首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.

Objectives

δ-opioid receptor (DOR) activation reduced brain ischemic infarction and attenuated neurological deficits, while DOR inhibition aggravated the ischemic damage. The underlying mechanisms are, however, not well understood yet. In this work, we asked if DOR activation protects the brain against ischemic injury through a brain-derived neurotrophic factor (BDNF) -TrkB pathway.

Methods

We exposed adult male Sprague-Dawley rats to focal cerebral ischemia, which was induced by middle cerebral artery occlusion (MCAO). DOR agonist TAN-67 (60 nmol), antagonist Naltrindole (100 nmol) or artificial cerebral spinal fluid was injected into the lateral cerebroventricle 30 min before MCAO. Besides the detection of ischemic injury, the expression of BDNF, full-length and truncated TrkB, total CREB, p-CREB, p-ATF and CD11b was detected by Western blot and fluorescence immunostaining.

Results

DOR activation with TAN-67 significantly reduced the ischemic volume and largely reversed the decrease in full-length TrkB protein expression in the ischemic cortex and striatum without any appreciable change in cerebral blood flow, while the DOR antagonist Naltrindole aggregated the ischemic injury. However, the level of BDNF remained unchanged in the cortex, striatum and hippocampus at 24 hours after MCAO and did not change in response to DOR activation or inhibition. MCAO decreased both total CREB and pCREB in the striatum, but not in the cortex, while DOR inhibition promoted a further decrease in total and phosphorylated CREB in the striatum and decreased pATF-1 expression in the cortex. In addition, MCAO increased C11b expression in the cortex, striatum and hippocampus, and DOR activation specifically attenuated the ischemic increase in the cortex but not in the striatum and hippocampus.

Conclusions

DOR activation rescues TrkB signaling by reversing ischemia/reperfusion induced decrease in the full-length TrkB receptor and reduces brain injury in ischemia/reperfusion  相似文献   

2.
3.
4.
The insulin receptor has been reported to be associated with memory formation via the hippocampus. In this study, we observed age-related changes in the insulin receptor β immunoreactivity and its protein levels in the hippocampus of gerbils of various ages in order to identify the correlation between the insulin receptor β and aging processes in the hippocampus. Insulin receptor β immunoreactivity was mainly detected in the molecular and polymorphic layers of the dentate gyrus, and in mossy fibers, Schaffer collaterals, alveus and stratum lacunosum-moleculare of the hippocampus proper (CA1-3) of gerbils at postnatal month 1 (PM 1). Insulin receptor β immunoreactivity decreased with age in all of these structures, except for the alveus. Reduction of the insulin receptor β immunoreactivity was prominent in the molecular layer of the dentate gyrus at PM 6 and in the stratum lacunosum-moleculare of the CA1 region at PM 12, while insulin receptor β immunoreactivity was decreased in other regions in the PM 18 groups. In addition, insulin receptor β protein level in the whole hippocampus was slightly increased at PM 3, and it decreased in an age-dependent manner from PM 6 to PM 24. These reductions of the insulin receptor β in the hippocampus may be associated with age-related memory deficits in gerbils.  相似文献   

5.
The gills of the Atlantic cod, Gadus morhua, were studied using immunohistochemical techniques. Primary antibodies directed against serotonin (5-hydroxytryptamine, 5-HT) and acetylated α-tubulin were used to visualise cells containing serotonin and nerve fibres, respectively. Three morphologically different 5-HT immunoreactive cell types were distinguished: (I) Neuroepithelial cells (NECs), which were abundant along the distal half of the efferent filamental arteries (EFAs), and particularly formed distinct clusters at the individual filamental tips, (II) bipolar neurones running next to the EFAs and (III) multipolar neurones innervating the proximal parts of the EFA. In addition, the study revealed a well-developed system of nerve fibres, some of which form plexuses in association with the NECs. A relatively rich innervation of the proximal part of the EFAs, in conjunction with the EFA sphincters was also observed. Delicate varicose terminals surround the bases of the efferent lamellar arterioles. The localisation of distinct clusters of NECs at the individual filamental tips and the close connection with nerve terminals suggests a function as external branchial oxygen receptors.  相似文献   

6.
7.
The concept of “functional selectivity” or “biased signaling” suggests that a ligand can have distinct efficacies with regard to different signaling pathways. We have investigated the question of whether biased signaling may be related to distinct agonist-induced conformational changes in receptors using the β2-adrenergic receptor (β2AR) and its two endogenous ligands epinephrine and norepinephrine as a model system. Agonist-induced conformational changes were determined in a fluorescently tagged β2AR FRET sensor. In this β2AR sensor, norepinephrine caused signals that amounted to only ≈50% of those induced by epinephrine and the standard “full” agonist isoproterenol. Furthermore, norepinephrine-induced changes in the β2AR FRET sensor were slower than those induced by epinephrine (rate constants, 47 versus 128 ms). A similar partial β2AR activation signal was revealed for the synthetic agonists fenoterol and terbutaline. However, norepinephrine was almost as efficient as epinephrine (and isoproterenol) in causing activation of Gs and adenylyl cyclase. In contrast, fenoterol was quite efficient in triggering β-arrestin2 recruitment to the cell surface and its interaction with β2AR, as well as internalization of the receptors, whereas norepinephrine caused partial and slow changes in these assays. We conclude that partial agonism of norepinephrine at the β2AR is related to the induction of a different active conformation and that this conformation is efficient in signaling to Gs and less efficient in signaling to β-arrestin2. These observations extend the concept of biased signaling to the endogenous agonists of the β2AR and link it to distinct conformational changes in the receptor.  相似文献   

8.
Abstract

The β2-adrenergic receptor (β2AR) couples to Gs, activating adenylyl cyclase (AC) and increasing cAMP. Such signaling undergoes desensitization with continued agonist exposure. β2AR also couple to Gi after receptor phosphorylation by the cAMP dependent protein kinase A, but the efficiency of such coupling is not known. Given the PKA dependence of β2AR-Gi coupling, we explored whether this may be a mechanism of agonist-promoted desensitization. HEK293 cells were transfected to express β2AR or β2AR and Giα2, and then treated with vehicle or the agonist isoproterenol to evoke agonist-promoted β2AR desensitization. Membrane AC activities showed that Giα2 overexpression decreased basal levels, but the fold-stimulation of the AC over basal by agonist was not altered. However, with treatment of the cells with isoproterenol prior to membrane preparation, a marked decrease in agonist-stimulated AC was observed with the cells overexpressing Giα2. in the absence of such overexpression, β2AR desensitization was 23 ± 7%, while with 5-fold Giα2 overexpression desensitization was 58 ± 5% (p<0.01, n=4). the effect of Gi on desensitization was receptor-specific, in that forskolin responses were not altered by Giα2 overexpression. Thus, acquired β2AR coupling to Gi is an important mechanism of agonist-promoted desensitization, and pathologic conditions that increase Gi levels contribute to β2AR dysfunction.  相似文献   

9.
Summary The pineal parenchyma of the dogfish Scyliorhinus canicula contains sensory (receptor) cells and supporting cells. The ultrastructural characteristics of these cells are described. The sensory cell is a photoreceptor-like cell the outer segment of which is, however, often irregularly developed. Neuropil-like areas are present but no typical synapses have been observed. The classification of pineal receptor cells is discussed.Work done with the aid of a research scholarship from the Alexander von Humboldt Foundation, Bad Godesberg, Germany. — The electron microscope used in this study was placed at the disposal of Professor Oksche by the Deutsche Forschungsgemeinschaft. — The animal material was provided by the Stazione Zoologica di Napoli, Italy.  相似文献   

10.
11.
αβ T-cell receptors (TcRs) play a central role in cellular immune response. They are members of the Ig superfamily, with extracellular regions of the α and β chains each comprising a V-type domain and a C-type domain. We have determined the ectodomain structure of an αβ TcR, which recognizes the autoantigen myelin basic protein. The 2.0-Å-resolution structure reveals canonical main-chain conformations for the Vα, Vβ, and Cβ domains, but the Cα domain exhibits a main-chain conformation remarkably different from those previously reported for TcR crystal structures. The global IgC-like fold is maintained, but a piston-like rearrangement between BC and DE β-turns results in β-strand slippage. This substantial conformational change may represent a signaling intermediate. Our structure is the first example for the Ig fold of the increasingly recognized concept of “metamorphic proteins.”  相似文献   

12.
While humans and most animals respond to µ-opioid receptor (MOR) agonists with analgesia and decreased aggression, in the naked mole rat (NMR) opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1) can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3''-5''-cyclic adenosine monophosphate (cAMP) enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR''s extreme reaction to opioids.  相似文献   

13.
The function of pancreatic β-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ERα and ERβ, are important molecules involved in glucose metabolism, yet their role in pancreatic β-cell physiology is still greatly unknown. In this report we show that both ERα and ERβ are present in pancreatic β-cells. Long term exposure to physiological concentrations of 17β-estradiol (E2) increased β-cell insulin content, insulin gene expression and insulin release, yet pancreatic β-cell mass was unaltered. The up-regulation of pancreatic β-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ERα and ERβ agonists as well as ERαKO and ERβKO mice suggests that the estrogen receptor involved is ERα. The up-regulation of pancreatic insulin content by ERα activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

14.

Background

TNF-related lymphotoxin α (LTα) is essential for the development of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM). The pathway involved has been attributed to TNFR2. Here we show a second arm of LTα-signaling essential for ECM development through LTβ-R, receptor of LTα1β2 heterotrimer.

Methodology/Principal Findings

LTβR deficient mice did not develop the neurological signs seen in PbA induced ECM but died at three weeks with high parasitaemia and severe anemia like LTαβ deficient mice. Resistance of LTαβ or LTβR deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and angiography, associated with lack of microvascular obstruction, while wild-type mice developed distinct microvascular pathology. Recruitment and activation of perforin+ CD8+ T cells, and their ICAM-1 expression were clearly attenuated in the brain of resistant mice. An essential contribution of LIGHT, another LTβR ligand, could be excluded, as LIGHT deficient mice rapidly succumbed to ECM.

Conclusions/Significance

LTβR expressed on radioresistant resident stromal, probably endothelial cells, rather than hematopoietic cells, are essential for the development of ECM, as assessed by hematopoietic reconstitution experiment. Therefore, the data suggest that both functional LTβR and TNFR2 signaling are required and non-redundant for the development of microvascular pathology resulting in fatal ECM.  相似文献   

15.
Abstract

The high affinity IgE receptor, possesses a tetrameric structure. The 243 residue β subunit is a polytopic protein with four hydrophobic membrane-spanning segments, whereas the individual α and γ subunits are bitopic proteins each containing one transmembrane domain in their monomeric form. In the proposed topographical model (Blank et al., 1989), the four trans-membrane α helices of the β subunit are connected by three loop sequences.

To study the individual subunits and intact receptor, this membrane protein was divided into domains such as its loop peptides, cytoplasmic peptides and transmembrane helices according to Blank et al., 1989. The 3D structure of the synthesized loop peptides and cytoplasmic peptides were calculated; CD and/or NMR data were used as appropriate to generate the resultant structures which were then used as data basis for the higher level calculations.

The four individual transmembrane helices of the β subunit were characterised, first of all, by mapping the relative lipophilicity of their surfaces using lipophilic probes. A second procedure, docking of the individual helices in pairs, was used to predict helix–helix interactions.

The data on the relative lipophilicity of the surfaces as well as the surfaces that favoured helix–helix interactions were used in combination with the spectroscopy-based structures of the loops and cytoplasmic domains to calculate via molecular dynamics, the helix arrangement and 3D structure of the β subunit of the high affinity IgE receptor. In the final analysis, the molecular simulations yielded two structures of the β subunit, which should form a basis for the modelling of the whole high affinity IgE receptor.  相似文献   

16.
G-protein-coupled receptors (GPCRs) transduce the signals for a wide range of hormonal and sensory stimuli by activating a heterotrimeric guanine nucleotide-binding protein (G protein). The analysis of loss-of-function and constitutively active receptor mutants has helped to reveal the functional properties of GPCRs and their role in human diseases. Here we describe the identification of a new class of mutants, dominant-negative mutants, for the yeast G-protein-coupled α-factor receptor (Ste2p). Sixteen dominant-negative receptor mutants were isolated based on their ability to inhibit the response to mating pheromone in cells that also express wild-type receptors. Detailed analysis of two of the strongest mutant receptors showed that, unlike other GPCR interfering mutants, they were properly localized at the plasma membrane and did not alter the stability or localization of wild-type receptors. Furthermore, their dominant-negative effect was inversely proportional to the relative amount of wild-type receptors and was reversed by overexpressing the G-protein subunits, suggesting that these mutants compete with the wild-type receptors for the G protein. Interestingly, the dominant-negative mutations are all located at the extracellular ends of the transmembrane segments, defining a novel region of the receptor that is important for receptor signaling. Altogether, our results identify residues of the α-factor receptor specifically involved in ligand binding and receptor activation and define a new mechanism by which GPCRs can be inactivated that has important implications for the evaluation of receptor mutations in other G-protein-coupled receptors.G-protein-coupled receptors (GPCRs) comprise a large family of receptors that are found in a wide range of eukaryotic organisms from yeasts to humans (4, 10). These receptors respond to diverse stimuli including hormones, neurotransmitters, and other chemical messengers (48). GPCRs transduce their signal by stimulating the α subunit of a heterotrimeric guanine nucleotide binding protein (G protein) to bind GTP (4, 16). This releases the α subunit from the βγ subunits, and then either the α subunit or the βγ subunits go on to promote signaling depending on the specific pathway (28).GPCRs are structurally similar in that they contain seven transmembrane domains (TMDs) connected by intracellular and extracellular loops. Although many techniques have been applied to study receptor function, much of our knowledge on the mechanisms of GPCR activation comes from the characterization of mutant receptors. Loss-of-function and supersensitive mutants have helped to identify receptor regions needed for ligand binding, G-protein activation, and down-regulation of signaling (4, 49). Furthermore, the study of constitutively active receptor mutations has played a key role in the development of current models for receptor activation (26). Naturally occurring GPCR mutations have also been implicated in a number of human diseases (8, 25, 42). Interestingly, the analysis of different mutant receptors indicates that GPCRs utilize common structural domains for similar functions. In particular, the third intracellular loop has an essential role in G-protein activation in a wide range of GPCRs.The genetic approaches possible in the yeast Saccharomyces cerevisiae have been used to examine the relationship between structure and function of the G-protein-coupled mating pheromone receptors. The α-factor and a-factor pheromones induce conjugation in yeast by binding to receptors with seven TMDs that activate a G-protein signal pathway that is highly conserved with mammalian signaling pathways (24). In fact, some human GPCRs can activate the pheromone signal pathway when they are expressed in yeast (19, 29). The analysis of loss-of-function, supersensitive, and constitutively active α-factor receptor mutants has begun to reveal the mechanisms for activation and regulation of this receptor. For example, the analysis of constitutively active mutants indicates that movement in the transmembrane segments plays a key role in α-factor receptor activation (22). Constitutive mutations and loss-of-function mutations implicate the third intracellular loop in G-protein activation (7, 34, 44). Mutagenesis studies also indicate that the cytoplasmic C terminus is not needed for G-protein activation but is involved in down-regulation of receptors by endocytosis (17) and desensitization of receptors by phosphorylation (6). In addition, studies with chimeric receptors suggest that the specificity for α-factor binding is determined by discontinuous segments of the α-factor receptor that include the transmembrane and extracellular regions (36, 37). Although some of the important domains of the α-factor receptor have been identified in these studies, the molecular mechanism of receptor signaling remains to be determined.Dominant-negative (DN) mutants represent an important class of mutation in which a mutant receptor interferes with the function of the wild-type (WT) version of the receptor. Since the inhibitory phenotype in DN mutants implies loss of some but not all functions of the protein, these mutants have been used to great advantage in other receptor systems. For example, in the case of receptor tyrosine kinases, DN mutants have been used to assign particular functions to specific structural features or to study the effects of blocking receptor signaling (18). In view of the large number of mutations reported for GPCRs, it is intriguing that there are few examples of dominant GPCR mutations (42, 43). Furthermore, in cases where it has been examined, dominant mutations in GPCRs seem to affect primarily the targeting of receptors to the plasma membrane and not directly the function of the WT receptors. Therefore, we sought to determine if the analysis of DN mutants could be applied to GPCRs by taking advantage of the genetic accessibility of the yeast S. cerevisiae. In this report, we describe the identification of DN mutations in the α-factor pheromone receptor. Interestingly, our results indicate that these DN mutants interfere with the activity of the WT receptors by competing for the G protein. In addition, these mutations identify a new domain on the extracellular side of the TMDs that is important for receptor function.  相似文献   

17.
18.
We have investigated the role of cysteine residues in a highly purified opioid receptor protein (ORP) by examining the effect of -SH reagents on the binding of opioid ligands. Treatment of ORP, which is devoid of additional proteins, eliminates complications that arise from reaction of -SH reagents with other components, such as G proteins. Reagents tested include N-ethylmaleimide, 5,5-dithiobis(2-nitrobenzoic) acid, and two derivatives of methanethiosulfonate. Specific opioid binding was inactivated by micromolar concentrations of all -SH reagents tested. Agonist binding ([3H]DAMGO) was much more sensitive to inactivation than antagonist binding ([3H]bremazocine). Prebinding ORP with 100 nM naloxone protected antagonist and agonist binding from inactivation by -SH reagents. The results of these experiments strongly suggest that at least one, and possibly more, reactive cysteine residue(s) is present on the opioid receptor protein molecule, positioned near the ligand binding site and accessible to -SH reagents.  相似文献   

19.
Understanding the activation mechanism of Cys loop ion channel receptors is key to understanding their physiological and pharmacological properties under normal and pathological conditions. The ligand-binding domains of these receptors comprise inner and outer β-sheets and structural studies indicate that channel opening is accompanied by conformational rearrangements in both β-sheets. In an attempt to resolve ligand-dependent movements in the ligand-binding domain, we employed voltage-clamp fluorometry on α1 glycine receptors to compare changes mediated by the agonist, glycine, and by the antagonist, strychnine. Voltage-clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. In the inner β-sheet, we labeled residues in loop 2 and in binding domain loops D and E. At each position, strychnine and glycine induced distinct maximal fluorescence responses. The pre-M1 domain responded similarly; at each of four labeled positions glycine produced a strong fluorescence signal, whereas strychnine did not. This suggests that glycine induces conformational changes in the inner β-sheet and pre-M1 domain that may be important for activation, desensitization, or both. In contrast, most labeled residues in loops C and F yielded fluorescence changes identical in magnitude for glycine and strychnine. A notable exception was H201C in loop C. This labeled residue responded differently to glycine and strychnine, thus underlining the importance of loop C in ligand discrimination. These results provide an important step toward mapping the domains crucial for ligand discrimination in the ligand-binding domain of glycine receptors and possibly other Cys loop receptors.Glycine receptor (GlyR)3 chloride channels are pentameric Cys loop receptors that mediate fast synaptic transmission in the nervous system (1, 2). This family also includes nicotinic acetylcholine receptors (nAChRs), γ-aminobutyric acid type A and type C receptors, and serotonin type 3 receptors. Individual subunits comprise a large ligand-binding domain (LBD) and a transmembrane domain consisting of four α-helices (M1–M4). The LBD consists of a 10-strand β-sandwich made of an inner β-sheet with six strands and an outer β-sheet with four strands (3). The ligand-binding site is situated at the interface of adjacent subunits and is formed by loops A–C from one subunit and loops D–F from the neighboring subunit (3).The activation mechanism of Cys loop receptors is currently the subject of intense investigation because it is key to understanding receptor function under normal and pathological conditions (4, 5). Based on structural analysis of Torpedo nAChRs, Unwin and colleagues (6, 7) originally proposed that agonist binding induced the inner β-sheet to rotate, whereas the outer β-sheet tilted slightly upwards with loop C clasping around the agonist. These movements were thought to be transmitted to the transmembrane domain via a differential movement of loop 2 (β1-β2) and loop 7 (β6-β7) (both part of the inner β-sheet) and the pre-M1 domain (which is linked via a β-strand to the loop C in the outer sheet). The idea of large loop C movements accompanying agonist binding is supported by structural and functional data (3, 813). However, a direct link between loop C movements and channel gating has proved more difficult to establish. Although computational modeling studies have suggested that this loop may be a major component of the channel opening mechanism (1418), experimental support for this model is not definitive. Similarly, loop F is also thought to move upon ligand binding, although there is as yet no consensus as to whether these changes represent local or global conformational changes (11, 1921). Recently, a comparison of crystal structures of bacterial Cys loop receptors in the closed and open states revealed that although both the inner and outer β-sheets exhibit different conformations in closed and open states, the pre-M1 domain remains virtually stationary (22, 23). It is therefore relevant to question whether loop C, loop F, and pre-M1 movements are essential for Cys loop receptor activation.Strychnine is a classical competitive antagonist of GlyRs (24, 25), and to date there is no evidence that it can produce LBD structural changes. In this study we use voltage-clamp fluorometry (VCF) to compare glycine- and strychnine-induced conformational changes in the GlyR loops 2, C, D, E, and F and the pre-M1 domain in an attempt to determine whether they signal ligand-binding events, local conformational changes, or conformational changes associated with receptor activation.In a typical VCF experiment, a domain of interest is labeled with an environmentally sensitive fluorophore, and current and fluorescence are monitored simultaneously during ligand application. VCF is ideally suited for identifying ligand-specific conformational changes because it can report on electrophysiologically silent conformational changes (26), such as those induced by antagonists. Indeed, VCF has recently provided valuable insights into the conformational rearrangements of various Cys loop receptors (19, 21, 2733).  相似文献   

20.
This article puts forward the hypothesis that the Low Density Lipid Receptor (LDLR) is one of the molecules that is involved in the clearance of amyloid proteins in the brain and that it may play a role in Alzheimer’s Disease (AD) via its up-regulation by statins. The hypothesis is built on the following observations: a-statins (which have been shown to increase LDLR in astrocytes, see below) have a beneficial role in AD, b-defects in the LDL receptor gene are found in AD, c-molecules with similar structure to the LDLR have been shown to clear amyloid protein from the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号