首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Horizontal gene transfer (HGT) has been well documented in prokaryotes and unicellular eukaryotes, but its role in plants and animals remains elusive. In a recent study, we showed that at least 57 families of nuclear genes in the moss Physcomitrella patens were acquired from prokaryotes, fungi or viruses and that HGT played a critical role in plant colonization of land. In this paper, we categorize all acquired genes based on their putative functions and biological processes, and further address the importance of HGT in plant innovation and evolution.  相似文献   

2.
Gene duplication is a crucial mechanism of evolutionary innovation. A substantial fraction of eukaryotic genomes consists of paralogous gene families. We assess the extent of ancestral paralogy, which dates back to the last common ancestor of all eukaryotes, and examine the origins of the ancestral paralogs and their potential roles in the emergence of the eukaryotic cell complexity. A parsimonious reconstruction of ancestral gene repertoires shows that 4137 orthologous gene sets in the last eukaryotic common ancestor (LECA) map back to 2150 orthologous sets in the hypothetical first eukaryotic common ancestor (FECA) [paralogy quotient (PQ) of 1.92]. Analogous reconstructions show significantly lower levels of paralogy in prokaryotes, 1.19 for archaea and 1.25 for bacteria. The only functional class of eukaryotic proteins with a significant excess of paralogous clusters over the mean includes molecular chaperones and proteins with related functions. Almost all genes in this category underwent multiple duplications during early eukaryotic evolution. In structural terms, the most prominent sets of paralogs are superstructure-forming proteins with repetitive domains, such as WD-40 and TPR. In addition to the true ancestral paralogs which evolved via duplication at the onset of eukaryotic evolution, numerous pseudoparalogs were detected, i.e. homologous genes that apparently were acquired by early eukaryotes via different routes, including horizontal gene transfer (HGT) from diverse bacteria. The results of this study demonstrate a major increase in the level of gene paralogy as a hallmark of the early evolution of eukaryotes.  相似文献   

3.
The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes.  相似文献   

4.
In addition to mutation, gene duplication and recombination, the transfer of genetic material between unrelated species is now regarded as a potentially significant player in the shaping of extant genomes and the evolution and diversification of life. Although this is probably true for prokaryotes, the extent of such genetic exchanges in eukaryotes (especially eukaryote-to-eukaryote transfers) is more controversial and the selective advantage and evolutionary impact of such events are less documented. A laterally transferred gene could either be added to the gene complement of the recipient or replace the recipient's homologue; whereas gene replacements can be either adaptive or stochastic, gene additions are most likely adaptive. Here, we report the finding of four stress-related genes (two ascorbate peroxidase and two metacaspase genes) of algal origin in the closest unicellular relatives of animals, the choanoflagellates. At least three of these sequences represent additions to the choanoflagellate gene complement, which is consistent with these transfers being adaptive. We suggest that these laterally acquired sequences could have provided the primitive choanoflagellates with additional or more efficient means to cope with stress, especially in relation to adapting to freshwater environments and/or sessile or colonial lifestyles.  相似文献   

5.

Background

It is generally agreed that horizontal gene transfer (HGT) is common in phagotrophic protists. However, the overall scale of HGT and the cumulative impact of acquired genes on the evolution of these organisms remain largely unknown.

Results

Choanoflagellates are phagotrophs and the closest living relatives of animals. In this study, we performed phylogenomic analyses to investigate the scale of HGT and the evolutionary importance of horizontally acquired genes in the choanoflagellate Monosiga brevicollis. Our analyses identified 405 genes that are likely derived from algae and prokaryotes, accounting for approximately 4.4% of the Monosiga nuclear genome. Many of the horizontally acquired genes identified in Monosiga were probably acquired from food sources, rather than by endosymbiotic gene transfer (EGT) from obsolete endosymbionts or plastids. Of 193 genes identified in our analyses with functional information, 84 (43.5%) are involved in carbohydrate or amino acid metabolism, and 45 (23.3%) are transporters and/or involved in response to oxidative, osmotic, antibiotic, or heavy metal stresses. Some identified genes may also participate in biosynthesis of important metabolites such as vitamins C and K12, porphyrins and phospholipids.

Conclusions

Our results suggest that HGT is frequent in Monosiga brevicollis and might have contributed substantially to its adaptation and evolution. This finding also highlights the importance of HGT in the genome and organismal evolution of phagotrophic eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-729) contains supplementary material, which is available to authorized users.  相似文献   

6.
Lin Z  Nei M  Ma H 《Nucleic acids research》2007,35(22):7591-7603
To understand the evolutionary process of the DNA mismatch repair system, we conducted systematic phylogenetic analysis of its key components, the bacterial MutS and MutL genes and their eukaryotic homologs. Based on genome-wide homolog searches, we identified three new MutS subfamilies (MutS3-5) in addition to the previously studied MutS1 and MutS2 subfamilies. Detailed evolutionary analysis strongly suggests that frequent ancient horizontal gene transfer (HGT) occurred with both MutS and MutL genes from bacteria to eukaryotes and/or archaea. Our results further imply that the origins of mismatch repair system in eukaryotes and archaea are largely attributed to ancient HGT from bacteria instead of vertical evolution. Specifically, the eukaryotic MutS and MutL homologs likely originated from endosymbiotic ancestors of mitochondria or chloroplasts, indicating that not only archaea, but also bacteria are important sources of eukaryotic DNA metabolic genes. The archaeal MutS1 and MutL homologs were also acquired from bacteria simultaneously through HGT. Moreover, the distribution and evolution profiles of the MutS1 and MutL genes suggest that they have undergone long-term coevolution. Our work presents an overall portrait of the evolution of these important genes in DNA metabolism and also provides further understanding about the early evolution of cellular organisms.  相似文献   

7.
8.
Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.  相似文献   

9.
HECT ubiquitin ligases are key components of the ubiquitin-proteasome system, which is present in all eukaryotes. In this study, the patterns of emergence of HECT genes in plants are described. Phylogenetic and structural data indicate that viridiplantae have six main HECT subfamilies, which arose before the split that separated green algae from the rest of plants. It is estimated that the common ancestor of all plants contained seven HECT genes. Contrary to what happened in animals, the number of HECT genes has been kept quite constant in all lineages, both in chlorophyta and streptophyta, although evolutionary recent duplications are found in some species. Several of the genes found in plants may have originated very early in eukaryotic evolution, given that they have clear similarities, both in sequence and structure, to animal genes. Finally, in Arabidopsis thaliana, we found significant correlations in the expression patterns of HECT genes and some ancient, broadly expressed genes that belong to a different ubiquitin ligase family, called RBR. These results are discussed in the context of the evolution of the gene families required for ubiquitination in plants.  相似文献   

10.
A flurry of recent publications have challenged consensus views on the tempo and mode of plastid (chloroplast) evolution in eukaryotes and, more generally, the impact of endosymbiosis in the evolution of the nuclear genome. Endosymbiont‐to‐nucleus gene transfer is an essential component of the transition from endosymbiont to organelle, but the sheer diversity of algal‐derived genes in photosynthetic organisms such as diatoms, as well as the existence of genes of putative plastid ancestry in the nuclear genomes of plastid‐lacking eukaryotes such as ciliates and choanoflagellates, defy simple explanation. Collectively, these papers underscore the power of comparative genomics and, at the same time, reveal how little we know with certainty about the earliest stages of the evolution of photosynthetic eukaryotes. Editor's suggested further reading in BioEssays Early steps in plastid evolution: current ideas and controversies Abstract Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology Abstract  相似文献   

11.
Although lateral gene transfer (LGT) is now recognized as a major force in the evolution of prokaryotes, the contribution of LGT to the evolution and diversification of eukaryotes is less understood. Notably, transfers of complete pathways are believed to be less likely between eukaryotes, because the successful transfer of a pathway requires the physical clustering of functionally related genes. Here, we report that in one of the closest unicellular relatives of animals, the choanoflagellate, Monosiga, three genes whose products work together in the glutamate synthase cycle are of algal origin. The concerted retention of these three independently acquired genes is best explained as the consequence of a series of adaptive replacement events. More generally, this study argues that (i) eukaryote‐to‐eukaryote transfers of entire metabolic pathways are possible, (ii) adaptive functional replacements of primary pathways can occur, and (iii) functional replacements involving eukaryotic genes are likely to have also contributed to the evolution of eukaryotes. Lastly, these data underscore the potential contribution of algal genes to the evolution of nonphotosynthetic lineages.  相似文献   

12.
Horizontal gene transfer (HGT), a process through which genomes acquire sequences from distantly related organisms, is believed to be a major source of genetic diversity in bacteria. A central question concerning the impact of HGT on bacterial genome evolution is the proportion of horizontally transferred sequences within genomes. This issue, however, remains unresolved because the various methods developed to detect potential HGT events identify different sets of genes. The present-day consensus is that phylogenetic analysis of individual genes is still the most objective and accurate approach for determining the occurrence and directionality of HGT. Here we present a genome-scale phylogenetic analysis of protein-encoding genes from five closely related Chlamydia, identifying a reliable set of sequences that have arisen via HGT since the divergence of the Chlamydia lineage. According to our knowledge, this is the first systematic phylogenetic inference-based attempt to establish a reliable set of acquired genes in a bacterial genome. Although Chlamydia are obligate intracellular parasites of higher eukaryotes, and thus suspected to be isolated from HGT more than the free-living species, our results show that their diversification has involved the introduction of foreign sequences into their genome. Furthermore, we also identified a complete set of genes that have undergone deletion, duplication, or rearrangement during this evolutionary period leading to the radiation of Chlamydia species. Our analysis may provide a deeper insight into how these medically important pathogens emerged and evolved from a common ancestor.  相似文献   

13.
Animals are evolutionarily related to fungi and to the predominantly unicellular protozoan phylum Choanozoa, together known as opisthokonts. To establish the sequence of events when animals evolved from unicellular ancestors, and understand those key evolutionary transitions, we need to establish which choanozoans are most closely related to animals and also the evolutionary position of each choanozoan group within the opisthokont phylogenetic tree. Here we focus on Ministeria vibrans, a minute bacteria-eating cell with slender radiating tentacles. Single-gene trees suggested that it is either the closest unicellular relative of animals or else sister to choanoflagellates, traditionally considered likely animal ancestors. Sequencing thousands of Ministeria protein genes now reveals about 14 with domains of key significance for animal cell biology, including several previously unknown from deeply diverging Choanozoa, e.g. domains involved in hedgehog, Notch and tyrosine kinase signaling or cell adhesion (cadherin). Phylogenetic trees using 78 proteins show that Ministeria is not sister to animals or choanoflagellates (themselves sisters to animals), but to Capsaspora, another protozoan with thread-like (filose) tentacles. The Ministeria/Capsaspora clade (new class Filasterea) is sister to animals and choanoflagellates, these three groups forming a novel clade (filozoa) whose ancestor presumably evolved filose tentacles well before they aggregated as a periciliary collar in the choanoflagellate/sponge common ancestor. Our trees show ichthyosporean choanozoans as sisters to filozoa; a fusion between ubiquitin and ribosomal small subunit S30 protein genes unifies all holozoa (filozoa plus Ichthyosporea), being absent in earlier branching eukaryotes. Thus, several successive evolutionary innovations occurred among their unicellular closest relatives prior to the origin of the multicellular body-plan of animals.  相似文献   

14.
Horizontal gene transfer in plants   总被引:1,自引:0,他引:1  
Horizontal gene transfer (HGT) has played a major role in bacterial evolution and is fairly common in certain unicellular eukaryotes. However, the prevalence and importance of HGT in the evolution of multicellular eukaryotes remain unclear. Recent studies indicate that plant mitochondrial genomes are unusually active in HGT relative to all other organellar and nuclear genomes of multicellular eukaryotes. Although little about the mechanisms of plant HGT is known, several studies have implicated parasitic plants as both donors and recipients of mitochondrial genes. Most cases uncovered thus far have involved a single transferred gene per species; however, recent work has uncovered a case of massive HGT in Amborella trichopoda involving acquisition of at least a few dozen and probably hundreds of foreign mitochondrial genes. These foreign genes came from multiple donors, primarily eudicots and mosses. This review will examine the implications of such massive transfer, the potential mechanisms and consequences of plant-to-plant mitochondrial HGT in general, as well as the limited evidence for HGT in plant chloroplast and nuclear genomes.  相似文献   

15.
Plantae (as defined by Cavalier-Smith, 1981) plastids evolved via primary endosymbiosis whereby a heterotrophic protist enslaved a photosynthetic cyanobacterium. This "primary" plastid spread into other eukaryotes via secondary endosymbiosis. An important but contentious theory in algal evolution is the chromalveolate hypothesis that posits chromists (cryptophytes, haptophytes, and stramenopiles) and alveolates (ciliates, apicomplexans, and dinoflagellates) share a common ancestor that contained a red-algal-derived "secondary" plastid. Under this view, the existence of several later-diverging plastid-lacking chromalveolates such as ciliates and oomycetes would be explained by plastid loss in these lineages. To test the idea of a photosynthetic ancestry for ciliates, we used the 27,446 predicted proteins from the macronuclear genome of Tetrahymena thermophila to query prokaryotic and eukaryotic genomes. We identified 16 proteins of possible algal origin in the ciliates Tetrahymena and Paramecium tetraurelia. Fourteen of these are present in other chromalveolates. Here we compare and contrast the likely scenarios for algal-gene origin in ciliates either via multiple rounds of horizontal gene transfer (HGT) from algal prey or symbionts, or through endosymbiotic gene transfer (EGT) during a putative photosynthetic phase in their evolution.  相似文献   

16.
Until recently, the textbook view of cellulose hydrolysis in animals was that gut-resident symbiotic organisms such as bacteria or unicellular eukaryotes are responsible for the cellulases produced. This view has been challenged by the characterization and sequencing of endogenous cellulase genes from some invertebrate animals, including plant-parasitic nematodes, arthropods and a mollusc. Most of these genes are completely unrelated in terms of sequence, and their evolutionary origins remain unclear. In the case of plant-parasitic nematodes, it has been suggested that their ancestor obtained a cellulase gene via horizontal gene transfer from a prokaryote, and similar suggestions have been made about a cellulase gene recently discovered in a sea squirt. To improve understanding about the evolution of animal cellulases, we searched for all known types of these enzymes in GenBank, and performed phylogenetic comparisons. Low phylogenetic resolution was found among most of the sequences examined, however, positional identity in the introns of cellulase genes from a termite, a sea squirt and an abalone provided compelling evidence that a similar gene was present in the last common ancestor of protostomes and deuterostomes. In a different enzyme family, cellulases from beetles and plant-parasitic nematodes were found to cluster together. This result questions the idea of lateral gene transfer into the ancestors of the latter, although statistical tests did not allow this possibility to be ruled out. Overall, our results suggest that at least one family of endogenous cellulases may be more widespread in animals than previously thought.  相似文献   

17.
Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome. Current data suggest, however, that chromists are paraphyletic; therefore, it remains unclear whether their plastids trace back to a single secondary endosymbiosis or, alternatively, this organelle has resulted from multiple independent events in the different chromist lineages. Both scenarios, however, predict that plastid-targeted, nucleus-encoded chromist proteins should be most closely related to their red algal homologs. Here we analyzed the biosynthetic pathway of carotenoids that are essential components of all photosynthetic eukaryotes and find a mosaic evolutionary origin of these enzymes in chromists. Surprisingly, about one-third (5/16) of the proteins are most closely related to green algal homologs with three branching within or sister to the early-diverging Prasinophyceae. This phylogenetic association is corroborated by shared diagnostic indels and the syntenic arrangement of a specific gene pair involved in the photoprotective xanthophyll cycle. The combined data suggest that the prasinophyte genes may have been acquired before the ancient split of stramenopiles, haptophytes, cryptophytes, and putatively also dinoflagellates. The latter point is supported by the observed monophyly of alveolates and stramenopiles in most molecular trees. One possible explanation for our results is that the green genes are remnants of a cryptic endosymbiosis that occurred early in chromalveolate evolution; that is, prior to the postulated split of stramenopiles, alveolates, haptophytes, and cryptophytes. The subsequent red algal capture would have led to the loss or replacement of most green genes via intracellular gene transfer from the new endosymbiont. We argue that the prasinophyte genes were retained because they enhance photosynthetic performance in chromalveolates, thus extending the niches available to these organisms. The alternate explanation of green gene origin via serial endosymbiotic or horizontal gene transfers is also plausible, but the latter would require the independent origins of the same five genes in some or all the different chromalveolate lineages.  相似文献   

18.
The primary plant cell wall comprises the most abundant polysaccharides on the Earth and represents a rich source of energy for organisms which have evolved the ability to digest them. Enzymes able to degrade plant cell wall polysaccharides are widely distributed in micro-organisms but are generally absent in animals, although their presence in insects, especially phytophagous beetles from the superfamilies Chrysomeloidea and Curculionoidea, has recently begun to be appreciated. The observed patchy distribution of endogenous genes encoding these enzymes in animals has raised questions about their evolutionary origins. Recent evidence suggests that endogenous plant cell wall degrading enzymes-encoding genes have been acquired by animals through a mechanism known as horizontal gene transfer (HGT). HGT describes how genetic material is moved by means other than vertical inheritance from a parent to an offspring. Here, we provide evidence that the mustard leaf beetle, Phaedon cochleariae, possesses in its genome genes encoding active xylanases from the glycoside hydrolase family 11 (GH11). We also provide evidence that these genes were originally acquired by P. cochleariae from a species of gammaproteobacteria through HGT. This represents the first example of the presence of genes from the GH11 family in animals.  相似文献   

19.
Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.  相似文献   

20.
Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non‐photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号