首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kaur R. and Sood M. L. 1982. Haemonchus contortus: the in vitro effects of dl-tetramisole and rafoxanide on glycolytic enzymes. International Journal for Parasitology 12: 585–588. Various enzymes of glycolysis (hexokinase, phosphoglucomutase, phosphoglucoisomerase, adolase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase-enolase-pyruvate kinase and lactate dehydrogenase) have been detected in adult Haemonchus contortus. Low pyruvate kinase and lactate dehydrogenase activities suggested an alternate pathway from phosphoenolpyruvate. In vitro incubation had no significant effects on these enzymes and the worm was able to maintain normal metabolism for 12 h. Varying degrees of inhibition of glycolytic enzymes were observed with 50 μg/ml of dl-tetramisole and rafoxanide. The enzymes were inhibited to a greater extent by dl-tetramisole. These effects may block the glycolytic pathway and deprive the parasite of its ATP production.  相似文献   

2.
Glutamate synthase (E.C. 1.4.1.14) (GOGAT) activity was not detectable in L3 Haemonchus contortus, but was present in L3 Teladorsagia circumcincta and adult worms of both species. GOGAT activity was inhibited by 80% by azaserine. Activity (nmol min−1 mg−1 protein) was 33–59 in adult H. contortus, 51–91 in adult T. circumcincta and 24–41 in L3 T. circumcincta, probably depending on exposure to ammonia, as incubation with 1 mM NH4Cl doubled GOGAT activity. The pH optimum was 7.5 in both species. Either NAD or NADP acted as co-factor. The mean apparent Km for 2-oxoglutarate was 0.7 (0.5–0.9) mM and for glutamine was 1.0 (0.5–1.7) mM for different homogenates. There was no detectable activity in whole parasite homogenates of glutamate decarboxylase (E.C. 4.1.1.15) or succinic semialdehyde dehydrogenase (E.C. 1.2.1.24), the first and third enzymes of the GABA shunt, respectively, suggesting that the GABA shunt is not important in general metabolism in these species.  相似文献   

3.
朱伟峰  陈露  王芳  胡波  陈萌萌 《微生物学报》2021,61(10):3264-3275
巴氏杆菌(主要是多杀性巴氏杆菌)可以引起多种动物疫病(巴氏杆菌病),同时也引起人类感染发病。[目的] 研究巴氏杆菌糖酵解酶对宿主细胞(兔肾细胞)和两种常见分子[纤连蛋白(fibronectin,Fn)和血浆纤维蛋白溶解酶原(plasminogen,Plg)]的黏附作用。[方法] 采用原核表达系统对多杀性巴氏杆菌的糖酵解酶进行表达并纯化及制备多克隆抗体,通过菌体表面蛋白定位检测、黏附与黏附抑制等实验探究巴氏杆菌糖酵解酶的黏附作用。[结果] 菌体表面蛋白检测结果显示除烯醇化酶和丙酮酸激酶外的7个糖酵解酶在多杀性巴氏杆菌表面存在。这7个糖酵解酶均能黏附兔肾细胞,但仅有磷酸葡萄糖异构酶的多克隆抗体能对多杀性巴氏杆菌黏附宿主细胞产生抑制作用。Far Western blotting结果显示9个糖酵解酶均能结合宿主Fn和Plg。招募抑制实验结果显示磷酸葡萄糖异构酶、醛缩酶、磷酸甘油酸变位酶的抗体对多杀性巴氏杆菌结合Fn和Plg都有抑制作用,磷酸果糖激酶、丙糖磷酸异构酶、甘油醛-3-磷酸脱氢酶、磷酸甘油激酶抗体仅对多杀性巴氏杆菌结合Fn或Plg有抑制作用。[结论] 多杀性巴氏杆菌糖酵解酶成员葡萄糖异构酶、磷酸果糖激酶、醛缩酶、丙糖磷酸异构酶、甘油醛-3-磷酸脱氢酶、磷酸甘油激酶、磷酸甘油酸变位酶在多杀性巴氏杆菌黏附宿主细胞或分子过程中发挥作用。该研究的完成将加深巴氏杆菌病分子发病机制的认识,并为巴氏杆菌病的诊断标识筛选、新型疫苗创制和药物靶标筛选等提供基础数据。  相似文献   

4.
mRNA and genomic DNA were isolated from adult Cylicocyclus nassatus, and the mRNA was reverse transcribed. The cDNA was PCR amplified using degenerate primers designed according to the alignment of the β-tubulin amino acid sequences of other species. To complete the coding sequence, the 3′ end was amplified with the 3′-RACE, and for amplification of the 5′ end the SL1-primer was used. The cDNA of the β-tubulin gene of C. nassatus spans 1429 bp and encodes a protein of 448 amino acids. Specific primers were developed from the cDNA sequence to amplify the genomic DNA sequence and to analyse the genomic organisation of the β-tubulin gene. The complete sequence of the genomic DNA of the β-tubulin gene of C. nassatus has a size of 2652 bp and is organised into nine exons and eight introns. The identities with the exons of the gru-1 β-tubulin gene of Haemonchus contortus range between 79% and 97%.  相似文献   

5.
The effect of anaerobiosis and anhydrobiosis on the extent of binding of glycolytic enzymes to the particulate fraction of the cell was studied in Artemia salina embryos. During control aerobic development, trehalase, phosphofructokinase and pyruvate kinase showed an increase in the percentage associated with the particulate fraction which is consistent with the carbohydrate-based metabolism of Artemia embryos. However, anaerobiosis resulted in decreased enzyme binding for six glycolytic enzymes; hexokinase, aldolase, pyruvate kinase and lactate dehydrogenase were the exceptions. Decreased enzyme binding was also observed after exposure to dehydrating conditions. The results suggest that glycolytic rate could be regulated by changes in the distribution of glycolytic enzymes between free and bound forms in Artemia embryos. This reversible interaction of glycolytic enzymes with structural proteins may account for part of the metabolic arrest observed during anaerobic dormancy and anhydrobiosis.Abbreviation pHi intracellular concentration of H+ ions  相似文献   

6.
Changes were measured in the rates of respiration and in the levels of glycolytic intermediates during the first 5 min after addition of 1.6 mM glucose to a suspension (5%, v/v) of respiring Ehrlich ascites carcinoma cells incubated in an isotonic 50 mM tris(hydroxymethyl)methylglycine buffer (pH 7.4) at 38 °C. The rates of accumulation of lactate and glycolytic intermediates were used to calculate the in vitro velocities of glycolytic enzymes.The initial velocities of hexokinase (EC 2.7.1.1), fructose-6-phosphate kinase (EC 2.7.1.11) and lactate dehydrogenase (EC 1.1.1.27) in μmoles glucose equivalents/ ml cells per min were 14, 11 and 4, respectively. The velocities of the two kinases fell sharply to less than 5 between 5 and 10 s, while the velocity of the dehydrogenase declined gradually over the first minute. The initial burst of activity in the kinases, which lasted for about 8 s, was associated with a rapid accumulation of phosphate ester and a negative net ATP generation by glycolysis. The accumulation of phosphate ester is almost exactly matched by the generation of ATP by the “tail end” of glycolysis (triose-P to lactate) in this period. After this time (10–25 s) the rate of oxidative phosphorylation calculated as six times the rate of O2 consumption, is nearly identical to the combined rate of ATP utilization by hexokinase and fructose-6-phosphate kinase. As observed previously, oxamate (42 mM) blocked lactate dehydrogenase but did not depress the rate of phosphate ester accumulation.These various observations and correlations can be interpreted in terms of a dual glycolytic system. The accumulation of phosphate ester during the first 8 s is attributed to the operation of a partial glycolytic system, System B, which includes only the first three or four enzymes of glycolysis, and which draws upon an ATP pool (Pool I) previously employed in assorted cytoplasmic phosphorylations. The ADP generated by System B is rephosphorylated by and regulates the rate of a complete glycolytic system A, which converts glucose to lactate with little intermediate accumulation. The tail end of System A generates a new pool of ATP (Pool II) and controls the rate of glucose input through its head end, which is supplied by ATP being produced by oxidative phosphorylation. This scheme of interlocking controls is transient and alters after 8 s, when System B slows to a stop.  相似文献   

7.
The activities of glycolytic and other enzymes of carbohydrate metabolism were measured in free-living and parasitic stages of the rabbit stomach worm Obeliscoides cuniculi. Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphoglucomutase, hexokinase, glucosephosphate isomerase, phosphofructokinase, aldolase, triosephosphate isomerase, α-glycerophosphatase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenol pyruvate carboxykinase, lactate dehydrogenase, alcohol dehydrogenase, and glucose-6-phosphatase activities were present in worms recovered 14, 20 and 190 days postinfection.The presence of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, and glucose-6-phosphatase indicates the possible function of a pentose phosphate pathway and a capacity for gluconeogenesis, respectively, in these worms.The ratio of pyruvate kinase (PK) to phosphoenol pyruvate carboxykinase (PEPCK) less than I in parasitic stages suggests that their most active pathway is that fixing CO2 into phosphoenol pyruvate to produce oxaloacetate.Low levels of glucose-6-phosphate dehydrogenase, triosephosphate isomerase, PEPCK and PK were recorded in infective third-stage larvae stored at 5°C for 5 and 12 mos. The ratio of PK to PEPCK greater than 1 indicates that infective larvae preferentially utilize a different terminal pathway than the parasitic stages.  相似文献   

8.
A fully functional ornithine–glutamate–proline pathway was detected in L3 and adult Haemonchus contortus and Teladorsagia circumcincta, making the parasites capable of interconversion of these amino acids. Ornithine aminotransferase (OAT) (E.C. 2.6.1.13) was a reversible pyridoxal-5-phosphate (PLP)-dependent enzyme with an optimum pH 8.5. Hydroxylamine completely inhibited OAT activity in both parasites. For all five enzymes, substrate affinity was similar for each species and life cycle stage, the notable exceptions being the nearly 10-fold lower affinity for Δ1-pyrroline-5-carboxylate (P5C) of P5C reductase (E.C. 1.5.1.2) in adult T. circumcincta and about half for P5C for L3 H. contortus P5C dehydrogenase (E.C. 1.5.1.12). P5C synthase (E.C. 1.2.1.41) activity was similar with either NADPH or NADH as co-factor. Proline oxidase (E.C. 1.5.99.8) was a co-factor independent enzyme with an optimal pH 8.5. Despite similarities to those in the host, enzymes of this pathway may still be useful as control targets if they differ antigenically, as a supply of proline is necessary for cuticle formation.  相似文献   

9.
The West African Dwarf (WAD) goat from the humid zone of Nigeria is known for its trypanotolerance as well as for its resistance and resilience to Haemonchus contortus (haemonchotolerance). Another ecotype of WAD goat with a larger body size is found in the drier savanna zone of the country. We tested the hypothesis that the latter is less trypanotolerant, and less haemonchotolerant than the former ecotype because they have been less exposed to these infections and because of the likelihood of introgression of alleles for parasite susceptibility into the latter from neighbouring parasite-susceptible Sahelian genotypes. Two controlled experiments were carried out. In the first, we compared the responses in 8–9 month old kids of both ecotypes to subcutaneous infection with 5 × 106 Trypanosoma brucei. Infection in both ecotypes was characterised by (i) prepatent periods of 3 days; (ii) a modest peak parasitaemia 4–5 days post infection (pi), followed by rapid clearance of parasites from the blood to microscopically undetectable levels from D11 or D12 until the end of the experiment on D30 pi; (iii) a sharp but transient drop in PCV following peak parasitaemia, with no other clinical evidence of anaemia; and (iv) normal growth and a small but weakly significant change in body temperature. In a second experiment we infected groups of goats of both ecotypes with 6000 L3 of H. contortus. This infection also produced no significant changes in the PCV and body weight of the goats. Only a small percentage of the inoculum was recovered from both ecotypes at necropsy on D18 pi (Mean % recovery ± SE = 3.29 ± 0.61 for humid zone and 6.83 ± 2.72 for savanna goats) and there was no significant difference in their worm burdens. On the basis of these results we reject our hypothesis and conclude that the savanna WAD ecotype exhibits comparable, strong degrees of trypanotolerance and haemonchotolerance to its humid zone counterpart.  相似文献   

10.
Unlike other oilseeds (e.g. Arabidopsis), developing sunflower seeds do not accumulate a lot of starch and they rely on the sucrose that comes from the mother plant to synthesise lipid precursors. Between 10 and 25 days after flowering (DAF), when sunflower seeds form and complete the main period of storage lipid synthesis, the sucrose content of seeds is relatively constant. By contrast, the glucose and fructose content falls from day 20 after flowering and it is always lower than that of sucrose, with glucose being the minor sugar at the end of the seed formation. By studying the apparent kinetic parameters and the activity of glycolytic enzymes in vitro, it is evident that all the components of the glycolytic pathway are present in the crude seed extract. However, in isolated plastids important enzymatic activities are missing, such as the glyceraldehyde-3-phosphate dehydrogenase, involved in the conversion of glyceraldehyde 3-phosphate into 1,3-biphospho-glycerate, or the enolase that converts 2-phosphoglycerate into phosphoenolpyruvate. Hence, phosphoenolpyruvate or one of its derivatives, like pyruvate and malate from the cytosol, may be the primary carbon sources for lipid biosynthesis. Accordingly, the glucose-6-P imported into the plastid is likely to be used in the pentose phosphate pathway to produce the reducing power for lipid biosynthesis in the form of NADPH. Data from crude seed extracts indicate that enolase activity increased during seed formation, from 16 days after flowering, and that this activity was well correlated with the period of storage lipid synthesis. In addition, while the presence of some glycolytic enzymes increased during lipid synthesis, others decreased, remained constant, or displayed irregular temporal behaviour.  相似文献   

11.
The glucose and fructose degradation pathways were analyzed in the halophilic archaeon Halococcus saccharolyticus by 13C-NMR labeling studies in growing cultures, comparative enzyme measurements and cell suspension experiments. H. saccharolyticus grown on complex media containing glucose or fructose specifically 13C-labeled at C1 and C3, formed acetate and small amounts of lactate. The 13C-labeling patterns, analyzed by 1H- and 13C-NMR, indicated that glucose was degraded via an Entner-Doudoroff (ED) type pathway (100%), whereas fructose was degraded almost completely via an Embden-Meyerhof (EM) type pathway (96%) and only to a small extent (4%) via an ED pathway. Glucose-grown and fructose-grown cells contained all the enzyme activities of the modified versions of the ED and EM pathways recently proposed for halophilic archaea. Glucose-grown cells showed increased activities of the ED enzymes gluconate dehydratase and 2-keto-3-deoxy-gluconate kinase, whereas fructose-grown cells contained higher activities of the key enzymes of a modified EM pathway, ketohexokinase and fructose-1-phosphate kinase. During growth of H. saccharolyticus on media containing both glucose and fructose, diauxic growth kinetics were observed. After complete consumption of glucose, fructose was degraded after a lag phase, in which fructose-1-phosphate kinase activity increased. Suspensions of glucose-grown cells consumed initially only glucose rather than fructose, those of fructose-grown cells degraded fructose rather than glucose. Upon longer incubation times, glucose- and fructose-grown cells also metabolized the alternate hexoses. The data indicate that, in the archaeon H. saccharolyticus, the isomeric hexoses glucose and fructose are degraded via inducible, functionally separated glycolytic pathways: glucose via a modified ED pathway, and fructose via a modified EM pathway.Abbreviations. KDG 2-Keto-3-deoxygluconate - KDPG 2-Keto-3-deoxy-6-phosphogluconate - FBP Fructose-1,6-bisphosphate - TIM Triosephosphate isomerase - GAP Glyceraldehyde-3-phosphate - PEP Phosphoenolpyruvate - PTS Phosphotransferase - 1-PFK Fructose 1-phosphate kinase An erratum to this article can be found at  相似文献   

12.
In hansenula polymorpha glycerol is metabolized via glycerol kinase and NAD(P)-independent glycerol-3-phosphate (G3P) dehydrogenase, enzymes which hitherto were reported to be absent in this methylotrophic yeast. Activity of glycerol kinase was readily detectable when cell-free extracts were incubated at pH 7–8 with glycerol/ATP/Mg2+ and a discontinuous assay for G3P formation was used. This glycerol kinase activity could be separated from dihydroxyacetone (DHA) kinase activity by ion exchange chromatography. Glycerol kinase showed relatively low affinities for glycerol (apparent K m=1.0 mM) and ATP (apparent K m=0.5 mM) and was not active with other substrates tested. No inhibition by fructose-1,6-bisphosphate (FBP) was observed. Both NAD-dependent and NAD(P)-independent G3P dehydrogenases were present. The latter enzyme could be assayed with PMS/MTT and cosedimented with the mitochondrial fraction. Glucose partly repressed synthesis of glycerol kinase and NAD(P)-independent G3P dehydrogenase, but compared to several other non-repressing carbon sources no clear induction of these enzymes by glycerol was apparent. Amongst glycerolnegative mutants of H. polymorpha strain 17B (a DHA kinase-negative mutant), strains blocked in either glycerol kinase or membrane-bound G3P dehydrogenase were identified. Crosses between representatives of the latter mutants and wild type resulted in the isolation of, amongst others, segregants which had regained DHA kinase but were still blocked in the membrane-bound G3P dehydrogenase. These strains, employing the oxidative pathway, were only able to grow very slowly in glycerol mineral medium.Abbreviations DHA dihydroxyacetone - G3P glycerol-3-phosphate - EMS ethyl methanesulphonate - MTT 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide - PMS phenazine methosulphate - FBP fructose-1,6-bisphosphate  相似文献   

13.
Klebsiella aerogenes NCIB 418 assimilates glycerol via alternative pathways: one involves a glycerol kinase with a high affinity for glycerol (apparent K m=1–2×10–6 M), and the second a glycerol dehydrogenase with a much lower affinity for its substrate (apparent K m=2–4×10–2 M).In variously-limited chemostat cultures, one or the other pathway predominated. Thus, aerobic carbonlimited organisms contained only the glycerol kinase pathway whereas aerobic sulphate-limited or ammonia-limited organisms (grown on glycerol) used only the glycerol dehydrogenase pathway. Anaerobic cultures invariably contained glycerol dehydrogenase, and glycerol kinase was absent.Washed suspensions of aerobically-grown organisms oxidized glycerol with kinetics similar to that of the particular enzyme (the primary enzyme of the assimilatory pathway) which they possessed, thus indicating a close association between these two enzymes and the uptake process. But a supply of exogenous glycerol was not a prerequisite for the synthesis of either glycerol kinase or glycerol dehydrogenase, and nor was molecular oxygen the key factor in effecting modulation between the alternative pathways of glycerol metabolism, as had been previously suggested.The physiological significance of dual pathways of glycerol assimilation is discussed.  相似文献   

14.
Some enzymatic activities of the glycolytic and hexose monophosphate pathways of Candida parapsilosis, a yeast lacking alcohol dehydrogenase but able to grow on high glucose concentrations, were compared to those of Saccharomyces cerevisiae. Cells were grown either on 8% glucose or on 2% glycerol and activities measured under optimal conditions. Results were as follows: glycolytic enzymes of C. parapsilosis, except glyceraldehyde 3-phosphate dehydrogenase, exhibited an activity weaker than that of S. cerevisiae, especially when yeasts were grown on glycerol. Fructose-1,6 bisphosphatase, an enzyme implicated in gluconeogenesis and in the hexose monophosphate pathway, and known to be very sensitive to catabolite repression in S. cerevisiae, was always active in C. parapsilosis even when cells were grown on 8% glucose. However, the allosteric properties towards AMP and fructose-2,6-bisphosphate were the same in both strains. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, two other enzymes of the hexose monophosphate pathway, exhibited a higher activity in C. parapsilosis than in S. cerevisiae. Regulation of two important control points of the glycolytic flux, phosphofructokinase and pyruvate kinase, was investigated. In C. parapsilosis phosphofructokinase was poorly sensitive to ATP but fructose-2,60bisphosphate completely relieved the light ATP inhibition. Pyruvate kinase did not require fructose-1,6-bisphosphate for its activity, and by this way, did not regulate the glycolytic flux. The high glyceraldehyde-3-P-dehydrogenase activity, together with the relative insensitivity of fructose-1,6-bisphosphatase to catabolite repression and the high glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities suggested that in C. parapsilosis, as in other Candida species and opposite to S. cerevisiae, the glucose degradation mainly occurred through the hexose monophosphate pathway, under both growth conditions used.Abbreviations C. parapsilosis Candida parapsilosis - S. cerevisiae Saccharomyces cerevisiae - C. utilis Candida utilis  相似文献   

15.
Ca2+ signaling is thought to play an important role in Toxoplasma gondii motility, including invasion of and egress from host cells. Recently, it has been reported that phosphorylation of the glideosome apparatus components of T. gondii occurs during invasion. To elucidate the role of T. gondii calmodulin-like domain protein kinase in the signaling pathway that bridges Ca2+ stimulation and motility, we characterized T. gondii calmodulin-like domain protein kinase isoform 3 (TgCDPKif3). TgCDPKif3 is homologous to Plasmodium falciparum calcium-dependent protein kinase 1, which has been reported to phosphorylate P. falciparum glideosome components. TgCDPKif3 was purified as a fusion protein that was labeled with [γ-32P]ATP, and the label was subsequently removed by phosphatase treatment. Phosphorylation was eliminated when the putative catalytic lysine residue of TgCDPKif3 was replaced with alanine. TgCDPKif3 phosphorylated Histone IIAS as a representative substrate in a Ca2+-dependent manner at a high Ca2+ concentration. TgCDPKif3 was localized to the apical ends of tachyzoites. TgCDPKif3 showed the translocation between intra- and extracellular tachyzoites. TgCDPKif3 could phosphorylate T. gondii aldolase 1 (TgALD1) in vitro. The interaction between TgCDPKif3 and TgALD1 was confirmed by the co-immunoprecipitation assay in mammal cells. We suggested that TgCDPKif3 could participate in the motility of T. gondii through the phosphorylation of glideosome complex member.  相似文献   

16.
17.
Leaves from four different Ginkgo biloba L. trees (1 and 2 – females; 3 and 4 – males), grown at the same conditions, were collected during a period of 5 months (from June to October, 2007). Water and 12% ethanol extracts were analyzed for total phenolics content, antioxidant activity, phenolic profile, and the potential in vitro inhibitory effects on α-amylase, α-glucosidase, and Angiotensin I-Converting Enzyme (ACE) enzymes related to the management of diabetes and hypertension. The results indicated a significant difference among the trees in all functional benefits evaluated in the leaf extracts and also found important seasonal variation related to the same functional parameters. In general, the aqueous extracts had higher total phenolic content than the ethanolic extracts. Also, no correlation was found between total phenolics and antioxidant activity. In relation to the ACE inhibition, only ethanolic extracts had inhibitory activity.  相似文献   

18.
祁肖肖  王丽敏  于波 《微生物学报》2024,64(5):1538-1549
耐热凝结芽孢杆菌因其对营养要求简单、发酵产物浓度高以及耐高温等特点,已成为乳酸发酵的主要菌种。在前期的研究中,我们发现磷酸盐可以激活凝结芽孢杆菌l-乳酸脱氢酶基因的转录,从而提高乳酸产量。然而,磷酸盐如何激活乳酸脱氢酶的基因表达,目前还不清楚,也未有类似的研究报道。【目的】对凝结芽孢杆菌响应磷酸盐的调控机制进行研究。【方法】通过RT-PCR分析磷酸盐添加时凝结芽孢杆菌乳酸脱氢酶转录水平变化,确定响应磷酸盐的关键元件区域,进一步通过分子生物学手段,分析凝结芽孢杆菌响应磷酸盐的关键基因片段。【结果】确定了响应磷酸盐的关键元件位于乳酸脱氢酶基因上游启动子区,解析了响应磷酸盐的l-乳酸脱氢酶启动子核心区,利用该启动子及核心区能够有效驱动外源d-乳酸脱氢酶基因的表达,实现在凝结芽孢杆菌中d-乳酸的合成。【结论】本研究有望获得一种新的响应磷酸盐的调控元件,为提高其他生物化学品的合成效率改造提供参考。  相似文献   

19.
Specific activities of eight enzymes involved in glycerol metabolism were determined in crude extracts of three strains ofNeurospora crassa after growth on six different carbon sources. One of the strains was wild type, which grew poorly on glycerol as sole carbon source; the other two were mutant strains which were efficient glycerol utilizers. A possible basis for this greater effeciency of glycerol utilization was catabolite repression of glyceraldehyde kinase by glycerol in wild type, and two-fold higher glycerate kinase activity in the mutant strains after growth on glycerol, thus apparently allowing two routes for glyceraldehyde to enter the glycolytic pathway in the mutant strains but only one in wild type. The preferential entry of glyceraldehyde to the glycolytic pathway through glycerate was suggested by the lack of glyceraldehyde kinase in all three strains after growth on one or more of the carbon sources and the generally higher levels of aldehyde dehydrogenase and of glycerate kinase than of glyceraldehyde kinase.  相似文献   

20.
J. N. Pierre  O. Queiroz 《Planta》1979,144(2):143-151
Glycolysis shows different patterns of operation and different control steps, depending on whether the level of Crassulacean acid metabolism (CAM) is low or high in the leaves of Kalanchoe blossfeldiana v.Poelln., when subjected to appropriate photoperiodic treatments: at a low level of CAM operation all the enzymes of glycolysis and phosphoenol pyruvate (PEP) carboxylase present a 12 h rhythm of capacity, resulting from the superposition of two 24h rhythms out of phase; phosphofructokinase appears to be the main regulation step; attainment of high CAM level involves (1) an increase in the peak of capacity occurring during the night of all the glycolytic enzymes, thus achieving an over-all 24h rhythm, in strict allometric coherence with the increase in PEP carboxylase capacity, (2) the establishment of different phase relationships between the rhythms of enzyme capacity, and (3) the control of three enzymic steps (phosphofructokinase, the group 3-P-glyceraldehyde dehydrogenase — 3-P-glycerate kinase, and PEP carboxylase). Results show that the hypothesis of allosteric regulation of phosphofructokinase (by PEP) and PEP carboxylase (by malate and glucose-6-P) cannot provide a complete explanation for the temporal organization of glycolysis and that changes in the phase relationships between the rhythms of enzyme capacity along the pathway and a strict correlation between the level of PEP carboxylase capacity and the levels of capacity of the glycolytic enzymes are important components of the regulation of glycolysis in relation to CAM.Abbreviations CAM crassulacean acid metabolism - F-6-P fructose-6-phosphate - F-bi-P fructose-1,6 biphosphate - G-3-PDH 3-phosphoglyceraldehyde dehydrogenase (NAD), EC 1.2.1.12 - G-6-P glucose-6-phosphate - GSH reduced glutathion - GDH glycerolphosphate dehydrogenase, EC 1.1.1.8 - PEP phosphoenol pyruvate - PEPC PEP carboxylase, EC 4.1.1.31 - PFK phosphofructokinase, EC 2.7.1.11 - 2-PGA 2-phosphoglycerate - 3-PGA 3-phosphoglycerate - PGM phosphoglycerate phosphomutase, EC 5.4.2.1 - T.P. triose phosphates - TPI triose phosphate isomerase, EC 5.3.1.1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号