首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We report an examination of the structural requirements of the abscisic acid (ABA) recognition response in wheat dormant seed embryos using optically pure isomers of ABA analogs. These compounds include permutations to the ABA structure with either an acetylene or a trans bond at C-4 C-5, and either a single or double bond at the C-2′ C-3′ double bond. (R)-ABA and the three isomers with the same configuration at C-1′ as natural ABA were found to be effective germination inhibitors. The biologically active ABA analogs exhibited differential effects on ABA-responsive gene expression. All the ABA analogs that inhibited germination induced two ABA-responsive genes, wheat group 3 lea and dhn (rab). However, (R)-ABA and (S)-dihydroABA were less effective in inducing the ABA-responsive gene Em within the time that embryonic germination was inhibited.  相似文献   

3.
Previous studies have identified a set of highly phosphorylated proteins of 23–25 kDa accumulated during normal embryogenesis of Zea mays L. and which disappear in early germination. They can be induced precociously in embryos by abscisic acid (ABA) treatment. Here the synthesis and accumulation of this group of proteins and their corresponding mRNAs were examined in ABA-deficient viviparous embryos at different developmental stages whether treated or not with ABA, and in water-stressed leaves of both wild-type and viviparous mutants.During embryogenesis and precocious germination of viviparous embryos the pattern of expression of the 23–25 kDa proteins and mRNAs closely resembles that found in non-mutant embryo development. They are also induced in young viviparous embryos by ABA treatment. In contrast, leaves of ABA-deficient mutants fail to accumulate mRNA in water stress, yet do respond to applied ABA. In water-stressed leaves of wild type plants the mRNAs are induced and translated into 4 proteins with a molecular weight and isoelectric point identical to those found in embryos.These results indicate that the 23–25 kDa protein set is a new member of the recently described class or proteins involved in generalized plant ABA responses.The different pattern of expression for the ABA-regulated 23–25 kDa proteins and mRNAs found in embryo and in vegetative tissues of viviparous mutants is discussed.  相似文献   

4.
5.
Rivin CJ  Grudt T 《Plant physiology》1991,95(2):358-365
The relationship of abscisic acid (ABA) inhibition of precocious germination and ABA-induced storage protein accumulation was examined over the course of embryogenesis in wild-type and viviparous mutants of maize (Zea mays L.). We show that a high level of embryo ABA and the product of the Viviparous-1 gene are both required in early maturation phase for germination suppression and the accumulation of storage globulins encoded by the gene Glb1. Suppressing precocious germination with a high osmoticum is not sufficient to initiate Glb1 protein synthesis, although continued accumulation is contingent upon this inhibition; germination of immature or mature embryos leads to a decline in synthesis and the degradation of stored globulins. Late in embryogenesis, fragments of Glb1 protein accumulate, coinciding with the loss of ABA sensitivity. These results suggest that ABA influences storage globulin accumulation by initiating synthesis, suppressing degradation, and inhibiting precocious germination.  相似文献   

6.
7.
8.
9.
10.
11.
In order to assess the importance of morphogenesis on the induction of promoter markers for storage and Lea programmes, advantage was taken of the emb mutations producing embryos arrested at a wide range of developmental stages in Arabidopsis. These embryos are viable during their stage of developmental arrest and continue to divide further, but apparently without further differentiation into the main organs and tissues of the normal embryos. Eight independent emb mutants arrested in their development prior to the cotyledon stage were selected. These emb embryos lack the normal morphology of the wild-type embryos when the synthesis of storage and Lea proteins are normally initiated. The 2S1-uidA chimeric gene, representative of the maturation programme and the Em 1-uidA chimeric gene, representative of the desiccation programme were introduced by crosses into the emb background. In the eight emb lines, the expression of the GUS reporter gene directed by the 2S1 and Em 1 promoters was observed in the aborted seeds irrespective of their stage of developmental arrest. The time of induction of the expression of both promoters was the same in the arrested embryos as compared with the normal embryos within the same silique. Thus, the activation of these two promoters is triggered by the same signal and can occur in the absence of morphogenesis. However, in the absence of normal organ formation, the expression of the reporter gene under the control of the 2S1 and Em 1 promoters was evident throughout the whole seed tissues. In normal seed development, the hormone abscisic acid (ABA) activates the promoters of the 2S1 and Em 1 genes. One of the important members of the signal transduction pathway of ABA is the ABI3 protein. It has been shown previously that this protein is a prerequisite for the induction of Em 1 by ABA in seeds. A good correlation with the expression of the ABI3 promoter and the 2S1 and Em 1 promoters was found in emb seeds tissues. This observation suggests that the promoters of the 2S1 and the Em 1 genes are expressed in the mutant seeds not at a basal level, but are probably induced by ABA, as in normal seed development.  相似文献   

12.
13.
Several different types of proteins that are modulated by abscisic acid (ABA) accumulate in developing embryos of maize (Zea mays L.). Some of these proteins are specific to the developing seed, such as the storage globulin, GLB1, whereas others are involved in general responses to water deficit. Here we describe a maize protein family of this second type, a Group 3 late embryogenesis abundant (MLG3). Like other proteins of this class, MLG3 polypeptides are ABA-responsive. They are found in maturing seeds and in dehydrating plant tissues. Antigenically related proteins are found in other cereals. To distinguish the regulation of developmentally programmed ABA responses from those that are environmentally induced, we compared the ontological pattern and accumulation requirements of MLG3 polypeptides with those we previously described for GLB1. GLB1 accumulation begins early in the maturation phase and specifically requires high levels of ABA and the participation of the Viviparous-1 (Vp1) gene product. Vp1 is required for other ABA-modulated events in maize seed development as well. In experiments using vp1 mutants and mutants deficient in ABA synthesis (vp5 mutation), we show that MLG3 accumulation also is dependent upon ABA, but it shows striking differences from GLB1. MLG3 accumulates much later in embryogenesis, coincident with the onset of dehydration. In contrast to GLB1, MLG3 proteins can be induced by de novo ABA synthesis in response to culturing in high osmoticum. Unlike GLB1, MLG3 has no specific requirement for the Vp1 gene product.  相似文献   

14.
In a study of the 5′-flanking sequence of the Zea mays L. (maize) Glb1 gene in vitro, serial promoter deletions were generated and linked with the β-glucuronidase (GUS) reporter gene. The promoter deletion-GUS fusions were introduced into the maize P3377 cell line by particle bombardment. GUS assays indicated that treatment of the maize cultured cells with abscisic acid (ABA) was required for Glb1-driven GUS transient expression, and that the –272-bp sequence of the Glb1 promoter was sufficient for ABA-regulated expression of GUS. The longest undeleted sequence used, –1391 GUS, showed relatively low expression which could be indicative of an upstream silencer element in the Glb1 promoter between –1391 and –805. Further studies show that the Glb1-driven GUS activity of bombarded maize P3377 cells increases with increasing ABA concentration (up to 100–300 μm). Site-directed mutagenesis of a putative ABA response element, Em1a, abolished GUS expression in P3377 cells. This observation indicated that the Em1a sequence in the Glb1 5′ regulatory region is responsible for the positive ABA regulation of gene expression. Received: 9 May 1997 / Revision received: 9 November 1997 / Accepted: 8 December 1997  相似文献   

15.
16.
An Arabidopsis homolog of the abscisic acid (ABA)-inducible cotton D19 and wheat Em genes was cloned and its expression assayed at two developmental stages in wild-type, ABA-deficient (aba) and three ABA-insensitive (abi) lines of Arabidopsis thaliana. Expression of this gene was reduced slightly in seeds of aba mutants and approximately ten-fold in abi3 mutants, but seed expression was not decreased in either abi1 or abi2 monogenic mutants. In contrast, the abi1 and abi2 mutants showed a very slight reduction of ABA inducibility in 8-day-old plants, while the responses of aba and abi3 mutants were comparable to that of wild type. Although previous studies have shown that none of the abi mutations show completely stage-specific effects, the results reported here indicate that the importance of each of the ABI loci in regulating this single gene is stage-dependent. Furthermore, the fact that none of the abi mutations show more than minor effects on exogenous ABA inducibility of the Arabidopsis D19/Em homolog in young plants suggests that an additional ABA signalling pathway may be operating during vegetative growth.  相似文献   

17.
Interaction network of core ABA signaling components in maize   总被引:1,自引:0,他引:1  

Key message

We defined a comprehensive core ABA signaling network in monocot maize, including the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, ZmSnRK2s and the putative substrates.

Abstract

The phytohormone abscisic acid (ABA) plays an important role in plant developmental processes and abiotic stress responses. In Arabidopsis, ABA is sensed by the PYL ABA receptors, which leads to binding of the PP2C protein phosphatase and activation of the SnRK2 protein kinases. These components functioning diversely and redundantly in ABA signaling are little known in maize. Using Arabidopsis pyl112458 and snrk2.2/3/6 mutants, we identified several ABA-responsive ZmPYLs and ZmSnRK2s, and also ZmPP2Cs. We showed the gene expression, subcellular localization and interaction network of ZmPYLs, ZmPP2Cs, and ZmSnRK2s, and the isolation of putative ZmSnRK2 substrates by mass spectrometry in monocot maize. We found that the ABA dependency of PYL-PP2C interactions is contingent on the identity of the PP2Cs. Among 238 candidate substrates for ABA-activated protein kinases, 69 are putative ZmSnRK2 substrates. Besides homologs of previously reported putative AtSnRK2 substrates, 23 phosphoproteins have not been discovered in the dicot Arabidopsis. Thus, we have defined a comprehensive core ABA signaling network in monocot maize and shed new light on ABA signaling.
  相似文献   

18.
Previous work has shown that in rice suspension cells, NaCl at 0.4 M can induce Em gene expression and act synergistically with ABA, possibly by potentiating the ABA response pathway through a rate-limiting intermediate (R.M. Bostock and R.S. Quatrano (1992) Plant Physiol., 98, 1356–1363). Since calcium is an intermediate in ABA regulation of stomatal closure, we tested the effect of calcium changes on ABA-inducible Em gene expression in transiently transformed rice protoplasts. We show that calcium is required for ABA-inducible Em-GUS expression and can act in synergy with ABA. The trivalent ions lanthanum, gadolinium, and aluminum, which are known to interact with calcium- and other signaling pathways, can act at sub-millimolar concentrations to increase GUS reporter gene expression driven by several promoters in transiently transformed rice protoplasts. This effect is not specific for the ABA-inducible Em promoter, but is synergistic with ABA. The lanthanum synergy with ABA does not require calcium. In rice suspension cells, lanthanum alone does not induce Em gene expression, in contrast to transiently transformed protoplasts, yet can act synergistically with ABA to effectively increase the sensitivity to ABA greater than tenfold. Trivalent ions may be a useful tool to study the regulation of gene expression. The possible effects of trivalent ions on ABA signal transduction and gene expression are discussed.  相似文献   

19.
In this study we reported the isolation of a mutant in which the reporter pVP14-LUC was highly expressed in Arabidopsis. The gene expression of maize VP14 is closely correlated with the endogenous ABA levels, and the Arabidopsis homolog of VP14, AtNCED1, encoding an enzyme of ABA biosynthesis, was up-regulated, and high ABA level was detected in the mutant. Map-based cloning revealed that the mutated gene is a novel allele of the AMP1 (Altered Meristem Program 1) which encodes a glutamate carboxypeptidase that plays an important role in shoot apical meristem development and phytohormone homeostasis. We found that the mutant displayed obvious drought tolerance, being with more lateral roots, high seed germination under mannitol, increased ABA accumulation, and highly induced gene expression of RD29A. Using the approaches of artificial microRNA gene silencing in transgenic plants, three AMP1 down-regulated lines were obtained. The AMP1 down-regulated plants exhibited a low rate of water loss, decreased stomatal aperture, and enhanced drought tolerance. These results provide evidence demonstrating the regulatory function of AMP1 in plant drought tolerance and stress responsive gene expression.  相似文献   

20.
An Arabidopsis homolog of the abscisic acid (ABA)-inducible cotton D19 and wheat Em genes was cloned and its expression assayed at two developmental stages in wild-type, ABA-deficient (aba) and three ABA-insensitive (abi) lines of Arabidopsis thaliana. Expression of this gene was reduced slightly in seeds of aba mutants and approximately ten-fold in abi3 mutants, but seed expression was not decreased in either abi1 or abi2 monogenic mutants. In contrast, the abi1 and abi2 mutants showed a very slight reduction of ABA inducibility in 8-day-old plants, while the responses of aba and abi3 mutants were comparable to that of wild type. Although previous studies have shown that none of the abi mutations show completely stage-specific effects, the results reported here indicate that the importance of each of the ABI loci in regulating this single gene is stage-dependent. Furthermore, the fact that none of the abi mutations show more than minor effects on exogenous ABA inducibility of the Arabidopsis D19/Em homolog in young plants suggests that an additional ABA signalling pathway may be operating during vegetative growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号