首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The initial steps in the formation of a coral reef (as distincr from the enlarging of an already existing reef) have been observed at block moles off Eilat (Red Sea). Within a period of 11 years, thus far four phases can be distinguished: (1) start-phase: rapid and homogeneous colonization by fouling organisms, still indeterminant for the final reef development; (2) preparation-phase: settling of shells, calcareous red algae and foraminiferans not affected by grazing animals which largely consume the initial settlers and subsequently attaching larvae; (3) phase of pioneer frame-building: growth of scleractinians and hydrocorals, settled on the remains of rock-attached shells or on other places inaccessible to grazers; secondary frame-builders (e.g.Tridacna) grow in their shelter; (4) phase of frame-binding: dead coral colonies are overgrown by calcareous foraminiferans, algae and bryozoans consolidating the coralline structures by their deposits. Living corals are successively colonized by a specific community (mainly decapods and molluscs); among these, borers are the earliest settlers. Upon death of the coral, there is a complete change in associated organisms forming a less specific but more diverse community.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

2.

The frequency of epizoans (cornulitids, inarticulate brachiopods, bryozoans, solitary and colonial rugosan corals) on over 8000 specimens of articulate brachiopods (four strophomenids, five orthids, one rhynchonellid) was calculated for four stratigraphic horizons in the Dillsboro Formation of southeastern Indiana. Frequency of shells encrusted correlates significantly with the surface area of the valves. Punctae in brachiopod shells (Onniella meeki) may have deterred larval settlement of epizoans. Coarse ribbing on articulates deterred encrustation by the inarticulate brachiopod. The horn coral shows a preference for attachment to the anterior of Hiscobeccus capax. Bryozoans show a preference for the incurrent lateral margins of inferred living hosts, suggesting rheotropic behavior by settling larvae. Inarticulate brachiopods are concentrated around the sloping commissure of the brachial valve of strophomenids, suggesting geotropic behavior and/or selective survival of settling larvae. Inarticulates deterred overgrowth by bryozoans. High frequencies of encrustations of the medial region of pedicle valves of orthids and strophomenids probably reflect post‐mortem encrustations. Alternating intervals of slow sediment accumulation punctuated by tropical storms and rapid shell burial may account for the high frequency of shells with either their entire surface veneered or only a very small area encrusted by bryozoans.  相似文献   

3.
A prominent bed, containing brachiopods and ectoproct bryozoans, is widely distributed within the Maltese Islands, being associated with a coralline algal rhodolite bioherm. This bed provides a useful stratigraphic marker horizon at the base of the Upper Coralline Limestone Formation.Samples taken from the bed at localities in Malta and Gozo have been examined and their contained biodata studied. Distribution analysis of the bryozoan growth-forms present has permitted recognition of four assemblages, dominated by cellariform, vinculariiform, encrusters, and cellariform and vinculariiform bryozoan growth-forms, respectively. Morphological variations and distributions of brachiopods contained within the samples were also examined and these were compared with the bryozoan growth-form distributions previously obtained. An interpretation of the palaeoecology of the four common brachiopod species, Terebratula terebratula, Aphelesia bipartita, Argyrotheca cf. cordata and Megathiris decollata, is offered partly on the basis of present-day brachiopod ecology but mainly on the basis of information gained for the bryozoans. Interpretations of the palaeoecology of several other common invertebrate genera, also based on the bryozoan growth-form distributions, are also presented.  相似文献   

4.
 Carpet sea anemones of the genus Palythoa are common inhabitants of reef crest environments in the Florida Keys reef tract. Through a unique assimilation mechanism, Palythoa spp. entomb carbonate sediment within their tissues. The amount of sediment assimilated is significant, averaging almost 45% of wet tissue weight. Palythoa spp. assimilate all available minerals on the reef. Aragonite, magnesium calcite, calcite and minor quantities of siliciclastic components are all assimilated in proportions comparable to their content in adjacent sediment sinks. There is also no preference in terms of skeletal composition; coral grit, coralline red algae, Halimeda and other allochems are all equally assimilated into Palythoa spp. tissue. The only preference is particle size. Sediment extracted from tissue samples is generally ?125 μm in size, far finer than ambient sediment found adjacent to Palythoa spp. colonies (predominantly >500 μm). Much of the finest sediment extracted from Palythoa spp. tissue is composed of elongated crystal aggregates of aragonite. These particles appear to have been produced in situ through biologically influenced mineralization. Aggregates nucleated on exogenous sediment and attained their elongated form as assimilation proceeded. When Palythoa spp. colonies die, the assimilated sediment and the crystal aggregates are released back into the reef environment. The eventual fate of this material has yet to be determined. Accepted: 5 July 1996  相似文献   

5.
Natural inducers for coral larval metamorphosis   总被引:10,自引:9,他引:1  
 Coral gametes from Acropora millepora (Ehrenberg, 1834) and from multi-species spawning slicks provided larvae for use in metamorphosis assays with a selection of naturally occurring inducer chemicals. Four species of crustose coralline algae, one non-coralline crustose alga and two branching coralline algae induced larval metamorphosis. However, one additional species of branching coralline algae did not produce a larval response. Metamorphosis was also observed when larvae were exposed to skeleton from the massive coral Goniastrea retiformis (Lamarck, 1816) and to calcified reef rubble, demonstrating metamorphosis is possible in the absence of encrusting algae. Chemical extracts from these algae and the coral skeleton, obtained using either decalcification or simple methanol extraction procedures, also contained active inducers. These results extend the number of crustose algal species known to induce coral metamorphosis, suggest that some inducers may not necessarily be strongly associated with the calcified algal cell walls, and indicate that inducer sources in reef habitats may be more diverse than previously reported. Accepted: 21 May 1999  相似文献   

6.
We report the first discovery of coralline sponges from Pleistocene reef limestones of Vanuatu. Sponges of the genus Acanthochaetetes were identified from two reef terraces of Middle and Late Pleistocene age. As these sponges document cryptic habitats in modern coral reefs, they may be index fossils of cryptic habitats in the Pleistocene as well, thereby providing clues on growth conditions in fossil reefs. The small size of the discovered specimens may be attributed to the transient nature of their cryptic habitats, either due to reef growth or the occurrence of an unusual event.  相似文献   

7.
The well-exposed outcrops of the Bujan, northern Abadeh, and Varkan stratigraphic sections of the Qom Formation in the Iranian part of the “northeastern margin” of the Tethyan Seaway were characterized by abundant biogenic components dominated by foraminifers, coralline red algae, and corals. The Qom Formation is Rupelian–Chattian in age in the study areas. Based on the field investigations, depositional textures, and dominant biogenic components, fifteen (carbonate and terrigenous) facies were identified. These facies can be grouped into four depositional environments: open marine, open lagoon, restricted lagoon, and continental braided streams. The marine facies were deposited on a ramp-type platform. The euphotic inner ramp was characterized mainly by imperforate foraminifera, with co-occurrence of some perforate taxa. These facies passed basinward into a mesophotic (middle) ramp with Neorotalia packstone (F5), coral, coralline algae, perforate foraminiferal packstone (F4), and coral patch reefs (F7). The deeper, oligophotic ramp facies were marly packstones with planktonic and hyaline benthic foraminifera, including large lepidocyclinids and nummulitids. The abundance of perforate foraminifera and the absence of facies indicating restricted lagoonal or intertidal settings suggest that the Varkan section was deposited mainly in open marine settings with normal salinity. The prevalence of larger benthic foraminiferal and red algal assemblages, together with the coral facies, indicates that carbonate production took place in tropical–subtropical waters.  相似文献   

8.
Summary The microfacies and palaeoenvironment of Lower Oligocene carbonates of the Gornji Gradbeds from Slovenia are investigated. These beds form part of a transgressive succession overlying both terrigenous sediments (sand-stones and conglomerates) and marine carbonates of Eocene age as well as transgressing directly over Triassic lime-stones. They are followed by foraminiferal rich marls. The carbonates were investigated using multivariate statistical techniques on point counts of thin sections. They are dominated by poorly sorted biogenic rudstones with pack-/wackestone matrix; pack- and grainstones are subordinate. The biogenic components of the carbonates are dominated by coralline red algae (9 genera with 11 species), corals, small benthic, large benthic, and encrusting foraminifera as well as bivalves. Gastropods, bryozoans, brachiopods, echinoderms, serpulids, and green algae are subordinate. The well preserved components allow details pertaining to taxonomy, growth-forms and taphonomic features to be observed. The following carbonate facies are distinguished: 1) nummulitic, 2) bivalve, 3) foraminiferal—coralline algal, 4) grainstone, 5) coralline alga, 6) coralline algal—coral, and 7) coral facies. All the carbonate facies represent fully marine conditions within the photic zone. They are interpreted with respect to substrate composition and stability, water turbulence, terrigenous input and light.  相似文献   

9.
The skeletal composition of 273 sediment samples, collected within 14615 km2 of lagoon habitat in New Caledonia (Ouvea and Chesterfield atolls and eastern and northern lagoons of the main island), was analyzed. Major constituents were molluscs (bivalves and gastropods), foraminifers, andHalimeda plates. The quantitative examination showed that, even in a pure coralline structure such as the two atolls studied, coral debris and calcareous algae, potentially produced within the barrier reef, never constituted a dominant element in the lagoonal sediments. Distribution of coral debris showed that coral is significant only close to the barrier reef (i.e. passes and back-reef slope). From the point of view of sedimentology, this suggests that the major role of the barrier reef is to provide a physical barrier that allows the development and preservation of lagoon sediments. Sedimentation within the lagoon of grains coarser than 63 µm is the result of in situ organic production combined with low hydrodynamic control.  相似文献   

10.
11.
Larger foraminifera are an important component of coastal sediments around Fongafale Island, Funafuti Atoll, Tuvalu, and at least 10 species are present. In the shallow lagoon, foraminifera (mainly Amphistegina lessonii, A. lobifera, Baculogypsina sphaerulata, Calcarina spengleri, Marginopora vertebralis, and Sorites marginalis) are the dominant component of sand and gravel, followed in decreasing order of abundance by calcareous red and green algae, coral, and molluscs. In deeper water, Halimeda replaces the foraminifera. Close inshore, abrasion removes Halimeda and may reduce the number of foraminiferal tests. There is some sediment movement in both onshore and offshore directions although offshore transport appears minor. On land, dissolution that preferentially removes aragonite may increase the proportion of foraminiferal tests to as much as 83% of the subsurface sediment. Sediments on the ocean side are dominated by coral and coralline red algal debris thrown up in 1972 by cyclone Bebe and later moved inshore and lagoonward.Communicated by P.K. Swart  相似文献   

12.
Coral mortality and interaction with algae in relation to sedimentation   总被引:4,自引:0,他引:4  
The impact of sedimentation on coral–algal interactions was studied by monitoring tissue mortality and radial growth in two coral species, Colpophyllia natans and Siderastrea siderea, over a continuum of sediment input intensities. This study sets out to investigate (1) whether sedimentation can facilitate algal overgrowth of corals and (2) whether this was a significant cause of coral mortality. Over a 15-month period, 198 coral colonies were tagged and photographed at six sites along two replicate gradients of sediment input, spanning high inputs near river mouths to low inputs at exposed headlands. Photographs were taken so that they covered the interface between colonies and algae. Radial growth was measured along colony edges in contact with algae and unaffected by tissue loss from causes other than competition with algae. To establish whether algal overgrowth was a significant cause of coral mortality, tissue mortality on the colony surface area visible in the photographs was related to different causes, including sediment smothering, disease, and algal overgrowth. Radial growth became negative with increasing proximity to river mouths in C. natans and remained negative or close to zero throughout the gradients in S. siderea, overall suggesting that sedimentation can facilitate algal overgrowth on corals. However, the analysis of tissue mortality revealed that algal overgrowth was a relatively minor cause of tissue loss. In contrast, the most important cause of coral mortality in relation to sedimentation was from sediment smothering, probably during intense episodes of deposition associated with heavy rainfall. We conclude that sedimentation may lead to reef degradation by causing coral mortality through sediment smothering and burial, and then by suppressing the regrowth of surviving adult colonies through increased competition with algae.  相似文献   

13.
Neogene coastal sediments of the Mediterranean provide an excellent laboratory for a quantitative study of palaeoenvironmental parameters and their response to climate change. In order to examine change in environmental parameters during deposition of Tortonian limestone of southern central Crete, we use integrated field and biofacies analysis together with a detailed study of foraminfera and non-geniculate red algae. Patterns in the relative abundance of non-geniculate coralline red algae are interpreted by comparison with data from modern non-geniculate coralline red algae and with additional information from the studied sediments. Based on these integrated datasets, four red algal associations are identified: a Lithophyllum-dominated association restricted to the upper photic zone in warm-temperate environments, a Lithothamnion-dominated association found in the lower photic zone in warm-temperate environments, a Spongites-dominated association typical for shallow warm-temperate to tropical environments and an association with dominant Mesophyllum which is characteristic for the lower photic zone in warm-temperate to tropical environments. We introduce coralline red algal indices in order to quantify changes in environmental parameters. We recognise four warm intervals within a succession of the Tortonian limestones in southern central Crete. During the most extensive interval, widespread coral carpets formed under prevalent oligotrophic conditions. Analysis of the stratigraphic architecture shows that warm intervals are related to sea-level highstands and therefore may reflect global climatic processes.  相似文献   

14.

Deep‐water corals are widely distributed along the cold‐temperate northeastern Atlantic continental margin. Despite the widespread occurrence of these aphotic coral constructions in deep shelf settings, the processes of framework formation and postmortem alterations which result in different preservational styles are still poorly known. Detailed mapping surveys on probably one of the largest Lophelia reef structures were carried out on the Sula Ridge, Mid‐Norwegian Shelf in 270 to 300 m depth. Side scan sonar records and camera surveys yield information at various scales of resolution on the reef complex which is more than 9 km long and up to 45 m high. Living Lophelia colonies effectively prevent colonization by other organisms and are successful in the rejection of passing detrital material from the soft tissue. In a healthy condition the coral is able to encrust repetitively attached organisms by selectively secreted sclerenchyme layers, thus, this defensive reaction results in the thickening of the skeleton. Early postmortem alteration in Lophelia colonies is introduced by the formation of a biofilm and Dodgella (fungi) infestation. The biofilm is associated with selective Fe‐Mn precipitation on the coral skeleton. This is the zone of intense attachment of sessile invertebrates such as serpulids, brachiopods, foraminifers and encrusting bryozoans. More advanced taphonomic stages show an increasing dominance in sponges which reduce the interskeletal framework porosity significantly. In addition, boring sponges excavate the thickly calcified Lophelia skeletons, thus leading to in situ collapsing structures on the sea floor. It is the intensity of sediment trapping biofilms and sponge colonization and the amount of imported detrital particles predominantly from the pelagial zone that control the generation of a pure coral rubble facies or the preservation of collapsed but mud‐rich detrital mounds.  相似文献   

15.
In extant brachiopods, parental brooding of the larvae occurs exclusively within Rhynchonelliformea. Methods of larval protection range from simple retention of the larvae within the mantle cavity, to sophisticated brood care within highly specialized brood pouches found in Argyrotheca and Joania (Terebratulida, Megathyridoidea), Gwynia (Terebratulida, Gwynioidea), and all Thecideoidea (Thecideida). Previous studies on the reproductive biology of Argyrotheca yielded contrasting results on the epithelial origin of the brood pouches in this genus. Here, representatives of different species of Argyrotheca from the Belize Barrier Reef were examined using histological section series. Brood pouches of four species, A. cf. schrammi and Argyrotheca sp. 1–3, are of the same basic structure, formed by invaginations of the anterior body wall and connected to the visceral cavity via the metanephridia. The same four species are simultaneously hermaphroditic, suggesting that fertilization is achieved, at least partly, through selfing. One species, Argyrotheca rubrocostata, differs significantly from all others as it has no brood pouch and gonochoric gonads. Thus, the presence of brood pouches and simultaneous hermaphroditism are concluded to be correlated within Megathyridoidea and proposed to be homologous traits of Joania and several but not all species of Argyrotheca, questioning the monophyletic status of both genera. In contrast to the brood pouches of Thecideoidea, lophophoral epithelium is not involved in the formation of the pouches of Argyrotheca and Joania. Therefore, megathyridoid and thecideoid brood pouches are not homologous but evolved independently within rhynchonelliform brachiopods. All brachiopods with brood pouches share a micromorphic form and a short life span, limiting the space and time available for gamete and larval development. We suggest that the brood pouches and the hermaphroditic gonads of Argyrotheca spp. and Joania compensate these limitations by minimizing the loss of gametes and larvae, and by maximizing the chances of successful fertilization. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
A new genus and species of a Middle Cambrian stem group brachiopod, Acanthotretella spinosa n. gen. and n. sp., is described from the Burgess Shale Formation. Most of the 42 specimens studied came from the Greater Phyllopod bed (Walcott Quarry) and were collected from five bed assemblages, each representing a single obrution event. Specimens are probably preserved within their original habitat. In contrast to all brachiopods known from the Burgess Shale, the shells of the new stem group brachiopod are often deformed and do not show signs of brittle breakage, which suggests that the valves were originally either entirely organic in composition or, more likely, had just a minor mineral component. Acanthotretella spinosa differs from all the other described Cambrian brachiopods in that it is covered by long, slender and possibly partly mineralized spines that are posteriorly inclined at an oblique angle away from the anterior margin. The spines penetrate the shell and are mainly comparable with the thorn‐like organic objects that have been inferred from early siphonotretoid brachiopods. The pedicle was slender and was composed of a central coelomic region and emerged from an apical foramen at the end of an internal pedicle tube. The finding of a pedicle attached to the macrobenthic algae Dictyophycus and other epibenthos implies that A. spinosa did not have an infaunal mode of life. The visceral region and interior characters are poorly preserved.  相似文献   

17.
There is considerable concern about conservation of biodiversity in highly disturbed and urbanized environments, although a very large proportion of biodiversity (i.e. the small and cryptic invertebrates) have been little studied in this regard. Many biogenic structures (e.g. coral reefs, mussel beds, foliose algae) provide habitat for a large number of small invertebrates. The features of these habitats to which these animals respond are complex and poorly documented. Invasive species are increasing in abundance and diversity in many disturbed estuaries, but most previous studies have concentrated on effects of invasive species on surrounding macroscopic assemblages. This study examines the assemblages of small invertebrates and algae living in natural patches of coralline turf and in patches of the invasive mussel, Mytilus galloprovincialis, on seawalls in Sydney Harbour. Although most taxa identified were common to both habitats, they were generally more abundant in turf than in the mussels, especially the more widespread and numerous taxa. Few taxa were unique to either habitat and those were generally sparse and patchy. In addition, there were relatively more smaller animals in the algal turf than in the mussels, although it is not known whether these were juveniles of adults present in both habitats, or different species. These data show that coralline turf and mussel beds do not provide similar intertidal habitat for associated assemblages and that overgrowth of natural biota by mussels may have strong indirect effects on associated assemblages. These warrant further experimental investigation, so that the effects of invasive species on local biodiversity can be better understood and managed.  相似文献   

18.
An essential suite of coral reef ecosystem engineers is coralline red algae. Among these, the smooth, encrusting Porolithon onkodes has historically been considered the most important and common reef building species worldwide. We assess P. onkodes biodiversity by performing a genomic analysis of the lectotype specimen collected in 1892 from the Tami Islands, Gulf of Huon, east of New Guinea. Comparisons of DNA sequences from the lectotype specimen to those deposited in GenBank and to newly generated sequences from both field‐collected and historical specimens demonstrate that at least 20 distinct species are passing under P. onkodes. We hypothesize that there were multiple evolutionary drivers including ecophysiology, hydrodynamic regimes, and biotic interactions as well as historical biogeography, which resulted in this high diversity of smooth, encrusting Porolithon species throughout the tropics. Our results emphasize the need to document the biodiversity, ecophysiology, and habitats of these tropical, reef‐building algae in light of climate change and ocean acidification.  相似文献   

19.
Settlement specificity can regulate recruitment but remains poorly understood for coral larvae. We studied larvae of the corals, Acropora palmata and Montastraea faveolata, to determine their rates of settlement and metamorphosis in the presence of ten species of red algae, including eight species of crustose coralline algae, one geniculated coralline and one encrusting peyssonnelid. Twenty to forty percent of larvae of A. palmata settled on coralline surfaces of Hydrolithon boergesenii, Lithoporella atlantica, Neogoniolithon affine, and Titanoderma prototypum, whereas none settled and metamorphosed on Neogoniolithon mamillare. Larvae of M. faveolata had 13–25 % settlement onto the surface of Amphiroa tribulus, H. boergesenii, N. affine, N. munitum, and T. prototypum, but had no settlement on the surface of N. mamillare, Porolithon pachydermum, and a noncoralline crust Peyssonnelia sp. Some of these algal species were common on Belizean reefs, but the species that induced the highest rates of larval settlement and metamorphosis tended to be rare and primarily found in low-light environments. The shallow coral, A. palmata, and the deeper coral, M. faveolata, both had increased larval settlement rates in the presence of only a few species of red algae found at deeper depths suggesting that patterns of coral distribution can only sometimes be related to the distribution of red algae species.  相似文献   

20.
An unknown microscopic, branched filamentous red alga was isolated into culture from coral fragments collected in Coral Bay, Western Australia. It grew well unattached or attached to glass with no reproduction other than fragmentation of filaments. Cells of some branch tips became slightly contorted and digitated, possibly as a substrate‐contact‐response seen at filament tips of various algae. Attached multicellular compact disks on glass had a very different cellular configuration and size than the free filaments. In culture the filaments did not grow on or in coral fragments. Molecular phylogenies based on four markers (rbcL, cox1, 18S, 28S) clearly showed it belongs to the order Rhodogorgonales, as a sister clade of Renouxia. Based on these results, the alga is described as the new genus and species Rhodenigma contortum in the Rhodogorgonaceae. It had no morphological similarity to either of the other genera in Rhodogorgonaceae and illustrates the unknown diversity in cryptic habitats such as tropical coral rubble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号