首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Effects of [D-Ala6,Des-Gly10]gonadotropin-releasing hormone (GnRH), ethylamide (GnRHa), and prostaglandin F2 alpha (PGF2 alpha) on inositol phosphate (IPs) formation and arachidonic acid (AA) release were studied in rat luteal cells of primary culture. In the cells obtained from one-day-old corpora lutea, PGF2 alpha (100 nM) and GnRHa (100 nM) significantly increased the IPs formation and the AA release. Antagonists of GnRH added solely or with GnRHa did not stimulate the IPs formation but did stimulate the AA release. In the cells obtained from 5-day-old corpora lutea, GnRHa failed to stimulate the IPs formation but significantly stimulated the AA release. The stimulation of both IPs formation and AA release by PGF2 alpha was consistently found in cells of two different luteal ages. These results suggest that GnRH receptor independently couples to both phospholipases C and A2 through different classes of GnRH receptors.  相似文献   

2.
The aim of the present study was to test the hypothesis that growth hormone (GH) and insulin-like growth factor-I (IGF-I) act at a local level to inhibit luteal cell apoptosis. Luteal cells collected from the corpora lutea at different stages of the luteal phase were cultured for 24 h in M 199 medium supplemented with 5% of calf serum to cause attachment cells to the plastic. After 24 h, the media were changed and various concentrations of GH (10, 100 or 200 ng/ml) or IGF-I (30, 50 or 100 ng/ml) were added to the culture medium. Twenty-four hours later, cells were fixed for morphological assessment of apoptotic cells utilising a Hoechst staining technique. To support morphological observations, measurements of caspase-3 activity in cultured porcine luteal cells were performed. Increased incidence of apoptotic bodies and caspase-3 activity accompanied luteal regression and was associated with a decreased progesterone (P4) secretion by luteal cells. GH stimulated P4 secretion by luteal cells collected from developing (ELP) and mature (MLP) corpora lutea but had no effect on its secretion by cells collected from regressing corpora lutea (LLP). Moreover, it had no effect on the incidence of apoptotic bodies in all types of corpora lutea. However, suppression of caspase-3 activity was observed with 100 and 200 ng of GH/ml in all types of corpora lutea. IGF-I had a stimulatory effect on P4 secretion by ELP and MLP, decreased the incidence of apoptotic bodies and suppressed caspase-3 activity in cultures treated with all doses used. In conclusion, our results indicate that both GH and IGF-1 trigger anti-apoptotic effects either indirectly, by increasing progesterone secretion, or directly, through the inhibition of caspase-3 activity and subsequent prevention of apoptotic body formation.  相似文献   

3.
Granulosa cells derived from preovulatory bovine follicles were cultured in the presence of insulin-like growth factor-I (IGF-I, 10-100 ng/ml), forskolin (10 microM), or a combination of the two agents. Forskolin alone was the most potent stimulator of both oxytocin (OT) and progesterone (P4) secretion. The two hormones had different patterns of secretion during the course of incubation. OT production peaked on Day 5 of culture and declined thereafter, whereas P4 rose gradually to a peak between Days 7 and 9. The addition of IGF-I to forskolin did not augment OT release beyond that achieved with forskolin alone, but it did maintain higher levels of OT secretion beyond the Day-5 peak. Two antisera, (antiserum I and antiserum II) directed against OT and its C-terminally extended forms, respectively, were used to identify the OT forms in culture media and granulosa cell and corpus luteum extracts. Fully processed OT was detected only in small amounts (0.43 ng/mg protein) in granulosa cell extracts, whereas the corpus luteum extracts contained 6 ng/mg protein. However, granulosa cells that had been incubated with forskolin contained stores of the OT precursor oxytocin-neurophysin, which is found in young corpora lutea. These data indicate that forskolin (whose action probably mimics gonadotropin action) is an effective stimulator of OT biosynthesis and release in cultured bovine granulosa cells.  相似文献   

4.
The expression of gonadotropin-releasing hormone (GNRH) receptor (GNRHR) and the direct role of GNRH1 on corpora lutea function were studied in Mediterranean buffalo during diestrus. Immunohistochemistry evidenced at early, mid, and late luteal stages the presence of GNRHR only in large luteal cells and GNRH1 in both small and large luteal cells. Real-time PCR revealed GNRHR and GNRH1 mRNA at the three luteal stages, with lowest values in late corpora lutea. In vitro corpora lutea progesterone production was greater in mid stages and lesser in late luteal phases, whereas prostaglandin F2 alpha (PGF2alpha) increased from early to late stages, and PGE2 was greater in the earlier-luteal phase. Cyclooxygenase 1 (prostaglandin-endoperoxide synthase 1; PTGS1) activity did not change during diestrus, whereas PTGS2 increased from early to late stages, and PGE2-9-ketoreductase (PGE2-9-K) was greater in late corpora lutea. PTGS1 activity was greater than PTGS2 in early corpora lutea and lesser in late luteal phase. In corpora lutea cultured in vitro, the GNRH1 analog (buserelin) reduced progesterone secretion and increased PGF2alpha secretion as well as PTGS2 and PGE2-9-K activities at mid and late stages. PGE2 release and PTGS1 activity were increased by buserelin only in late corpora lutea. These results suggest that GNRH is expressed in all luteal cells of buffalo, whereas GNRHR is only expressed in large luteal phase. Additionally, GNRH directly down-regulates corpora lutea progesterone release, with the concomitant increases of PGF2alpha production and PTGS2 and PGE2-9-K enzymatic activities.  相似文献   

5.
To determine if the antiprogestagen RU486 has a direct effect on luteal progesterone secretion, whole corpora lutea or dispersed luteal cells were incubated in the presence of RU486. Whole corpora lutea, isolated from rats at day 5 of pseudopregnancy, were incubated individually in hormone-free medium. The concentrations of progesterone and 20 alpha-dihydroprogesterone in the medium plus corpus luteum was measured before and after 24 h of incubation. In the absence of RU486 the concentration of 20 alpha-dihydro-progesterone increased, while that of progesterone remained unchanged. In the presence of RU486 (230 microM) the concentration of both progesterone and 20 alpha-dihydro-progesterone was increased. Dispersed luteal cells were incubated for 24 h in the presence of various amounts of RU486. In the absence and in the presence of 0.2 and 2.3 microM RU486 a high ratio between 20 alpha-dihydro-progesterone and progesterone was found, while in the presence of 23 microM RU486 the concentrations of progesterone and 20 alpha-dihydro-progesterone were equal. 20 alpha-Hydroxysteroid dehydrogenase (20 alpha-HSD) activity measured in luteal homogenates started to increase between 6 and 12 h of incubation. This increase could be prevented after incubation of the corpora lutea in the presence of 23 or 230 microM RU486 for 24 hrs. It is concluded that the progesterone antagonist RU486 can have a direct effect on luteal progesterone production. RU486 prevents the increase in 20 alpha-HSD activity that normally occurs during in vitro incubation. However, since these effects in vitro can only be obtained with high concentrations of RU486, it is unlikely that this antiluteolytic effect plays a role after injection of RU486 in vivo.  相似文献   

6.
Corpora lutea were recovered from mares either 4 to 5 days or 12 to 13 days after ovulation. Mixed populations of luteal cells were prepared by collagenase digestion and were incubated for 24 h in the presence or absence of prostaglandin (PG) F-2 alpha (250 ng/ml). PGF-2 alpha significantly (P = 0.03) reduced progesterone secretion by cells from late diestrous corpora lutea and tended (P = 0.06) to reduce secretion by early diestrous cells. PGF-2 alpha had no significant effect on leukotriene B-4 (LTB-4) production by cells from early diestrous corpora lutea, but significantly (P = 0.03) increased LTB-4 production by late diestrous luteal cells. It seems possible that LTB-4 could play a role as an intermediary in the action of PGF-2 alpha in luteolysis in the mare.  相似文献   

7.
The effect of prostaglandin PGF2 alpha on the hCG stimulated and basal progesterone production by human corpora lutea was examined in vitro. hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16-19 of a normal 28 day cycle), mid (days 20-22) and late (days 23-27) luteal phases. This stimulation was inhibited by PGF2 alpha (10 micrograms/ml) in corpora lutea of mid and late luteal phases. PGF2 alpha alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF2 alpha at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

8.
Bovine luteal cells from Days 4, 8, 14 and 18 of the estrous cycle were incubated for 2 h (1 x 10(5) cells/ml) in serum-free media with one or a combination of treatments [control (no hormone), prostaglandin F2 alpha (PGF), oxytocin (OT), estradiol-17 beta (E) or luteinizing hormone (LH)]. Luteal cell conditioned media were then assayed by RIA for progesterone (P), PGF, and OT. Basal secretion of PGF on Days 4, 8, 14 and 18 was 173.8 +/- 66.2, 111.1 +/- 37.8, 57.7 +/- 15.4 and 124.3 +/- 29.9 pg/ml, respectively. Basal release of OT and P was greater on Day 4 (P less than 0.01) than on Day 8, 14 and 18 (OT: 17.5 +/- 2.6 versus 5.6 +/- 0.7, 6.0 +/- 1.4 and 3.1 +/- 0.4 pg/ml; P: 138.9 +/- 19.5 versus 23.2 +/- 7.5, 35.4 +/- 6.5 and 43.6 +/- 8.1 ng/ml, respectively). Oxytocin increased (P less than 0.01) PGF release by luteal cells compared with control cultures irrespective of day of estrous cycle. Estradiol-17 beta stimulated (P less than 0.05) PGF secretion on Days 8, 14 and 18, and LH increased (P less than 0.01) PGF production only on Day 14. Prostaglandin F2 alpha, E and LH had no effect on OT release by luteal cells from any day. Luteinizing hormone alone or in combination with PGF, OT or E increased (P less than 0.01) P secretion by cells from Days 8, 14 and 18. However on Day 8, a combination of PGF + OT and PGF + E decreased (P less than 0.05) LH-stimulated P secretion. These data demonstrate that OT stimulates PGF secretion by bovine luteal cells in vitro. In addition, LH and E also stimulate PGF release but effects may vary with stage of estrous cycle.  相似文献   

9.
Minced luteal tissue of bovine corpora lutea from Day 4, 5, and 6 of the estrous cycle (n = 4 corpora lutea each) was superfused for 9 h, and the progesterone secretion under the influence of 100 ng luteinizing hormone (LH)/ml and/or 1,000 ng prostaglandin F(2alpha) (PGF(2alpha))/ml was determined. In vivo, this period of the estrous cycle is characterized by a transition from PGF(2alpha) refractoriness to PGF(2alpha) sensitivity. The investigations were carried out in order to examine whether this transition is reflected by a change in the hormone secretion pattern in vitro. The basal secretion was higher on Day 6 than on Day 4 and 5 (P < 0.01). PGF(2alpha) slightly increased the progesterone secretion, but there was no statistically significant difference (P > 0.05). LH, however, stimulated the progesterone secretion by about 30% in luteal tissue collected from Day 4 and 5 (P < 0.01). In luteal tissue collected from Day 6, the LH-induced increase in hormone secretion was not statistically significant due to two corpora lutea that showed no response at all to LH. The progesterone secretion of the two other corpora lutea, however, was increased by 30% (P < 0.01). When PGF(2alpha) and LH were simultaneously added, the LH-induced progesterone secretion was not inhibited; PGF(2alpha) even seemed to intensify the action of LH. The difference between the hormone secretion under the influence of LH alone and that under the influence of a combination of LH and PGF(2alpha), however, was not statistically significant. It is concluded that in cattle the end of the refractoriness to PGF(2alpha) in vivo is not reflected by a corresponding change of the hormone secretion pattern in vitro.  相似文献   

10.
The ability of de novo biosynthesis of prostaglandins (PGs) in individual whole corpora lutea (CL) obtained from sterile-mated adult pseudopregnant rats on different days of the luteal phase and the post-luteolytic period was evaluated. Production of PGs, progesterone and 20 alpha-dihydroprogesterone were determined after in vitro incubation of CL extirpated from Day 2 to Day 19 after mating. A time-relationship with increased accumulation of PGs in the medium was demonstrated from 18 s to 5 h, with large increments during the first 30 min. Basal accumulation of PGs in the incubation medium was highest for 6-keto-PGF1 alpha (the stable metabolite of prostacyclin) greater than PGE2 greater than PGF2 alpha greater than thromboxane B2 (TXB2) and basal accumulation of PGF2 alpha and PGE2 measured in the medium was maximal on Day 10-11 of pseudopregnancy, concomitantly with a decline in secretion of progesterone. Addition of arachidonic acid (AA) dose-dependently increased synthesis of PGs, with absolute amounts of PGE2 greater than 6-keto-PGF1 alpha greater than PGF2 alpha greater than TXB2 and addition of 14 microM indomethacin markedly inhibited accumulation of all PGs measured. Luteinizing hormone (LH, 10 micrograms/ml) stimulated progesterone secretion on all days during pseudopregnancy, but not on the post-luteolytic Day 19. LH increased PGF2 alpha, PGE2 and 6-keto-PGF1 alpha secretion on Day 13 of pseudopregnancy by 76%, 91% and 28%, respectively, but not on the other days tested. Furthermore, stimulation of PG-synthesis by addition of AA abrogated the LH-induced progesterone accumulation markedly, but only on Day 13 of pseudopregnancy. Epinephrine (5 micrograms/ml) increased production of progesterone and also PGs, but only on Day 2 of pseudopregnancy, whereas oxytocin (100 mIU/ml) was found to be without effect on progesterone as well as PG secretion on all days tested. The results of the present study demonstrates the independent ability of the rat CL to synthesize PGG/PGH2-derived prostaglandins, including the putative luteolysin PGF2 alpha. Secondly, we demonstrate that LH and AA-induced increases in PGF2 alpha and PGE2 production during the luteolytic period, may be an autocrine or paracrine mechanism involved in luteolysis.  相似文献   

11.
The effect of insulin-like growth factors (IGFs) and insulin on the release of progesterone and oxytocin from bovine corpus luteum was investigated at early (days 5-7), mid- (days 8-12) and late (days 15-18) luteal phases of the oestrous cycle in an in vitro microdialysis system. The expression of specific receptors was evaluated in bovine corpora lutea of the respective luteal stages. A 30 min infusion of IGF-1, IGF-2 (1.3, 13 and 130 nmol l-1) or insulin (13, 130 and 1300 nmol l-1) caused a stimulation of the release of progesterone (P < 0.05). IGF-1 was most effective in releasing progesterone. Oxytocin release from corpora lutea was stimulated by insulin at all doses tested (13-1300 nmol l-1), whereas the IGFs were only effective at the highest dose (130 nmol l-1) applied. The high doses of IGFs (130 nmol l-1) and insulin (1300 nmol l-1) stimulated the release of progesterone and oxytocin throughout the luteal phase (P < 0.05). For all three peptides, greatest stimulation was seen during the late luteal phase (days 15-18 of the oestrous cycle) with the peak of progesterone release directly related to peptide infusion (P < 0.05). In addition, IGF-1 stimulated total release of progesterone (units in 4 h) after the beginning of the stimulation during this phase (P < 0.05). IGF-1 caused a gradual increase of progesterone even beyond the time of peptide perfusion, whereas IGF-2 and insulin stimulated progesterone release only during the peptide perfusion. Distinct receptors for IGF-1 and IGF-2 were present in corpora lutea membrane preparations at all stages investigated. Specific binding for insulin was also seen in all stages of the cycle without any cycle-dependent changes in the amount of binding. The displacement of labelled insulin by unlabelled IGF-1 and IGF-2 did not show the rank of order that has been described as typical for insulin receptors (i.e. insulin > IGF-1 > IGF-2), but comparable binding affinities were observed for the three unlabelled ligands. Specific binding of IGF-2 was markedly higher than that of IGF-1 or insulin throughout the cycle (1.9- and 4.9-fold higher compared with IGF-1 and insulin, respectively). Receptor specificity did not change during luteal development. Binding affinity and capacity of IGF-1 receptor was constant throughout the oestrous cycle. Specific IGF-2 binding increased and showed a positive co-operativity towards the end of the cycle. Specific binding of insulin was not significantly different in the three luteal stages examined.  相似文献   

12.
It is assumed that exposure of endometrium to spontaneously secreted luteal hormones stimulates PGF2 alpha secretion and modifies oxytocin (OT) influence on the bovine uterus. At first, the time-dependent effect of endogenous luteal products on endometrial PGF2 alpha secretion was examined. Endometrial strips (100 mg) from slaughtered heifers (Days 11 to 17 of the cycle) were incubated alone or with luteal cells (1 x 10(5) cells/mL). The highest PGF2 alpha secretion by the endometrium under influence of hormones secreted from luteal cells was observed after 12 h of incubation compared with the control (P < 0.001). Then, endometrium (Days 11 to 17) was incubated with luteal cells and concomitantly with antagonists of P4 and OT. The P4 antagonist prevented the stimulatory effect of endogenous luteal hormones on PGF2 alpha secretion (P < 0.05), but the OT antagonist did not. Further, direct effects of exogenous P4, OT and estradiol (E2) on endometrial PGF2 alpha secretion (Days 11 to 17) were examined. Both OT and P4 increased PGF2 alpha secretion (P < 0.05); E2 alone had no effect on PGF2 alpha secretion, but it amplified the P4 effect (P < 0.05). Finally, we studied the effect of endogenous luteal products on OT-stimulated PGF2 alpha secretion from endometrium. When endometrium (Days 11 to 17) was incubated without luteal cells, OT stimulated PGF2 alpha secretion (P < 0.001), whereas incubation of endometrium with luteal cells abolished the stimulatory effect of OT on PGF2 alpha secretion (P < 0.001). These treatments did not affect PGF2 alpha secretion from the endometrium collected on Days 1 to 4. In conclusion, P4 stimulates PGF2 alpha secretion by the endometrium and E2 amplifies this effect. As long as the endometrium is under the influence of P4, ovarian OT does not affect PGF2 alpha secretion.  相似文献   

13.
A microdialysis system (MDS) was implanted in corpora lutea (CL) from cows (Days 5-7, 8-12, and 15-18 of the estrous cycle); the CL were maintained in organ culture chambers. With this system, active substances can be applied, and a collection of steroids released from luteal cells surrounding the microcapillary (cut-off point = 100 kDa) is possible, while luteal cells maintain cell-to-cell contact. Spontaneous pulses of progesterone release were observed in 90% of control (perfused with Ringer's solution only) at 60-80 min intervals. The infusion of bovine LH (bLH) for 20 min (0.1-10 micrograms/ml) stimulated dose-dependent release of progesterone. Both results indicate that the CL maintains the activity of progesterone release and the ability to respond to LH stimulation in this system. Oxytocin (1-100 microM) also stimulated progesterone release in a dose-dependent manner. Preexposure with oxytocin antagonist blocked the stimulatory effect of oxytocin (p less than 0.01) but not of LH (p less than 0.05), confirming the specificity of the effect. When CL were prestimulated with a low dose of oxytocin (1 microM, 20 min) twice before bLH application, the release of progesterone by bLH (1 micrograms/ml, 20 min) was more pronounced (p less than 0.05). A long-term infusion (3 h) with oxytocin and/or bLH stimulated the release of progesterone for the whole period of time. Oxytocin was most stimulative during the early luteal phase (Days 5-7) and decreased continuously from Days 8-12 to Days 15-18.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Cell suspensions were prepared from human corpora lutea obtained during the mid-luteal phase. Progesterone production was assessed after short-term incubation of luteal cell suspensions. Luteal cells were very sensitive to hCG, the concentration required for 50% maximum response being 0.01 i.u./ml, and the response was 5 times higher than the basal production. Oestradiol (1-100 microM) induced a significant dose-related decrease in both basal and hCG-stimulated progesterone production. The A-nor steroidal compounds anordrin and AF-45 reduced hCG-stimulated progesterone production only at the high concentration of 100 microM. The ED50 values were approximately 3 microM, 75 microM and 100 microM for oestradiol, AF-45 and anordrin respectively. Anordrin showed no significant effects on basal progesterone production. In addition, oestradiol markedly inhibited the activity of 3 beta-hydroxysteroid dehydrogenase in luteal cells, expressed by the conversion of pregnenolone to progesterone, but the inhibitory effects of anordrin and AF-45 were negligible or relatively low. The effects of anordrin and AF-45 were different from those of oestradiol on progesterone production by human luteal cells in vitro, indicating that neither substance is likely to be a useful luteolytic agent in women.  相似文献   

15.
A number of substances have been implicated in the regulation of oxytocin (OT) secretion from bovine corpus luteum in vivo. However, isolated bovine luteal cells cultured in a monolayer lose the ability to secrete OT in response to stimulatory substances. The present study investigated how cell-to-cell contact and the cytoskeleton affect OT secretion by isolated bovine luteal cells. In experiment 1, bovine midluteal cells (Days 8-12 of the estrous cycle) were stimulated with prostaglandin F2alpha (PGF2alpha; 1 microM), noradrenaline (NA; 10 microM), or growth hormone (GH; 5 nM) in two culture systems: In one system, cell monolayers were incubated in 24-well culture plates, and in the other system, aggregates of cells were incubated in glass tubes in a shaking water bath. The cells cultured in a monolayer underwent considerable spreading and showed a variety of shapes, whereas the cells cultured in glass tubes remained fully rounded during the experimental period and soon formed aggregates of cells. Although PGF2alpha, NA, and GH did not stimulate OT secretion by the monolayer cells, all tested substances stimulated OT secretion by the aggregated cells (P < 0.01). In experiment 2, the monolayer cells were pre-exposed for 1 h to an antimicrofilament agent (cytochalasin B; 1 microM) or two antimicrotubule agents (colchicine or vinblastine; 1 microM) before stimulation with PGF2alpha, NA, or GH. Although PGF2alpha, NA, and GH did not stimulate OT secretion by the monolayer cells in the presence of colchicine or vinblastine, they all stimulated OT secretion in the presence of cytochalasin B (P < 0.001). The overall results show that OT secretion by bovine luteal cells depends on microfilament function and cell shape. Moreover, the aggregate culture system that allows three-dimensional, cell-to-cell contact seems to be a good model for studying OT secretion by isolated bovine luteal cells.  相似文献   

16.
In order to investigate the pattern of ovarian cholesterol biosynthesis during the bovine estrous cycle, tissue concentrations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme in the synthesis of cholesterol, were determined by immunoblot techniques. Medium-sized (9-11 mm) and large (14-18 mm) follicles, after removal of follicular fluid by centrifugation, and corpora lutea from the early, early-mid, late-mid, and late stages of the luteal phase were used (n = 5 per group). The specific content (per microgram of tissue homogenate protein) and total content of HMG-CoA reductase in medium-sized and large follicles were substantially lower than those of corpora lutea of the early-mid and late-mid luteal phase. The specific content was elevated in a number of the corpora lutea from the early luteal phase and was low in regressing corpora lutea. Thus during the midluteal phase, when steroid hormone production is elevated, the total and specific contents of HMG-CoA reductase are also elevated. To investigate the mechanisms whereby the levels of HMG-CoA reductase are regulated, primary monolayer cultures of bovine luteal cells (early-mid and late-mid luteal phase) were used. Cells were cultured for 24 h in Dulbecco's modified Eagle's medium containing lipoprotein-poor fetal calf serum (2% vol/vol). At this concentration there was no stimulation of the production of progesterone above that seen with no addition of serum. Under these conditions the total and specific contents, and the synthesis, of HMG-CoA reductase were stimulated by treatment with (Bu)2cAMP (1 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To determine the effects of relaxin, oxytocin, and prostaglandin F2 alpha on progesterone secretion, bovine luteal cells from different stages of gestation were dispersed in Medium 199 with 200 units/ml penicillin, 1.0% kanamycin, 0.5% bovine serum albumin, and 400 units/ml collagenase. Cells (10(5) were cultured in 400 microliters of Dulbecco's modified Eagle's medium and Ham's F-12 medium containing fetal bovine serum and antibiotics, in Falcon multiwell plates, in a humidified environment of 95% O2 and 5% CO2 at 37 degrees C. Cells were cultured for 24 hr without treatment and thereafter with medium-hormone replacement every 24 hr. Progesterone was quantified from unextracted media by radioimmunoassay. Basal progesterone secretion after 24 hr was 1.81 +/- 0.14, 1.76 +/- 0.17, 0.54 +/- 0.49, and 0.57 +/- 0.21 pg/ml per viable luteal cell from 145-, 165-, 185-, and 240-day-old corpora lutea, respectively. Basal progesterone secretion increased (P less than 0.05) with time in culture. Relaxin induced a dose-dependent (greater than 100 ng/ml) increase in progesterone release, compared with the controls. Oxytocin and prostaglandin F2 alpha induced greater release (P less than 0.05) of progesterone than relaxin at all stages of gestation, but progesterone release was dependent on the stage of gestation and the duration in culture. Luteinizing hormone (100 ng/ml) stimulated whereas 17 beta-estradiol (50 ng/ml) inhibited progesterone secretion by luteal cells at all stages of gestation examined. Relaxin obliterated the prostaglandin- and oxytocin-induced progesterone secretion by bovine luteal cells from 145 to 214 days of gestation. Thus, relaxin, cloprostenol, and oxytocin regulate progesterone production by cultured bovine luteal cells, but hormone secretion was dependent on the stage of gestation.  相似文献   

18.
Preparations of small and large steroidogenic cells from enzymatically dispersed ovine corpora lutea were utilized to study the in vitro effects of luteinizing hormone (LH) and prostaglandins (PG) E1, E2 and I2. Cells were allowed to attach to culture dishes overnight and were incubated with either LH (100 ng/ml), PGE1, PGE2, or PGI2 (250 ng/ml each). The secretion of progesterone by large cells was stimulated by all prostaglandins tested (P less than 0.05) while the moderate stimulation observed after LH treatment was attributable to contamination of the large cell population with small cells. Prostaglandins E1 and E2 had no effect on progesterone secretion by small cells, while LH was stimulatory at all times (0.5 to 4 hr) and PGI2 was stimulatory by 4 hr. Additional studies were conducted to determine if the effects of PGE2 upon steroidogenesis in large cells were correlated with stimulated activity of adenylate cyclase. In both plated and suspended cells PGE2 caused an increase (P less than 0.05) in the rate of progesterone secretion but had no effect upon the activity of adenylate cyclase or cAMP concentrations within cells or in the incubation media. Exposure of luteal cells to forskolin, a nonhormonal stimulator of adenylate cyclase, resulted in marked increases in all parameters of cyclase activity but had no effect on progesterone secretion. These data suggest that the actions of prostaglandins E1, E2 and I2 are directed primarily toward the large cells of the ovine corpus luteum and cast doubt upon the role of adenylate cyclase as the sole intermediary in regulation of progesterone secretion in this cell type.  相似文献   

19.
The effect of prostaglandin PGF on the hCG stimulated and basal progesterone production by human corpora lutea was examined . hCG (40 i.u./ml) stimulated progesterone formation in corpora lutea of early (days 16–19 of a normal 28 day cycle), mid (days 20–22) and late (days 23–27) luteal phases. This stimulation was inhibited by PGF (10 μg/ml) in corpora lutea of mid and late luteal phases. PGF alone did not show a consistent effect on basal progesterone production. The inhibition of hCG stimulated progesterone production by PGF at times corresponding to luteolysis indicates a role for that prostaglandin in the process of luteolysis in the human corpus luteum.  相似文献   

20.
Prolactin (PRL) involvement in the regulation of luteal steroidogenesis in pigs during the early luteal phase and pregnancy is well documented. The intracellular mechanism of PRL action in steroidogenic cells, however, is not fully recognized yet. In the current study, we have tested the hypothesis that protein kinase C (PKC) and tyrosine kinases (PTK) as well as serine-threonine (PP) and tyrosine phosphatases (PTP) are involved in PRL signaling in luteal cells originated from the early corpora lutea (CL) of cyclic sows. Luteal cells (50 000 cells/ml M199) were incubated for 8 h (37 degrees C) with PRL (200 ng) and low density lipoproteins (LDL) to stimulate P(4) production. In addition, treatments included: PKC inhibitors--staurosporine and chelerythrine chloride; tyrosine kinase inhibitors--genistein and tyrphostin; serine-threonine phosphatase inhibitors--okadaic acid, cantharidin (inhibitors of PP1/2A) and cypermethrin (inhibitor of PP2B); and tyrosine phosphatase inhibitor--sodium orthovanadate. Moreover, after incubation (37 degrees C) with PRL (200 ng) for 2, 5, 10 or 20 min, luteal cells were homogenized and cytosolic as well as membrane fractions have been obtained. This was followed by partial purification of the subcellular fractions by DEAE-cellulose chromatography and determination of PKC activity by measuring the transfer of (32)P from [gamma-(32)P]ATP to histone III-S. In unstimulated porcine luteal cells the major proportion of PKC activity was present in the cytosol. Incubation of luteal cells with PRL resulted in a rapid, time dependent increase in the amount of PKC activity in the membrane fraction and a decrease in the amount of PKC activity in the cytosol fraction. PKC activity in the membrane fraction was maximal after 5 min of exposure the cells to PRL. Inhibitors of PKC and PTK suppressed PRL and LDL-induced P(4) production by porcine luteal cells. It is of interest that stimulated P(4) production was also reduced by inhibitors of PTP and PP1/2A (okadaic acid, cantharidin). In contrast, cypermethrin did not affect P(4) production stimulated by PRL and LDL. The results of the current study support the hypothesis that PKC and tyrosine kinases are intracellular mediators of PRL action in porcine luteal cells during the first days of the estrous cycle. The involvement of protein phosphatases in transmission of the PRL signal in early luteal cells in pigs is also suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号