首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Constituents of dermatan sulfate isomers in human articular cartilage were studied at the disaccharide level by high-performance liquid chromatography. Appreciable amounts of dermatan sulfate components, i.e., dermatan sulfate, chondroitin sulfate types G and B, could be detected after digestion with chondroitinases-B or -ABC. The oversulfated dermatan sulfate isomers were isolated only after digestion with chondroitinase-ABC but not with the AC-lyase. The dermatan sulfate isomers were found to be markedly increased in weight loading parts of articular cartilage. It is postulated that the dermatan sulfate isomers are formed as a result of the weight loading reaction, which may be responsible for the fibrosis of articular cartilage.  相似文献   

2.
Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886–27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17–65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications.  相似文献   

3.
A new discontinuous agarose-gel electrophoresis in 0.05 M HCl/0.04 M barium acetate combined with the highly sensitive visualization technique using toluidine blue/Stains-All has been developed for the simultaneous assaying of hyaluronic acid (HA) and dermatan sulfate (DS) with a detection limit at submicrogram level greater than other conventional procedures. Furthermore, this procedure also separates and reveals chondroitin sulfate (CS). The densitometric analysis of bands resulted in a linear response between 0.01 and 0.5 microg of glycosaminoglycans (GAGs) with correlation coefficients greater than approximately 0.94. Hyaluronic acid and dermatan sulfate extracted and purified from the abdominal skin of six rats were separated and quantified in comparison with the evaluation made by treatment of chondroitin ABC lyase and separation of Delta-disaccharides from hyaluronic acid (DeltadiHA) and dermatan sulfate/chondroitin sulfate (Deltadi4s and Deltadi6s) by HPLC. The total amount of rat skin polysaccharides (hyaluronic acid and dermatan sulfate) was 1.24+/-0.26 microg/mg of tissue by discontinuous agarose-gel electrophoresis and 1.20+/-0.33 microg/mg by HPLC with hyaluronic acid and dermatan sulfate percentages of 50.32+/-2.38 and 49.66+/-2.53, respectively. The analyses also confirmed that hyaluronic acid and dermatan sulfate are the main rat abdominal skin polysaccharides with chondroitin sulfate present in trace amounts. This new agarose-gel electrophoresis could be particularly useful in the study of the distribution of glycosaminoglycans in the skin from different body sites of animals and normal human subjects and may be of importance in understanding the changes that occur in the skin, especially the metabolism of extracellular matrix constituents, in connective tissue disorders.  相似文献   

4.
The majority of glycosaminoglycans synthezied in peritoneal macrophages from the guinea pig in vitro were secreted into culture medium. The secreted glycosaminoglycans were reduced in size with alkali treatment, indicating that the glycosaminoglycanas existed in the form of proteoglycans. After the glycosaminoglycans were digested with chondroitinase AC and ABC, the high voltage paper electrophoretic analysis and the descending paper chromatographic analysis indicated the presence of a considerable amount of unsaturated disulfated disaccharides. Based on the enzymatic assay with chondro-4- and 6-sulfatase, the positions of sulfation in the disulfated disaccharide have been identified as the 4- and 6-position of N-acetylgalactosamine, Moreover, the results of the ion-exchange chromatography and the chondroitinase AC and ABC digestion indicate that ΔDi-diSE derived from dermatan sulfate. This suggests that peritoneal macrophages are capable of synthesizing oversulfated proteodermatan sulfate as main component. The proportion of synthesized oversulfated dermatan sulfate to the total glycosaminoglycans was independent of the incubation time, and the distribution of oversulfated dermatan sulfate in cell and incubation medium also did not change. After exposure of macrophages to Escherichia coli for 15 min, the incorporation of [35S]sulfate and [3H]glucosamine into the glycosaminoglycans was increased by about 40% with no significant change in the proportion of synthesized oversulfated dermatan sulfate, but the relese of glycosaminoglycans into the culture medium remains essentially unchanged. The difference of the existence of oversulfated dermatan sulfate is not yet understood.  相似文献   

5.
Chondroitin/dermatan sulfate (CS/DS) proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS). Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.  相似文献   

6.
Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile strength of DS-epi1-null skin.Chondroitin sulfate (CS) is an unbranched polymer chain composed of alternating glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc) units (36, 49). In dermatan sulfate (DS), d-glucuronic acid is converted to its epimer l-iduronic acid (IdoA) (25). The extent of this modification, which varies from a few percent of the glucuronic acid being epimerized to a predominant presence of iduronic acid, depends on the variable epimerase activity in tissues and on the core protein attached to the chain in CS/DS proteoglycans (PGs) (41, 47). The same CS/DS PG has a different iduronic acid content, depending on the cell type and tissue of origin (4, 5). The name CS/DS denotes the hybrid GlcA-IdoA nature of the chain. It has long been known that the distribution of iduronic acids within the chain is not random but follows two patterns: either they are clustered together, forming long iduronic acid blocks, or they are isolated, i.e., interspersed among surrounding glucuronic acids (11). DS epimerase 1 (DS-epi1) and DS-epi2, encoded in mouse by the Dse and Dsel (Dse-like) genes, respectively, are present in organisms ranging from Xenopus tropicalis to humans but not in worms and flies (23, 34). During DS biosynthesis, epimerization is followed by the action of eight C-specific O-sulfotranferases, which transfer a sulfate group to C-2 of both IdoA and GlcA and to C-4, C-6, and C-4/C-6 of GalNAc (18). These modification reactions, individually affecting only part of the available substrate, produce structural variability in the CS/DS chain. Considerable efforts have been made to characterize specific sequences in the CS/DS chains responsible for binding to protein and the subsequent mediation of a biological effect (28). For instance, (IdoA-2OS-GalNAc-4OS)3- and GalNAc-4/6-diOS-containing structures bind and activate heparin cofactor II, which is the major antithrombotic system in the subendothelial layer (48). IdoA/GlcA-2OS-GalNAc-6OS-containing structures bind to pleiotrophin, mediating neuritogenic activity (3, 44). IdoA-GalNAc-4OS-containing structures bind to basic fibroblast growth factor, and the complex has been shown to be active in wound healing (46).CS/DS PGs are mainly found in the extracellular matrix. They belong to four families: lecticans, e.g., versican, aggrecan, brevican, and neurocan; collagens, e.g., collagen IX; basement membrane PGs, e.g., SMC3, collagen XV, and perlecan, containing both heparan sulfate (HS) and CS/DS; and small leucine-rich repeat PGs. Some PGs of the first three groups are referred to as CS PGs. The actual presence of iduronic acid, depending on the tissue examined and on the developmental stage, has been overlooked in many cases (37, 44). The archetypical small leucine-rich repeat PG family members decorin, biglycan, fibromodulin, and lumican bind fibrillar collagens and affect collagen fibril and scaffold formation in connective tissues (15). Decorin and biglycan are substituted with one and two CS/DS chains, respectively. Decorin is involved in collagen type I fibril formation and matrix assembly in a wide range of connective tissues and binds near the C terminus of collagen monomers, delaying their accretion to the growing fibrils. We have identified an SYIRIADTNIT sequence in decorin as essential for binding to collagen (16). The role of the decorin CS/DS chain in vivo has not been explored, although in vitro studies suggest that IdoA promotes the binding of CS/DS to collagen (31) and is required for self-association of CS/DS chains (6, 10, 22).Here the function of DS-epi1 in mice was disrupted. DS-epi1-deficient mice show CS/DS with a marked deficiency in iduronic acid-containing structures. The deletion of DS-epi1 is likely to affect many types of PGs and to result in a complex phenotype. We focus on skin alterations presumably caused by altered decorin/biglycan CS/DS chains.  相似文献   

7.
Dermatan sulfate (DS), also known as chondroitin sulfate (CS)-B, is a member of the linear polysaccharides called glycosaminoglycans (GAGs). The expression of CS/DS and DS proteoglycans is increased in several fibrotic renal diseases, including interstitial fibrosis, diabetic nephropathy, mesangial sclerosis and nephrosclerosis. Little, however, is known about structural alterations in DS in renal diseases. The aim of this study was to evaluate the renal expression of two different DS domains in renal transplant rejection and glomerular pathologies. DS expression was evaluated in normal renal tissue and in kidney biopsies obtained from patients with acute interstitial or vascular renal allograft rejection, patients with interstitial fibrosis and tubular atrophy (IF/TA), and from patients with focal segmental glomerulosclerosis (FSGS), membranous glomerulopathy (MGP) or systemic lupus erythematosus (SLE), using our unique specific anti-DS antibodies LKN1 and GD3A12. Expression of the 4/2,4-di-O-sulfated DS domain recognized by antibody LKN1 was decreased in the interstitium of transplant kidneys with IF/TA, which was accompanied by an increased expression of type I collagen, decorin and transforming growth factor beta (TGF-β), while its expression was increased in the interstitium in FSGS, MGP and SLE. Importantly, all patients showed glomerular LKN1 staining in contrast to the controls. Expression of the IdoA-Gal-NAc4SDS domain recognized by GD3A12 was similar in controls and patients. Our data suggest a role for the DS domain recognized by antibody LKN1 in renal diseases with early fibrosis. Further research is required to delineate the exact role of different DS domains in renal fibrosis.  相似文献   

8.
We evaluated the composition of dermatan sulfates (DS) derived from 23 samples of normal and 23 samples of scarred fascia lata. We analyzed the molecular weight of intact DS chains and the length of chain regions comprising: (1) clusters of L-iduronate-containing disaccharides ("iduronic sections"); (2) clusters of D-glucuronate-containing disaccharides ("glucuronic sections"); and (3) copolymeric sections with both types of disaccharides. A portion of scarred fascia DS chains demonstrated higher molecular weight compared with those from normal tissue. Most disaccharides of DS chains derived from both fascia types form copolymeric segments - heterogeneous in size - with alternatively distributed single disaccharides with glucuronic residues and mainly single ones with iduronate. Only a small number of disaccharides form "glucuronic sections" of heterogeneous size or short "iduronic sections". However, the scarred fascia DS chains demonstrate an increased content of shorter "glucuronic sections" and shorter, often oversulfated, copolymeric segments. It seems that in normal fascia, the DS chain type with a single, long copolymeric region and a single, shorter "glucuronic section" is predominant, while in scarred tissue an increase in multidomain DS chain content may occur.  相似文献   

9.
A lectin highly reactive with dermatan sulfate (DS-lectin) was purified from adult chicken liver by gel filtration on Toyopearl HW-55 and subsequent affinity chromatography on new adsorbents which were prepared by immobilizing heparin or dermatan sulfate via the reducing ends on hydrazino-Toyopearl. The DS-lectin behaved as a single protein on polyacrylamide gel electrophoresis. On excitation at 280 nm, the DS-lectin emitted fluorescence centered at 336 nm, which was attributable to tryptophan residues and could be quenched by the addition of specific saccharides. The affinity constants of the DS-lectin with specific saccharides were calculated from the changes in intensities of fluorescence-difference spectra induced by the saccharides. Dermatan sulfate and protuberic acid, which is composed of L-iduronic acid and D-glucuronic acid (1:2), had the highest affinity constants among the polysaccharides tested. Partially N-desulfated heparin had a higher affinity constant than that of native heparin while dextran sulfate showed no affinity. D-Glucuronic acid and N-acetylneuraminic acid induced weak but significant quenching, but not N-acetylgalactosamine or cellobiose. These results were essentially in good agreement with those of hemagglutination inhibition tests and indicated that DS-lectin has a strong affinity for L-iduronic acid residues and probably carboxyl groups in the saccharides, while sulfate groups on the saccharides interfere with the specific interaction.  相似文献   

10.
The ability of chondroitin/dermatan sulfate (CS/DS) to convey biological information is enriched by the presence of iduronic acid. DS-epimerases 1 and 2 (DS-epi1 and 2), in conjunction with DS-4-O-sulfotransferase 1, are the enzymes responsible for iduronic acid biosynthesis and will be the major focus of this review. CS/DS proteoglycans (CS/DS-PGs) are ubiquitously found in connective tissues, basement membranes, and cell surfaces or are stored intracellularly. Such wide distribution reflects the variety of biological roles in which they are involved, from extracellular matrix organization to regulation of processes such as proliferation, migration, adhesion, and differentiation. They play roles in inflammation, angiogenesis, coagulation, immunity, and wound healing. Such versatility is achieved thanks to their variable composition, both in terms of protein core and the fine structure of the CS/DS chains. Excellent reviews have been published on the collective and individual functions of each CS/DS-PG. This short review presents the biosynthesis and functions of iduronic acid-containing structures, also as revealed by the analysis of the DS-epi1- and 2-deficient mouse models.  相似文献   

11.
Unfertilized eggs of the sea urchin Strongylocentrotus purpuratus are surrounded by a gelatinous layer rich in sulfated fucan. Shortly after fertilization this polysaccharide disappears, but 24 h later the embryos synthesize high amounts of dermatan sulfate concomitantly with the mesenchyme blastula-early gastrula stage when the larval gut is forming. This glycosaminoglycan has the same backbone structure [4-alpha-L-IdoA-1-->3-beta-D-GalNAc-1](n) as the mammalian counterpart but possesses a different sulfation pattern. It has a high content of 4-O- and 6-O-disulfated galactosamine units. In addition, chains of this dermatan sulfate are considerable longer than those of vertebrate tissues. Adult sea urchin tissues contain high concentrations of sulfated polysaccharides, but dermatan sulfate is restricted to the adult body wall where it accounts for approximately 20% of the total sulfated polysaccharides. In addition, sulfation at the 4-O-position decreases markedly in the dermatan sulfate from adult sea urchin when compared with the glycan from larvae. Overall, these results demonstrate the occurrence of dermatan sulfates with unique sulfation patterns in this marine invertebrate. The physiological implication of these oversulfated dermatan sulfates is unclear. One hypothesis is that interactions between components of the extracellular matrix in marine invertebrates occur at higher salt concentrations than in vertebrates and therefore require glycosaminoglycans with increased charge density.  相似文献   

12.
Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS) proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA), catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to delayed ability to re-populate wounded areas due to loss of directional persistence of migration. DS-epi1−/− aortic smooth muscle cells, however, had not lost the general property of migration showing even increased speed of movement compared to wild type cells. Where the cell membrane adheres to the substratum, stress fibers were denser whereas focal adhesion sites were fewer. Total cellular expression of focal adhesion kinase (FAK) and phospho-FAK (pFAK) was decreased in mutant cells compared to control cells. As many pathological conditions are dependent on migration, modulation of IdoA content may point to therapeutic strategies for diseases such as cancer and atherosclerosis.  相似文献   

13.
A specific chondroitin sulfate-lyase, chondro-2-sulfatase, was first used for identification of the unsaturated disaccharide constituents (delta Di-S) generated from variously sulfated chondroitin sulfate and dermatan sulfate isomers by a high-performance liquid chromatographic (HPLC) method. delta Di-S generated from oversulfated chondroitin sulfate and dermatan sulfate isomers following digestion with chondroitinases were further digested by the chondro-2-sulfatase, which led to the release of one sulfate from a specific 2-position of the uronic acid residue, as judged with the new HPLC system using a resin made from a sulfonized styrene-divinylbenzene copolymer. It was also found that the chondro-2-sulfatase digests not only delta Di-S with the structure of D-uronic acid 2 sulfate 1-3-N-acetyl-D-galactosamine but also other sulfated delta Di-S with partially the same constituents, i.e., unsaturated di-sulfated disaccharide B, unsaturated di-sulfated disaccharide D or G, and unsaturated tri-sulfated disaccharide.  相似文献   

14.
Dermatan sulfate proteoglycan chains were detected in tissue sections treated with chondroitin Blyase (0.01 units/ml) in 20 mM Tris-HC1 (pH 8.0) for i hr, followed by staining with antibody 9A2 specific for unsaturated uronic acid coupled to N-acetylgdactosaa- m i n d sulfate. In contrast, after treatment with chondroitin B-lyase, no positive stpining was observed with antibodies 3B3 and 1B5 which react to the unsaturated uronic acid coupled to N-acetylgalactosamine 6-sulfate and unsaturated uronic acid coupled to N-acetylgalactospmine, respectively. The distribution of dermatan sulfate thus revealed was mnfirmed by comparison with that found by monoclonal antibody 6B6 which reacts with small pmteoglycans carrying dermatan sulfate side chains. The localization of positive staining in fib- connective tissues was almost identical with these two procedures.  相似文献   

15.
A soluble factor(s) produced by fully grown oocytes is essential, together with follicle stimulating hormone (FSH), to stimulate in vitro hyaluronic acid (HA) synthesis by mouse cumulus cells (CCs). The stability of the response to this stimulus by CCs in culture was investigated. The data showed that preculture for 8 hr in basal medium reduced to approximately 30% the ability of CCs to synthesize HA in response to FSH or dibutyryl cyclic AMP (Bt2cAMP) and soluble oocyte factor(s). However, if CCs were precultured for the same period of time as intact cumulus cell-oocyte complexes, or in the presence of fully grown oocytes, or in medium conditioned by fully grown oocytes, their ability to synthesize HA was 75-95% preserved. In vitro stimulation of dermatan sulfate (DS) synthesis by CCs does not require oocyte factors and is induced by FSH or Bt2cAMP treatment alone. However, the preservation of such activity, like that of HA synthesis, depended on the presence of a soluble oocyte factor(s) during preculture. The presence of isolated oocytes or of oocyte-conditioned medium also prevented the spreading of CCs in culture. However, inhibiting CC spreading by culture on agar-coated plates or in serum-free medium did not preserve their HA or DS synthetic activity, thus suggesting that the two oocyte actions on CCs are independent. Growing oocytes were unable both to induce HA synthesis in freshly isolated CCs stimulated with FSH and to preserve the ability to synthesize HA and DS in 8-hr precultured CCs. The results suggest that the stability of the differentiated state of mouse CCs in vitro depends upon continued exposure to a soluble factor(s) produced by fully grown oocytes.  相似文献   

16.
Chondroitin sulfate (CS) and dermatan sulfate (DS) containing N-acetylgalactosamine 4,6-bissulfate (GalNAc(4,6-SO4)) show various physiological activities through interacting with numerous functional proteins. N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3′-phosphoadenosine 5′-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate in CS or DS to yield GalNAc(4,6-SO4) residues. We here report generation of transgenic mice that lack GalNAc4S-6ST. GalNAc4S-6ST-null mice were born normally and fertile. In GalNAc4S-6ST-null mice, GalNAc(4,6-SO4) residues in CS and DS disappeared completely, indicating that GalNAc4S-6ST should be a sole enzyme responsible for the synthesis of GalNAc(4,6-SO4) residues in both CS and DS. IdoA-GalNAc(4,6-SO4) units that account for ∼40% of total disaccharide units of DS in the liver of the wild-type mice disappeared in the liver DS of GalNAc4S-6ST-null mice without reduction of IdoA content. Bone marrow-derived mast cells (BMMCs) derived from GalNAc4S-6ST-null mice contained CS without GlcA-GalNAc(4,6-SO4) units. Tryptase and carboxypeptidase A activities of BMMCs derived from GalNAc4S-6ST-null mice were lower than those activities of BMMCs derived from wild-type mice, although mRNA expression of these mast cell proteases was not altered. Disaccharide compositions of heparan sulfate/heparin contained in the mast cells derived from BMMCs in the presence of stem cell factor were much different from those of heparan sulfate/heparin in BMMCs but did not differ significantly between wild-type mice and GalNAc4S-6ST-null mice. These observations suggest that CS containing GalNAc(4,6-SO4) residues in BMMCs may contribute to retain the active proteases in the granules of BMMCs but not for the maturation of BMMCs into connective tissue-type mast cells.  相似文献   

17.
Shark fin, used as a food, is a rich source of glycosaminoglyans (GAGs), acidic polysaccharides having important biological activities, suggesting their nutraceutical and pharmaceutical application. A comprehensive survey of GAGs derived from the fin was performed on 11 elasmobranchs, including several deep sea sharks. Chondroitin sulfate (CS) and hyaluronic acid (HA) were found in Isurus oxyrinchus, Prionace glauca, Scyliorhinus torazame, Deania calcea, Chlamydoselachus anguineus, Mitsukurina owatoni, Mustelus griseus and Dasyatis akajei, respectively. CS was only found from Chimaera phantasma, Dalatias licha, and Odontaspis ferox, respectively. Characteristic disaccharide units of most of the CS were comprised of C- and D-type units. Interestingly, substantial amount of CS/dermatan sulfate (DS) was found in the dried fin (without skin and cartilage) of Isurus oxyrinchus and Prionace glauca. 1H-NMR analysis showed that the composition of glucuronic acid (GlcA) and iduronic acid (IdoA) in shark CS/DS was 41.2% and 58.8% (Isurus oxyrinchus), 36.1% and 63.9% (Prionace glauca), respectively. Furthermore, a substantial proportion of this CS/DS consisted of E-, B- and D-type units. Shark CS/DS stimulated neurite outgrowth of hippocampal neurons at a similar level as DS derived from invertebrate species. Midkine and pleiotrophin interact strongly with CS/DS from Isurus oxyrinchus and Prionace glauca, affording Kd values of 1.07 nM, 6.25 nM and 1.70 nM, 1.88 nM, respectively. These results strongly suggest that the IdoA-rich domain of CS/DS is required for neurite outgrowth activity. A detailed examination of oligosaccharide residues, produced by chondroitinase ACII digestion, suggested that the IdoA and B-type units as well as A- and C-type units were found in clusters in shark CS/DS. In addition, it was discovered that the contents of B-type units in these IdoA-rich domain increased in a length dependent manner, while C- and D-type units were located particularly in the immediate vicinity of the IdoA-rich domain.  相似文献   

18.
Studies have been initiated to identify various cell surface and matrix components of normal human skin through the production and characterization of murine monoclonal antibodies. One such antibody, termed PG-4, identifies both cell surface and matrix antigens in extracts of human foetal and adult skin as the dermatan sulfate proteoglycans, decorin and biglycan, and the chondroitin sulfate proteoglycan versican. Treatment of proteoglycans with chondroitinases completely abolishes immunoreactivity for all of these antigens which suggests that the epitope resides within their glycosaminoglycan chains. Further evidence for the carbohydrate nature of the epitope derives from competition studies where protein-free chondroitin sulfate chains from shark cartilage react strongly; however, chondroitin sulfate chains from bovine tracheal cartilage fail to exhibit a significant reactivity, an indication that the epitope, although present in some chondroitin sulfate chains, does not consist of random chondroitin 4- or 6-sulfate disaccharides. The presence of the epitope on dermatan sulfate chains and on decorin was also demonstrated using competition assays. Thus, PG-4 belongs to a class of antibodies that recognize native epitopes located within glycosaminoglycan chains. It differs from previously described antibodies in this class in that it identifies both chondroitin sulfate and dermatan sulfate proteoglycans. These characteristics make PG-4 a useful monoclonal antibody probe to identify the total population of proteoglycans in human skin.  相似文献   

19.
Brain-specific chondroitin sulfate (CS) proteoglycan (PG) DSD-1-PG/6B4-PG/phosphacan isolated from neonatal mouse brains exhibits neurite outgrowth-promoting activity toward embryonic rat and mouse hippocampal neurons in vitro through the so-called DSD-1 epitope embedded in its glycosaminoglycan side chains. Oversulfated CS variants, CS-D from shark cartilage and CS-E from squid cartilage, also possess similar activities. We have proposed that the neuritogenic property of the DSD-1 epitope may be attributable to a distinct CS structure characterized by the disulfated D disaccharide unit [GlcUA(2S)-GalNAc(6S)]. In this study, we assessed neuritogenic potencies of various oversulfated dermatan sulfate (DS) preparations purified from hagfish notochord, the bodies of two kinds of ascidians and embryonic sea urchin, which are characterized by the predominant disulfated disaccharide units of [IdoUA-GalNAc(4S,6S)] (68%), [IdoUA(2S)-GalNAc(4S)] (66%) plus [IdoUA(2S)-GalNAc(6S)] (5%), [IdoUA(2S)-GalNAc (6S)] (>90%), and [IdoUA-GalNAc(4S,6S)] (74%), respectively. They exerted marked neurite outgrowth-promoting activities, resulting in distinct morphological features depending on the individual structural features. Such activities were not observed for a less sulfated DS preparation derived from porcine skin, which has a monosulfated disaccharide unit [IdoUA-Gal-NAc(4S)] as a predominant unit. The neurite outgrowth-promoting activities of these oversulfated DS preparations and DSD-1-PG were eliminated by the specific enzymatic cleavage of GalNAc-IdoUA linkages characteristic of DS using chondroitinase B. In addition, chemical analysis of the glycosaminoglycan side chains of DSD-1-PG revealed the DS-type structures. These observations suggest potential novel neurobiological functions of oversulfated DS structures and may reflect the physiological neuritogenesis during brain development by mammalian oversulfated DS structures exemplified by the DSD-1 epitope.  相似文献   

20.
Chondroitin sulfate E (CS-E), a chondroitin sulfate isomer containing GlcAbeta1-3GalNAc(4,6-SO(4)) repeating unit, was found in various mammalian cells in addition to squid cartilage and is predicted to have several physiological functions in various mammalian systems such as mast cell maturation, regulation of procoagulant activity of monocytes, and binding to midkine or chemokines. To clarify the physiological functions of GalNAc(4,6-SO(4)) repeating unit, preparation of CS-E with a defined content of GalNAc(4,6-SO(4)) residues is important. We report here the in vitro synthesis of CS-E from chondrotin sulfate A (CS-A) by the purified squid N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) which catalyzed transfer of sulfate from 3(')-phosphoadenosine-5(')-phosphosulfate to position 6 of GalNAc(4SO(4)) residues of CS-A and dermatan sulfate (DS). When CS-A was used as an acceptor, about half of GalNAc(4SO(4)) residues, on average, were converted to GalNAc(4,6-SO(4)) residues. Anion exchange chromatography of the CS-E synthesized in vitro showed marked heterogeneity in negative charge; the proportion of GalNAc(4,6-SO(4)) in the most negative fraction exceeded 70% of the total sulfated repeating units. GalNAc4S-6ST also catalyzed the synthesis of oversulfated DS with GalNAc(4,6-SO(4)) residues from DS. Squid GalNAc4S-6ST thus should provide a useful tool for preparing CS-E and oversulfated DS with a defined proportion of GalNAc(4,6-SO(4)) residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号