首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Switchgrass (Panicum virgatum L.) may have value as forage and a bioenergy feedstock. Our objective was to evaluate how harvest system and N fertilizer rates affected biomass yield and nutrient composition of young stands of switchgrass (cv. Alamo) in the southern Great Plains, USA. Nitrogen fertilization increased biomass yields from 10.4, 10.8, and 12.2 Mg ha?1 at 0 kg N?ha?1 to 13.7, 14.6, and 21.0 Mg ha?1 at 225 kg N?ha?1 when harvested after seed set (October), after frost (December), and twice per year after boot stage (July) and frost, respectively. Nutrient concentrations and removal were generally twice as great when biomass was harvested twice versus once per year. Precipitation strongly affected biomass yields across the two years of these experiments. When late-summer precipitation is available to support regrowth in this environment, harvesting switchgrass twice per year will result in greater biomass yields. Harvesting twice per year, however, will increase fertilization requirements and reduce feedstock biomass quality. Switchgrass harvested during mid-summer after boot stage was of poor forage quality. To have value as a dual-purpose forage and bioenergy feedstock, switchgrass would need to be utilized during spring to early summer while in a vegetative stage.  相似文献   

2.
Switchgrass is a promising bioenergy source that is perennial, productive, native to a broad geographic region, and can grow on marginal, nitrogen (N)-poor soils. Understanding N dynamics in switchgrass is critical to predicting productivity, conserving N, and optimizing the timing of harvest. We examined seasonal changes in N distribution in above- and belowground tissues in switchgrass to quantify N retranslocation rates. Above- and belowground biomass from three sites (two in PA and one in NE) were collected and analyzed for biomass growth and N concentrations at 30-day intervals from June through October. Total living plant mass ranged from 10.3?±?2.4 standard error (SE) to 14.9?±?2.5 SE Mg ha?1. Belowground mass comprised 52–57 % of total mass. Blades had the highest N concentration during summer, ranging from 6 to 22 g kg?1 N. Aboveground N concentrations decreased from September until autumn senescence, whereas belowground N concentration increased from August until senescence. Across the sites, total N retranslocated from aboveground to belowground components between September and October averaged 16.5?±?7.1 (SE)?kg ha?1 N representing 26.7 % of the average maximum N content of aboveground biomass. Based on N fertilizer costs, delayed harvest would conserve some N and provide financial savings on fertilizer ($9 ha?1) if harvest occurs after senescence but before overwinter biomass loss. However, biomass losses of even 10 % will negate potential economic savings accrued from N retention. To maximize environmental and economic savings from N retranslocation and to simultaneously minimize harvest losses, it would be optimal to harvest switchgrass as soon as possible after complete senescence.  相似文献   

3.
Bioenergy grasses such as giant miscanthus (Miscanthus × giganteus) and switchgrass (Panicum virgatum L.) are promising alternatives to the traditional coastal bermudagrass [Cynodon dactylon (L.) Pers.] at spray fields in Eastern North Carolina. The objective of this study was to determine the impact of different harvest practices on yield and nutrient removal of miscanthus and switchgrass in a swine (Sus scrofa domesticus) lagoon effluent spray field environment. Field trials of grasses under six single-cut and double-cut harvest practices (May/October, June/October, July/October, Aug/October, October only, and December only) were established at three commercial swine farms in Eastern North Carolina in either 2011 or 2012. Throughout the 4-year experimental period (2012–2015), both miscanthus and switchgrass produced significantly higher biomass yield than coastal bermudagrass. Two-cut harvest systems significantly improved the yields of miscanthus and switchgrass relative to a single harvest in December at spray fields. The maximum yields were 24 Mg ha?1 year?1 for miscanthus and 18 Mg ha?1 year?1 for switchgrass. Bioenergy grasses removed more nutrients under two-cut systems than under a single harvest. The significantly greater nutrient removals under two-cut harvest systems would result in lower requirements for receiver crop acreage and are more desirable from a spray field nutrient management perspective.  相似文献   

4.
The agronomic performances of giant miscanthus (Miscanthus x giganteus) and switchgrass (Panicum virgatum L.) grown as bioenergy grasses are still unclear in North Carolina, due to a relatively short period of introduction. The objectives of the study were to compare the biomass yield and annual N removal of perennial bioenergy grasses and the commonly grown coastal bermudagrass [Cynodon dactylon (L.) Pers.], and to determine the optimum N rates and harvest practices for switchgrass and miscanthus. A 4-year field trial of the grasses under five annual harvest frequencies (May/Oct, June/Oct, July/Oct, Aug/Oct, and October only) and five annual N rates (0, 67,134, 202, and 268 kg N ha?1) was established at a research farm in Eastern North Carolina in 2011. Across harvest treatments and N rates, greatest biomass was achieved in the second growth year for both miscanthus (19.0 Mg ha?1) and switchgrass (15.9 Mg ha?1). Grasses demonstrated no N response until the second or the third year after crop establishment. Miscanthus reached a yield plateau with a N rate of 134 kg ha?1 since achieving plant maturity in 2013, whereas switchgrass demonstrated an increasing fertilizer N response from 134 kg N ha?1 in the third growth year (2014) to 268 kg N ha?1 in the fourth growth year (2015). The two-cut harvest system is not recommended for bioenergy biomass production in this region because it does not improve biomass yield and increased N removal leads to additional costs.  相似文献   

5.
Switchgrass (Panicum virgatum L.) is a native North American prairie grass being developed for bioenergy production in the central and eastern USA. The objective of this study was to identify the impacts of harvest time and switchgrass cultivar had on sugar release variables determined through enzymatic hydrolysis. Previously, we reported that delaying harvest of switchgrass until after frost and until after winter resulted in decreased yields of switchgrass but it reduced the amount of ash and nutrients in the biomass. The current study used near-infrared reflectance spectroscopy (NIRS) to broaden an existing set of calibration equations designed to predict composition and sugar release variables of switchgrass. These updated calibrations were then applied to the full set of samples from a multi-year and multi-location switchgrass harvest-management study. Composition and processor sugar yields were significantly affected by location, year, cultivar, and harvest time, of which the time of harvest was the most important. Delaying the time of harvest until after frost or post-winter increased the concentration of structural carbohydrates from 500 to over 570 g kg?1 in the biomass and lignin content from 160 to over 200 g kg?1. Conversely, delaying harvest time lowered the amounts of ash and soluble sugars. The later harvest times also yielded more sugars following processing with yields increasing over 20% from the first harvest. Increased sugar yields are attributable to both increased concentration of sugars in the biomass upon harvest and reduced biomass recalcitrance. Based upon processed sugar yields, it is estimated that a biorefinery producing 76 million liters of ethanol per year would require 229–373 km2 of land cultivated with switchgrass.  相似文献   

6.
The study of the effects of harvest time on switchgrass (Panicum virgatum L.) biomass and bioenergy production reported herein encompasses a large study evaluating the harvest of six switchgrass cultivars grown at three northern US locations over 3 years, harvested at upland peak crop (anthesis), post-frost, and post-winter. Delaying harvest of switchgrass until after frost and until after winter has resulted in decreased yields of switchgrass and reduced amounts of minerals in the biomass. This report examines how changes in biomass composition as a result of varying harvest time and other factors affect the distribution of products formed via fast pyrolysis. A subset (50) of the population (n = 864) was analyzed for fast pyrolysis and catalytic pyrolysis (zeolite catalyst) product yields using a pyrolysis-GC/MS system. The subset was used to build calibrations that were successful in predicting the pyrolysis product yield using near-infrared reflectance spectroscopy (NIRS), and partial least squares predictive models were applied to the entire sample set. The pyrolysis product yield was significantly affected by the field trial location, year of harvest, cultivar, and harvest time. Delaying harvest time of the switchgrass crop led to greater production of deoxygenated aromatics improving the efficiency of the catalytic fast pyrolysis and bio-oil quality. The changes in the pyrolysis product yield were related to biomass compositional changes, and key relationships between cell wall polymers, potassium concentration in the biomass, and pyrolysis products were identified. The findings show that the loss of minerals in the biomass as harvest time is delayed combined with the greater proportion in cellulose and lignin in the biomass has significant positive influences on conversion through fast pyrolysis.  相似文献   

7.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

8.
Switchgrass, Panicum virgatum L., grown for biomass has been extensively researched where the annual precipitation >760 mm and the climate varies from humid to moist-subhumid. Research is needed for areas that receive <700 mm of precipitation, where the climate varies from dry-subhumid to semiarid. The objectives were to determine (1) the effect of nitrogen fertilization on biomass production, (2) the effect of residual nitrogen on biomass production, (3) the nitrogen yield from harvested biomass, and (4) the concentration of soil organic carbon (SOC) from switchgrass plots. Plots were fertilized annually with nitrogen at the rates of 0, 40, 80, and 120 kg ha?1 from 2008 to 2011 and unfertilized from 2012 to 2015. The biomass yield varied with N rate × production year interactions (P < 0.05), and biomass yield as a function of N rate was either linear or curvilinear depending upon production year. When fertilized, the biomass yield averaged 4.4, 9.4, 11.6, and 13.2 ± 0.4 Mg ha?1 for the 0, 40, 80, and 120 kg ha?1 N rates, respectively. Residual nitrogen sustained high biomass yields for 1 year after fertilization ceased. The nitrogen harvested in biomass varied with N rate × production year interactions (P < 0.05), and the harvested nitrogen yield as a function of N rate was linear each year. Fertilization increased the concentration of SOC an average of 1.0 ± 0.2 mg g?1 of soil. The data suggest that producers could occasionally skip a year of nitrogen fertilization without detrimentally impacting the production of switchgrass biomass.  相似文献   

9.
Switchgrass (Panicum virgatum L.), a warm-season perennial grass, is an important bioenergy crop candidate because it produces high biomass yields on marginal lands and on reclaimed surface mined sites. In companion studies, dry matter (DM) yields for Cave-in-Rock, Shawnee, and Carthage cultivars varied from 4.2 to 13.0 Mg ha?1averaged over 6 years at the reclaimed Hampshire site, and fertilization increased yields of Cave-in-Rock at Black Castle and Coal Mac sites from 0.3 to 2 Mg ha?1 during the first 3 years. The objective of these experiments was to compare the impacts of cultivar and soil amendments on biomass quality and theoretical ethanol production of switchgrass grown on surface mines with differing soil characteristics. Biomass quality was determined for fiber, ash, lignin, digestibility, and carbohydrate contents via near-infrared reflectance spectroscopy, and carbohydrates were used to calculate theoretical ethanol yield (TEY; L Mg?1) and multiplied by biomass yield to calculate theoretical ethanol production (TEP; L ha?1). Cultivars at the Hampshire site did not differ in TEY and ranged from 426 to 457 L Mg?1. Theoretical ethanol production from Cave-in-Rock at Hampshire was 7350 L ha?1, which was higher than other cultivars because of its greater biomass production. This TEP was higher than in other studies which predicted 4000 to 5000 L ha?1. At the Black Castle and Coal Mac sites, fertilizer applications slightly affected biomass quality of switchgrass and TEY, but provided greater TEP as a function of increased yield. Similar to other findings, total switchgrass biomass production has more impact than compositional differences on TEP, so maximizing biomass production is critical for maximizing potential biofuel production. With appropriate soil substrates, fertilization, planning, and management, large areas of reclaimed surface mines can be converted to switchgrass stands to produce high biomass quality and yields to support a bioethanol industry.  相似文献   

10.
The Regional Feedstock Partnership is a collaborative effort between the Sun Grant Initiative (through Land Grant Universities), the US Department of Energy, and the US Department of Agriculture. One segment of this partnership is the field-scale evaluation of switchgrass (Panicum virgatum L.) in diverse sites across the USA. Switchgrass was planted (11.2 kg PLS ha?1) in replicated plots in New York, Oklahoma, South Dakota, and Virginia in 2008 and in Iowa in 2009. Adapted switchgrass cultivars were selected for each location and baseline soil samples collected before planting. Nitrogen fertilizer (0, 56, and 112 kg N ha?1) was applied each spring beginning the year after planting, and switchgrass was harvested once annually after senescence. Establishment, management, and harvest operations were completed using field-scale equipment. Switchgrass production ranged from 2 to 11.5 Mg ha?1 across locations and years. Yields were lowest the first year after establishment. Switchgrass responded positively to N in 6 of 19 location/year combinations and there was one location/year combination (NY in Year 2) where a significant negative response was noted. Initial soil N levels were lowest in SD and VA (significant N response) and highest at the other three locations (no N response). Although N rate affected some measures of biomass quality (N and hemicellulose), location and year had greater overall effects on all quality parameters evaluated. These results demonstrate the importance of local field-scale research and of proper N management in order to reduce unnecessary expense and potential environmental impacts of switchgrass grown for bioenergy.  相似文献   

11.
Various local factors influence the decision of when to harvest grassland biomass for renewable energy including climate, plant composition, and phenological stage. However, research on biomass yield and quality related to a wide range of harvest timing from multiple environments and years is lacking. Our objective was to determine the effect of harvest timing on yield, moisture, and mineral concentration of switchgrass (Panicum virgatum L.) and native polyculture biomass. Biomass was harvested on 56 unique days ranging from late summer (2 September) to late spring (20 May) spanning 3 years (2009 to 2011) and seven sites in Minnesota, USA. Biomass yield varied considerably by location and year (range?=?0.7–11.7 Mg ha?1) and was lowest during the winter. On average, there was no difference in biomass yield harvested in early fall compared to late spring. Biomass moisture content was lowest in late spring, averaging 156 g kg?1 across all locations and years when harvested after 1 April. Biomass N concentration did not change across harvest dates; however, P and K concentrations declined dramatically from late summer to late spring. Considering the economic costs of replacing exported minerals and changes in revenues from biomass yield through time, biomass harvest should be conducted in late summer–early fall or late spring and avoided in winter. However, biomass managed for gasification should be harvested in spring to reduce concentrations of minerals that lead to slagging and fouling. Changes in biomass yield and quality through time were similar for switchgrass and native polyculture biomass. These biomass harvest recommendations are made from data spanning multiple years and locations and should be applicable to various growing conditions across the Upper Midwest.  相似文献   

12.
Switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) are known for high biomass productivity and for various traits that make these species more suitable for marginal environmental growing conditions. The goal of this study was to evaluate the impact of organic vs. inorganic fertilizer application on grass biomass production and soil nutrient status. Switchgrass, tall fescue, and reed canarygrass were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. The six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses, 84 kg ha?1 for switchgrass; (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1); (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1); (4) 89.6 Mg dairy manure ha?1; (5) 44.8 Mg dairy manure compost ha?1; and (6) no fertilizer applied (control plots). Switchgrass with a single harvest per season yielded on average 13.0 Mg ha?1, while tall fescue and reed canarygrass averaged 8.4 and 7.7 Mg ha?1, respectively, under two-cut systems. Switchgrass with no fertilization produced 84% of maximum yield of fertilized treatments. Application of a similar amount of organic N with fresh and composted dairy manure resulted in greater yields for fresh dairy manure. Organic fertilizers strongly impacted the P and K status of soils. Switchgrass is capable of high yields in marginal environments and can provide a land base for environmentally acceptable application of animal manure, although from a yield standpoint it is not very responsive to fertilizer applications.  相似文献   

13.
The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate treatments were fallow control, reed canarygrass (Phalaris arundinaceae L. Bellevue) with nitrogen (N) fertilizer (75 kg N ha?1), switchgrass (Panicum virgatum L. Shawnee), and switchgrass with N fertilizer (75 kg N ha?1). Based on periodic soil water measurements, permanent sampling locations were assigned to various wetness groups. Surface (0–15 cm) soil organic carbon (SOC), active carbon, wet aggregate stability, pH, total nitrogen (TN), root biomass, and harvested aboveground biomass were measured annually (2011–2014). Multi-year decreases in SOC, wet aggregate stability, and pH followed plowing in 2011. For all years, wettest soils had the greatest SOC and active carbon, while driest soils had the greatest wet aggregate stability and lowest pH. In 2014, wettest soils had significantly (p?<?0.0001) greater SOC and TN than drier soils, and fallow soils had 14 to 20% greater SOC than soils of reed canarygrass + N, switchgrass, and switchgrass + N. Crop type and N fertilization did not result in significant differences in SOC, active carbon, or wet aggregate stability. Cumulative 3-year aboveground biomass yields of driest switchgrass + N soils (18.8 Mg ha?1) were 121% greater than the three wettest switchgrass (no N) treatments. Overall, soil moisture status must be accounted for when assessing soil dynamics during feedstock establishment.  相似文献   

14.
Converting row crop production to a perennial grass crop on highly erodible land has numerous benefits. Switchgrass, grown as a biofuel crop, can provide soil conservation benefits as a perennial crop and also provide economic value to the grower. However, little information exists regarding switchgrass management and production on these lands. The objectives of this study were to determine the effect of two management practices, nitrogen (N) fertilizer rate (0, 56, 112, 168, and 224 kg ha?1) and harvest timing (mid-fall, late-fall, and spring), on: (1) dry matter (DM) yield, (2) switchgrass quality components (moisture, ash, and chloride (Cl?) concentrations), and (3) combustion energy content and yield. The study was conducted in 2009 and 2010 on highly erodible lands in the Driftless Area of southwest Wisconsin. Results showed a positive response of switchgrass DM to N fertilizer, with no yield gain above 112 kg ha?1 of N, although application of N increased Cl? concentrations. Harvest timing also affected switchgrass yield, with decreases in yield observed with progressively later harvest timings; this yield decrease was slightly greater compared with previous studies. Progressively later harvest timings led to a decrease in moisture, ash concentration, and Cl? concentration in both years. Energy content of switchgrass was not significantly affected by management. Energy yields, similar to DM yields, were maximized with 112 kg ha?1 of N with a mid-fall harvest. The similarities between this study and other research indicate there is a universal response of switchgrass to N in the northern USA and yields determined in this study indicate that highly erodible lands in the Driftless Area can be used to produce switchgrass at regionally expected yields.  相似文献   

15.
Switchgrass (Panicum virgatum L.) is being developed as a biofuel feedstock for the United States. Efficient and accurate methods to estimate switchgrass biomass feedstock supply within a production area will be required by biorefineries. Our main objective was to determine the effectiveness of indirect methods for estimating biomass yields and composition of switchgrass fields. Indirect measurements were conducted in eastern Nebraska from 2003 to 2007 in which switchgrass biomass yields were manipulated using three nitrogen rates (0 kg N ha-1, 60 kg N ha-1, and 120 kg N ha-1) and two harvest periods (August and post-killing frost). A modified Robel pole was used to determine visual obstruction, elongated leaf height, and canopy height measurements. Prediction models from the study showed that elongated leaf height, visual obstruction, and canopy height measurements accounted for >?91%, >?90%, and >?82% of the variation in switchgrass biomass, respectively. Regression slopes were similar by cultivar (“Cave-in-Rock” and “Trailblazer”), harvest period, and across years indicating that a single model is applicable for determining biomass feedstock supply within a region, assuming similar harvesting methods. Sample numbers required to receive the same level of precision were as follows: elongated leaf height<canopy height<visual obstruction. Twenty to 30 elongated leaf height measurements in a field could predict switchgrass biomass yield within 10% of the mean with 95% confidence. Visual obstruction is recommended on switchgrass fields with low to variable stand densities while elongated leaf height measurements would be recommended on switchgrass fields with high, uniform stand densities. Incorporating an ocular device with a Robel pole provided reasonable frequency estimates of switchgrass, broadleaf weeds, and grassy weeds at the field scale.  相似文献   

16.
Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states. Grain and stover yields from all sites as well as N, P, and K removal from 28 sites are summarized for nine longitude and six latitude bands, two tillage practices (conventional vs no tillage), two stover-harvest methods (machine vs calculated), and two crop rotations {continuous corn (maize) vs corn/soybean [Glycine max (L.) Merr.]}. Mean grain yields ranged from 5.0 to 12.0 Mg ha?1 (80 to 192 bu ac?1). Harvesting an average of 3.9 or 7.2 Mg ha?1 (1.7 or 3.2 tons ac?1) of the corn stover resulted in a slight increase in grain yield at 57 and 51 % of the sites, respectively. Average no-till grain yields were significantly lower than with conventional tillage when stover was not harvested, but not when it was collected. Plant samples collected between physiological maturity and combine harvest showed that compared to not harvesting stover, N, P, and K removal was increased by 24, 2.7, and 31 kg ha?1, respectively, with moderate (3.9 Mg ha?1) harvest and by 47, 5.5, and 62 kg ha?1, respectively, with high (7.2 Mg ha?1) removal. This data will be useful for verifying simulation models and available corn stover feedstock projections, but is too variable for planning site-specific stover harvest.  相似文献   

17.
Organic fertilizers can improve soil health while providing nutrients for perennial grass growth for bioenergy feedstock, particularly under marginal soil conditions. The impact of organic fertilizer application on perennial grass composition needs clarification. Our objective was to evaluate feedstock composition, and N, P, and K dynamics of switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) provided with either inorganic or organic fertilizer sources. Grasses were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomization of a randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. Six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses; 84 kg ha?1 for switchgrass, (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1), (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1), (4) 89.6 Mg dairy manure ha?1, (5) 44.8 Mg dairy manure compost ha?1, and (6) a control without fertilizer. Organic fertilizers produced a net positive P and K balance, while other treatments had negative balances. Organic fertilizer treatments resulted in lower lignin and gross energy values, and higher total ash and Cl, compared to inorganic fertilizer treatments. Switchgrass biomass had higher fiber and gross energy, lower total ash, and much lower Cl content under organic fertilizer applications than cool-season grasses, making switchgrass a more desirable feedstock regardless of conversion process.  相似文献   

18.
Inorganic elements in biomass feedstocks can influence thermochemical reactions as well as the resultant char’s elemental, compositional, and thermal characteristics. Chars were produced using slow pyrolysis under low (≤400°C) and high (≥500°C) temperature regimes from sugarcane bagasse, peanut hulls, pecan shell, pine chips, poultry litter, and switchgrass. The chars and raw feedstocks were characterized for their elemental, structural, and thermal properties to ascertain the implications of feedstock selection and pyrolysis temperatures on these properties. Char mass yields from the six feedstocks ranged between 28% and 78% by weight while carbon yields ranged between 44% and 89%. In both instances, lower yields were obtained with increasing pyrolysis temperature. Higher pyrolysis temperatures (≥500°C) resulted in more neutral to alkaline chars possessing greater ash contents and increased aromatic character with narrow O/C and H/C ratios. A significant exponential curve response (r 2?=?0.87, P?<?0.001) was revealed between char mass yields vs. pyrolysis temperature. All raw feedstocks and chars contained mixed amounts of macro-, micro-, and trace element concentrations. The higher heating values (HHV) tended to increase with heightened pyrolysis temperature with some chars producing >30 MJ kg?1. The chars’ HHV values inversely correlated to their total ash and Cl content. Lignocelluloses chars had better thermal characteristics and lower ash quality concerns implying suitable service in thermal energy production. In contrast, poultry litter char had greater ash contents, medium HHV values, and contained corrosive inorganic elements, which rendered it problematic as a feedstock for thermal energy generation.  相似文献   

19.
Prairie cordgrass (Spartina pectinata, Link.) has been evaluated for its biomass potential because of its high yield, relatively low nutrient demand, and diverse geographical adaptation. Our objectives were to determine (1) biomass production potential of prairie cordgrass in South Dakota and Kansas under varying nitrogen levels, (2) the effect of N on prairie cordgrass yield components (tillers m?2 and tiller mass), and (3) the effect of N on yield and N concentration of belowground biomass. Older stands of Red River prairie cordgrass (RR-PCG) in South Dakota and Atkins prairie cordgrass (AT-PCG) in Kansas were fertilized with 0, 56, 112 and 168 kg N ha?1 from 2008 to 2011 in South Dakota and in 2009 and 2010 in Kansas. Experimental design at all locations was a 4?×?4 Latin square. Prairie cordgrass was harvested around a killing frost in October and early November. Biomass production ranged from 5.50 to 13.69 Mg ha?1 in South Dakota and 5.33 to 12.51 Mg ha?1 in Kansas. Prairie cordgrass yield did not increase significantly with N application at any location or year. Across years, tiller density ranged from 536 to 934 tillers m?2 for RR-PCG in South Dakota and from 234 to 315 tillers m?2 for AT-PCG in Kansas. Neither tiller density or tiller mass was affected by N rate at any location in any year. Belowground biomass production to a depth of 25 cm was equal to or greater than aboveground biomass. However, it was not affected by N rate in all locations by any year. Understanding prairie cordgrass nitrogen-use dynamics to improve biomass and nutrient management will be essential for future investigations. Findings of this study are important to support the notion that prairie cordgrass biomass production in two different environments can be achieved with minimal N inputs.  相似文献   

20.
Limited information is available about the economic benefits and costs associated with managing switchgrass (Panicum virgatum L.) produced for bioenergy feedstock in the K-deficient soils common in the southern Great Plains. The objectives of this study were to determine the most economical production system for harvesting and managing N and K fertilizations on switchgrass stands and to determine how sensitive the results are to various feedstock and fertilizer market price scenarios. A 4-year agronomic field experiment was conducted on a K-deficient site in South Central Oklahoma; the treatments included two harvest systems (summer and winter (SW) and winter only (W)), two N rates (0 and 135 kg ha?1), and two K rates (0 and 67 kg ha?1). Enterprise budgeting techniques and mixed ANOVA models were used to determine and compare the effects of eight harvest/N/K systems on yield, total cost, revenue, and net return. The harvest/N/K systems evaluated included SW/0/0, SW/0/67, SW/135/0, SW/135/67, W/0/0, W/0/67, W/135/0, and W/135/67. Results revealed the SW/135/67 system produced significantly (P?>?0.0001) greater average yield compared to the other systems; however, the SW/0/0 system was the most (P?>?0.0001) economical, realizing an average net return of $415 ha?1. Compared to the base–case net return of the SW/0/0 system, the value of the additional yield generated with the SW/135/67 system was less than the costs associated with the extra nutrients and additional harvest activity. For feedstock prices greater than $110 Mg?1, the most economical system shifted from the SW/0/0 to favor the SW/135/67 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号