首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Species with large eggs and nonfeeding larvae have evolved many times from ancestors with smaller eggs and feeding larvae in numerous groups of aquatic invertebrates and amphibians. This change in reproductive allocation and larval form is often accompanied by dramatic changes in development. Little is known of this transformation because the intermediate form (a facultatively feeding larva) is rare. Knowledge of facultatively feeding larvae may help explain the conditions under which nonfeeding larvae evolve. Two hypotheses concerning the evolutionary loss of larval feeding are as follows: (1) large eggs evolve before modifications in larval development, and (2) the intermediate form (facultatively feeding larva) is evolutionarily short-lived. I show that larvae of a heart urchin, Brisaster latifrons, are capable of feeding but do not require food to complete larval development. Food for larvae appears to have little effect on larval growth and development. The development, form, and suspension feeding mechanism of these larvae are similar to those of obligate-feeding larvae of other echinoids. Feeding rates of Brisaster larvae are similar to cooccurring, obligate-feeding echinoid larvae but are low relative to the large size of Brisaster larvae. The comparison shows that in Brisaster large egg size, independence from larval food, and relatively low feeding rate have evolved before the heterochronies and modified developmental mechanisms common in nonfeeding echinoid larvae. If it is general, the result suggests that hypotheses concerning the origin of nonfeeding larval development should be based on ecological factors that affect natural selection for large eggs, rather than on the evolution of heterochronies and developmental novelties in particular clades. I also discuss alternative hypotheses concerning the evolutionary persistence of facultative larval feeding as a reproductive strategy. These hypotheses could be tested against a phylogenetic hypothesis.  相似文献   

2.
Preexisting developmental plasticity in feeding larvae may contribute to the evolutionary transition from development with a feeding larva to nonfeeding larval development. Differences in timing of development of larval and juvenile structures (heterochronic shifts) and differences in the size of the larval body (shifts in allocation) were produced in sea urchin larvae exposed to different amounts of food in the laboratory and in the field. The changes in larval form in response to food appear to be adaptive, with increased allocation of growth to the larval apparatus for catching food when food is scarce and earlier allocation to juvenile structures when food is abundant. This phenotypic plasticity among full siblings is similar in direction to the heterochronic evolutionary changes in species that have greater nutrient reserves within the ova and do not depend on particulate planktonic food. This similarity suggests that developmental plasticity that is adaptive for feeding larvae also contributes to correlated and adaptive evolutionary changes in the transition to nonfeeding larval development. If endogenous food supplies have the same effect on morphogenesis as exogenous food supplies, then changes in genes that act during oogenesis to affect nutrient stores may be sufficient to produce correlated adaptive changes in larval development.  相似文献   

3.
SYNOPSIS. Nonfeeding larval forms of echinoderms are believedto have evolved repeatedly from feeding larval forms, and thesetransformations usually result in major shifts in morphogenesis.Current hypotheses on form change invoke relaxation of stabilizingselection on traits that functionin feeding, coupled with selectionfor rapid development of juvenile traits. However, comparativeevidence from 51 species of nonfeeding larvae, representing19 independent origins, suggests that body form, patterns ofciliation, and possibly buoyancy reflect functional requirementsfor maintenance of swimming performance. Nonfeeding larvae withbody lengths less than 600 µm usually have several transverseciliated bands, while those with body lengths greater than 800µm usually have uniform ciliation. A preliminary modelwhich compares estimated drag and buoyancy forces with ciliarypropulsive forces predicts that bands of simple cilia do notproduce sufficient propulsive forces to permit swimming in largerlarvae. For larger larvae, increases in areal coverage of ciliamay be required to produce propulsive forces sufficient to opposedrag and buoyancy forces and permit movement. For these largerlarvae, estimates of water velocities at the tips of uniformarrays of cilia are well below the upper limits of water movementsby cilia of echinoderms. Functional constraints on nonfeedinglarval forms should be considered, along with (above mentioned)current hypotheses, in explanations of morphogenetic changesassociated with transition from feeding to nonfeeding larvaldevelopment.  相似文献   

4.
SUMMARY The origin of marine invertebrate larvae has been an area of controversy in developmental evolution for over a century. Here, we address the question of whether a pelagic "larval" or benthic "adult" morphology originated first in metazoan lineages by testing the hypothesis that particular gene co-option patterns will be associated with the origin of feeding, indirect developing larval forms. Empirical evidence bearing on this hypothesis is derivable from gene expression studies of the sea urchin larval gut of two closely related but differently developing congenerics, Heliocidaris tuberculata (feeding indirect-developing larva) and H. erythrogramma (nonfeeding direct developer), given two subsidiary hypotheses. (1) If larval gut gene expression in H. tuberculata was co-opted from an ancestral adult expression pattern, then the gut expression pattern will remain in adult H. erythrogramma despite its direct development. (2) Genes expressed in the larval gut of H. tuberculata will not have a coordinated expression pattern in H. erythrogramma larvae due to loss of a functional gut. Five structural genes expressed in the invaginating archenteron of H. tuberculata during gastrulation exhibit substantially different expression patterns in H. erythrogramma with only one remaining endoderm specific. Expression of these genes in the adult of H. erythrogramma and larval gut of H. tuberculata , but not in H. erythrogramma larval endoderm, supports the hypothesis that they first played roles in the formation of adult structures and were subsequently recruited into larval ontogeny during the origin and evolution of feeding planktotrophic deuterostome larvae.  相似文献   

5.
Echinoderm larvae share numerous features of neuroanatomy. However, there are substantial differences in specific aspects of neural structure and ontogeny between the dipleurula-like larvae of asteroids and the pluteus larvae of echinoids. To help identify apomorphic features, we have examined the ontogeny of the dipleurula-like auricularia larva of the sea cucumber, Holothuria atra. Neural precursors arise in the apical ectoderm of gastrulae and appear to originate in bilateral clusters of cells. The cells differentiate without extensive migration, and they align with the developing ciliary bands and begin neurogenesis. Neurites project along the ciliary bands and do not appear to extend beneath either the oral or aboral epidermis. Apical serotonergic cells are associated with the preoral loops of the ciliary bands and do not form a substantial commissure. Paired, tripartite connectives form on either side of the larval mouth that connect the pre-oral, post-oral, and lateral ciliary bands. Holothurian larvae share with hemichordates and bipinnariae a similar organization of the apical organ, suggesting that the more highly structured apical organ of the pluteus is a derived feature. However, the auricularia larva shares with the pluteus larva of echinoids several features of neural ontogeny. Both have a bilateral origin of neural precursors in ectoderm adjacent to presumptive ciliary bands, and the presumptive neurons move only a few cell diameters before undergoing neurogenesis. The development of the holothurian nervous systems suggests that the extensive migration of neural precursors in asteroids is a derived feature. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The nonfeeding planktonic larvae of marine invertebrates typically lack larval feeding structures. One puzzling exception to this generalization is the annelid clade Sabellidae, in which nonfeeding larvae possess ciliary bands (specifically, food groove and metatroch) that, to the best of our knowledge, have no function other than in feeding. Nishi and Yamasu (1992b, Bulletin of the College of Sciences, University of the Ryukyus, 54 , 107–121) published a scanning electron micrograph showing that nonfeeding larvae of the serpulid annelid Salmacina dysteri also possess food groove and metatrochal cilia. Here I demonstrate that nonfeeding larvae of Salmacina tribranchiata also bear ciliary bands identifiable as food groove and metatroch by position. High‐speed video of ciliary beat patterns shows that, together with the prototrochal cilia, these bands function in an opposed band system. The presence of feeding structures in nonfeeding annelid larvae is thus more widely distributed than previously recognized. The presence of feeding structures may make evolutionary transitions to planktotrophy more likely, and may underlie an inferred origin of larval feeding in the common ancestor of one of the two major clades of serpulid annelids, Serpulinae.  相似文献   

7.
Marine invertebrate larvae are well known for their distinctivebody shapes and elaborate patterns of ciliation. In this studyI take a physically based approach to investigate the functionalconsequences of variations in body shape and patterns of ciliation.With experimental models I demonstrate that shape as well assurface area contributes to drag of larval forms. Based on flowfields around larvae tethered in still water and flowing waterI argue that drag, which acts as a partial tether, may influencehow water is processed and food is captured by cilia. With mechanicalmodels of cilia I show that placement of cilia on the surfacescan influence the effectiveness with which water is moved andthe steepness of the velocity gradient through the ciliary layer.These models indicate that placement of cilia on ridges, atextreme anterior ends, and at extreme posterior ends of larvalbodies increases the volume of water moved per ciliary strokerelative to placement of cilia on a flat surface. A comparativesurvey of46 larval forms indicates that distributions of bodyshape and patterns of ciliation reflect functional requirementsof swimming and feeding by larvae. The experimental and comparativeapproaches together suggest functional constraints on the evolutionof larval forms which may lead to convergence in patterns ofciliation and conservation of larval forms within taxa.  相似文献   

8.
Evolutionary transitions in larval nutritional mode have occurred on numerous occasions independently in many marine invertebrate phyla. Although the evolutionary transition from feeding to nonfeeding development has received considerable attention through both experimental and theoretical studies, mechanisms underlying the change in life history remain poorly understood. Facultative feeding larvae (larvae that can feed but will complete metamorphosis without food) presumably represent an intermediate developmental mode between obligate feeding and nonfeeding. Here we show that an obligatorily feeding larva can be transformed into a facultative feeding larva when exposed to the thyroid hormone thyroxine. We report that larvae of the subtropical sand dollar Leodia sexiesperforata (Echinodermata: Echinoidea) completed metamorphosis without exogenous food when treated with thyroxine, whereas the starved controls (no thyroxine added) did not. Leodia sexiesperforata juveniles from the thyroxine treatment were viable after metamorphosis but were significantly smaller and contained less energy than sibling juveniles reared with exogenous food. In a second starvation experiment, using an L. sexiesperforata female whose eggs were substantially larger than in the first experiment (202+/-5 vs. 187+/-5 microm), a small percentage of starved L. sexiesperforata larvae completed metamorphosis in the absence of food. Still, thyroxine-treated larvae in this experiment completed metamorphosis faster and in much higher numbers than in the starved controls. Furthermore, starved larvae of the sand dollar Mellita tenuis, which developed from much smaller eggs (100+/-2 microm), did not complete metamorphosis either with or without excess thyroxine. Based on these data, and from recent experiments with other echinoids, we hypothesize that thyroxine plays a major role in echinoderm metamorphosis and the evolution of life history transitions in this group. We discuss our results in the context of current life history models for marine invertebrates, emphasizing the role of egg size, juvenile size, and endogenous hormone production for the evolution of nonfeeding larval development.  相似文献   

9.
Recent work on a diverse array of echinoderm species has demonstrated, as is true in amphibians, that thyroid hormone (TH) accelerates development to metamorphosis. Interestingly, the feeding larvae of several species of sea urchins seem to obtain TH through their diet of planktonic algae (exogenous source), whereas nonfeeding larvae of the sand dollar Peronella japonica produce TH themselves (endogenous source). Here we examine the effects of TH (thyroxine) and a TH synthesis inhibitor (thiourea) on the development of Dendraster excentricus, a sand dollar with a feeding larva. We report reduced larval skeleton lengths and more rapid development of the juvenile rudiment in the exogenous TH treatments when compared to controls. Also, larvae treated with exogenous TH reached metamorphic competence faster at a significantly reduced juvenile size, representing the greatest reduction in juvenile size ever reported for an echinoid species with feeding larvae. These effects of TH on D. excentricus larval development are strikingly similar to the phenotypically plastic response of D. excentricus larvae reared under high food conditions. We hypothesize that exogenous (algae-derived) TH is the plasticity cue in echinoid larvae, and that the larvae use ingested TH levels as an indicator for larval nutrition, ultimately signaling the attainment of metamorphic competence. Furthermore, our experiments with the TH synthesis inhibitor thiourea indicate that D. excentricus larvae can produce some TH endogenously. Endogenous TH production might, therefore, be a shared feature among sand dollars, facilitating the evolution of nonfeeding larval development in that group. Mounting evidence on the effects of thyroid hormones in echinoderm development suggests life-history models need to incorporate metamorphic hormone effects and the evolution of metamorphic hormone production.  相似文献   

10.
Evolution of direct-developing larvae: selection vs loss   总被引:3,自引:0,他引:3  
Observations of a sea urchin larvae show that most species adopt one of two life history strategies. One strategy is to make numerous small eggs, which develop into a larva with a required feeding period in the water column before metamorphosis. In contrast, the second strategy is to make fewer large eggs with a larva that does not feed, which reduces the time to metamorphosis and thus the time spent in the water column. The larvae associated with each strategy have distinct morphologies and developmental processes that reflect their feeding requirements, so that those that feed exhibit indirect development with a complex larva, and those that do not feed form a morphologically simplified larva and exhibit direct development. Phylogenetic studies show that, in sea urchins, a feeding larva, the pluteus, is the ancestral form and the morphologically simplified direct-developing larva is derived. The current hypothesis for evolution of the direct-developing larval form in sea urchins suggests that major developmental changes occur by neutral loss of larval features after the crucial transition to a nonfeeding life history strategy. We present evidence from Clypeaster rosaceus, a sea urchin with a life history intermediate to the two strategies, which indicates that major developmental changes for accelerated development have been selected for in a larva that can still feed and maintains an outward, pluteus morphology. We suggest that transformation of larval form has resulted from strong selection on early initiation and acceleration of adult development.  相似文献   

11.
Fecundity-time models of reproductive strategies in marine invertebrates all predict that reproductive success is maximized only at the extreme levels of investment. Selection should drive egg sizes toward small eggs and planktotrophy or large eggs and lecithotrophy. The existence of two distinct larval types, feeding and nonfeeding, has been taken as confirmation of this prediction and has established the current paradigm for larval ecology. However, comparative and experimental evidence does not support the prediction that egg size is minimized in species with planktotrophic larvae. Recent discoveries have documented the existence of planktotrophs that have intermediate egg sizes, differing degrees of dependence on exogenous food, and differing capacities for facultative feeding. A fecundity-time model is presented that includes facultative larval feeding by dissociating the onset of feeding capability from the need for exogenous food. The facultative feeding model shows that reproductive success can be maximized at intermediate levels of investment per offspring between the minimum for development and the threshold for lecithotrophy, depending on the amount of food available to larvae and the intensity of planktonic mortality. A continuum of larval strategies is predicted.  相似文献   

12.
The interfacial feeding behavior, mouthpart movements, and particle flow patterns of Anopheles quadrimaculatuslarvae were investigated, using videotape recordings, high-speed microcinematography, SEM, and laboratory experiments. While positioned at the water surface, larvae demonstrated 12 behaviors associated with movements of the head. In one of these, a larva rotated its head 180° and directed its mouthparts against the air-water interface. The larva rapidly extended and retracted its lateral palatal brushes (LPBs) at a rate of 5 cycles/s (5 Hz), creating currents and allowing for the collection of particles. Particles moved toward the head at a velocity of 4.31 mm/s, in discrete stops and starts, as the LPBs beat. Our analyses determined that particle movement toward the mouth was governed by very low Reynolds numbers (0.002–0.009). This finding indicated that viscous forces predominated in Anophelesfeeding and no inertial movement of particles occurred. According to this model, the LPBs cannot intercept particles directly, but function as paddles for particle entrainment. We did not observe the pharynx to function in particle filtration but, rather, in food bolus formation. We propose that the maxillary pilose area and midpalatal brush function as interception structures. It appeared that the LPBs do not break the surface film to feed, but collect particles from the surface microlayers. A plume of uningested particles emerged from the sides of the cibarium and descended into the water column. The plume consisted of alternately clear and dark, lenticular laminae formed beneath the larval head during the collecting filtering feeding mode. A comparison of particle sizes from surface microlayers and gut contents of fourth instars showed that larvae ingested mainly small particles in the range of 1.5 to 4.5 pm in diameter. The potential significance of interfacial feeding by anopheline larvae in their aquatic environment is discussed.  相似文献   

13.
Vertebrate metamorphosis is often marked by dramatic morphological and physiological changes of the alimentary tract, along with major shifts in diet following development from larva to adult. Little is known about how these developmental changes impact the gut microbiome of the host organism. The metamorphosis of the sea lamprey (Petromyzon marinus) from a sedentary filter-feeding larva to a free-swimming sanguivorous parasite is characterized by major physiological and morphological changes to all organ systems. The transformation of the alimentary canal includes closure of the larval esophagus and the physical isolation of the pharynx from the remainder of the gut, which results in a nonfeeding period that can last up to 8 months. To determine how the gut microbiome is affected by metamorphosis, the microbial communities of feeding and nonfeeding larval and parasitic sea lamprey were surveyed using both culture-dependent and -independent methods. Our results show that the gut of the filter-feeding larva contains a greater diversity of bacteria than that of the blood-feeding parasite, with the parasite gut being dominated by Aeromonas and, to a lesser extent, Citrobacter and Shewanella. Phylogenetic analysis of the culturable Aeromonas from both the larval and parasitic gut revealed that at least five distinct species were represented. Phenotypic characterization of these isolates revealed that over half were capable of sheep red blood cell hemolysis, but all were capable of trout red blood cell hemolysis. This suggests that the enrichment of Aeromonas that accompanies metamorphosis is likely related to the sanguivorous lifestyle of the parasitic sea lamprey.  相似文献   

14.
Evolution of echinoderm development from a feeding to a non-feeding mode can be examined by studying non-feeding larvae with structures that appear to be vestiges derived from a feeding ancestral state. The lecithotrophic larvae of the Australian brittle star Ophionereis schayeri possess such features, and the early development of this species was documented by light and scanning electron microscopy. The embryos undergo irregular cleavage, resulting in the formation of different sized blastomeres, with subsequent development through a wrinkled blastula stage. The lecithotrophic larva of O. schayeri possesses several vestigial ophiopluteal structures, including a continuous ciliated band, a larval gut, and a larval skeleton. The ciliated band is a reduced expression of the continuous ciliated band typical of ophioplutei. The larval gut is a transiently complete system, but an esophageal plug and rapid closure of the blastopore renders it nonfunctional. The larval skeleton, though reduced, consists of four rods corresponding to the body, posterolateral, anterolateral, and postoral rods characteristic of an ophiopluteus. Due to a heterochrony in larval skeletogenesis, the postoral rods develop early and simultaneously with the other rods. Compared with the larvae of other lecithotrophic ophiuroids, the larva of O. schayeri is one of the most reduced ophiopluteal forms reported to date.  相似文献   

15.
Critical roles of hormones in metamorphic life history transitions are well documented in amphibians, lampreys, insects, and many plant species. Recent evidence suggests that thyroid hormones (TH) or TH-like compounds can regulate development to metamorphosis in echinoids (sea urchins, sand dollars, and their relatives). Moreover, previous research has provided evidence for endogenous hormone synthesis in both feeding and nonfeeding echinoderm larvae. However, the mechanisms for endogenous synthesis remain largely unknown. Here, we show that facultatively planktotrophic larvae (larvae that reach metamorphosis in the absence of food but have the ability to feed) from the subtropical sea biscuit Clypeaster rosaceus can synthesize thyroxine endogenously from incorporated iodine (I(125)). When treated with the goitrogen thiourea (a peroxidase inhibitor), iodine incorporation, thyroxine synthesis, and metamorphosis are all blocked in a dose-dependent manner. The inhibitory effect on metamorphosis can be rescued by administration of exogenous thyroxine. Finally, we demonstrate that thiourea induces morphological changes in feeding structures comparable to the phenotypic plastic response of larval structures to low food conditions, further supporting a signaling role of thyroxine in regulating larval morphogenesis and phenotypic plasticity. We conclude that upregulation of endogenous hormone synthesis might have been associated with the evolution of nonfeeding development, subsequently leading to morphological changes characteristic of nonfeeding development.  相似文献   

16.
Florida lancelets were raised in laboratory cultures from the egg to the juvenile stage. At frequent intervals during development, elongation of the embryonic and larval body was measured at room temperature (22.5°C) and at the approximate temperature of the natural environment (30°C). Development was slower at the lower temperature, with metamorphosis commencing during the fifth week as compared to the third week at the higher temperature. Scanning electron microscopy (SEM) was used to describe a frequently sampled series of hatched embryos, pre-metamorphic larvae, metamorphic larvae, and juveniles. The advent (and sometimes subsequent disappearance) of the following structures was determined from the SEM data: general epidermal ciliation, peroral pit, mouth, primary gill slits, ciliary tuft, external opening of the club-shaped gland, sense cells, anus, metapleural folds, and preoral cirri. Our SEM did not substantiate the claims of van Wijhe for a transitory larval mouth near the anteriovental end of the larvae. The general epidermal cilation, which is uniformly distributed in the embryos, becomes somewhat reduced in the pre-metamorphic larvae and then disappears almost entirely during metamorphosis. The epidermis includes two distinct sense cell types (I and II) and possibly a third type (the ventral pit cells, to which an adhesive role has alternatively been attributed). The anus first opens on the right-hand side and only later migrates across the mid-ventral line to assume a position on the left-hand side of the larva; this is contrary to the established view that the anus of the larval lancelets opens on the left-hand side and remains there.  相似文献   

17.
The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.  相似文献   

18.
Among marine benthic organisms, the ability to disperse, primarily during the larval stage, is widely thought to influence the extent of species geographic range. Because related species often differ in their modes of larval development (pelagic, feeding larvae; pelagic, nonfeeding larvae; or brooded development), and these can have dramatically different planktonic intervals, the mode of development may influence geographic range. A global survey of 215 regular echinoids shows that species with pelagic, feeding larvae have significantly larger ranges than those with pelagic, nonfeeding larvae, but there is no difference in ranges between species with pelagic, nonfeeding larvae and those with brooded development. These patterns are maintained within the Cidaroida and the Temnopleuroida, which account for the great majority of species with pelagic, nonfeeding development and brooded development. This limited effect of developmental mode on geographic range is found among species occurring predominantly in waters shallower than 100 m. For species occurring deeper than 100 m, there is no significant difference in geographic range related to type of development. The relationship between developmental mode and species range was examined more closely for circa 30 species for which the developmental period was known from laboratory observations. Adjusting the developmental times to a common temperature, 20°C, using realistic values for Q10 from 2.0 to 3.6, showed a highly significant, negative correlation between egg volume and developmental time, indicating the potential for developmental mode to influence the planktonic interval. However, there was no relationship between time in the plankton, estimated from unadjusted developmental times, and extent of species geographic range. These results suggest that developmental mode may influence extent of species geographic ranges indirectly through the consequences of dispersal for gene flow or recovery from disturbance.  相似文献   

19.
The planktonic larvae of marine invertebrates are diverse in their nutritional modes, suggesting that evolutionary transitions in larval nutritional mode have been frequent. One approach to identifying the developmental changes that play important roles in such transitions is to compare "intermediate" larval forms to closely related larvae representative of their common ancestor. Here we make such a comparison between obligately planktotrophic and facultatively feeding larvae of the poecilogonous polychaete annelid Streblospio benedicti. We used feeding experiments to show that the derived, facultatively feeding larvae of this species develop the ability to feed at a later developmental stage (five muscle bands) than planktotrophic larvae (two to three muscle bands). This delay in the onset of feeding ability does not appear to be caused by delay in the formation of particle capture structures, but instead by delay in the development of a continuous, functional gut. These observations are consistent with the hypothesis that evolutionary increases in egg size in annelids lead predictably to heterochronic delays in gut development, and hence to transitions in larval nutritional mode.  相似文献   

20.
The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号