及较大尺寸的金颗粒。通过紫外-可见光谱扫描、透射电子显微镜分析,发现活性和灭活WIN菌均能还原Au~(3+)合成纳米金,合成的纳米金均以球形为主,还有少量三角形、四边形及六边形。活性WIN菌合成的纳米金粒径范围为3 nm-252 nm,平均粒径为45.2 nm,而灭活WIN菌合成的纳米金为1 nm-271 nm,平均粒径为38.3 nm。活性和灭活WIN菌合成的纳米金对还原4-硝基苯酚的催化速率分别为2.76×10~(-3)s~(-1)和4.84×10~(-3)s~(-1)。【结论】菌株Trichosporon montevideense WIN的活性及灭活细胞均可以合成纳米金,且合成的纳米金具有良好的催化特性,在催化去除环境中难降解污染物中具有一定的应用前景。  相似文献   

19.
Gold nanoparticles could internalize into the cell nucleus, thus possibly inducing the disorder of Cytochrome P450 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号