首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
K. Killham 《Plant and Soil》1987,101(2):267-272
The effect of two isoflavonoids, coumestrol and daidzein which are present in aseptically grown roots and root exudates of soybean, was tested on some rhizospheric microorganisms. It was found that coumestrol promotes the growth ofR. japonicum USDA 138 (about 30%) andR. leguminosarum (about 15%) whereas it inhibits the growth ofAgrobacterium tumefaciens (about 50%) andPseudomonas sp. (about 20%). The following microorganisms were unaffected by this molecule:R. japonicum W505,Agrobacterium radiobacter, Micrococcus luteus andCryptococcus laurentii. It was found that daidzein promotesR. japonicum USDA 138 growth (about 20%) and inhibitsPseudomonas sp. growth (about 20%); other microorganisms were unaffected. In addition, coumestrol favoured the formation of ‘coccoids’ cells byRhizobium japonicum USDA 138 which could be the infective state of this strain. It seems that this compound is able to help nodulation of soybean by aRhizobium strain. This result supports the work of Peterset al. (1986) and Redmondet al. (1986) who show that flavones present in plant exudates induces expression of nodulation genes in Rhizobium.  相似文献   

2.
Summary Capsular polysaccharides were isolated fromRhizobium japonicum (61A76NS) and conjugated to a fluorescent dye to determine if the specificity in theRhizobium japonicum-soybean symbiosis is expressed by a component (lectin) located on soybean roots which binds to the sugars of the bacterial capsules.The conjugated Fraction A capsular polysaccharides ofR. japonicum bound only to the root hair tips of soybean seedlings. The polysaccharide would not bind specifically to the roots of clover or alfalfa seedlings. Rhodamine conjugated polysaccharides ofR. japonicum could be inhibited from binding to soybean root hairs by the addition of N-acetylgalactosamine or galactose, effective hapten inhibitors of this type of binding. This is the first report of hapten-reversible binding of an isolated rhizobial component to soybean root hairs, the differentiated epidermal cells which are subsequently infected by this nitrogen-fixing symbiont.Paper number6046 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina.  相似文献   

3.
A cultivation system with simultaneous growth of six bacterial cultures in separate bags in dialysis culture was developed. In a medium with no added carbon source (one half concentrated Hoagland solution, water deionized and distilled), cell number ofRhizobium japonicum increased during a 7 day period by a factor of 35, whereas the number ofEnterobacter aerogenes cells decreased to one half. With a concentration of 100 nM succinate as an additional carbon source in the inflow,Rhizobium japonicum 61-A-101 cell number increased by a factor of 50 during an 8 day period, whereas cell number ofEnterobacter cloacae NCTC 10005 only doubled and ofEnterobacter aerogenes NCTC 10006 decreased. At 10 mM concentration of succinate in the inflow, doubling time the twoEnterobacter strains was about 12 h, compared to about 24 h for theRhizobium japonicum strain. Varying the succinate concentration from 10 mM to 100 nM in the inflow,Rhizobium japonicum 61-A-101 surpassed theEnterobacter aerogenes strains in the growth rate between 1 mM and 100 M succinate in the inflowing medium. Three otherRhizobium japonicum strains (fix+ and fix-) did grow with a similar rate as strain 61-A-101 at very low concentrations of substrate. Growth rates for the strains were confirmed by protein data per culture. Growing in competition with twoPseudomonas strains,Rhizobium japonicum RH 31 Marburg (fix-) did overgrow alsoPseudomonas fluorescens, was however outgrown byPseudomonas putida. In utilizing low concentrations of a14C labelled organic acid (malonate), three strains ofRhizobium japonicum left 2–4 times smaller amounts of14C in the medium than two species ofPseudomonas and two species ofArthrobacter.On sabbatical leave at ANU  相似文献   

4.
A cultured soybean cell line, SB-1 was used to evaluate the initial interaction between the soybean cells andRhizobium japonicum. Co-culturing ofR. japonicum with SB-1 cells in suspension resulted in strain-specific polar attachment. This attachment can be inhibited by galactose and antibodies raised against seed soybean agglutinin (SBA). A lectin was purified from SB-1 cells which shares properties with SBA in terms of immunological reactivity, sugar binding activity, polypeptide molecular weight and peptide maps. When the SB-1 cells were co-cultured withR. japonicum for three weeks in solid agar medium, histological staining revealed bacterial penetration into certain SB-1 cells. Furthermore, there were focal regions of cells with prominent nuclei representing actively proliferating regions. These observations are analogous to that ofin vivo nodule initiation in soybean roots.  相似文献   

5.
Summary Lipopolysaccharides (LPS) were extracted from two strains ofRhizobium japonicum (61A76NS and 3I1b110-I). The extracted LPS was purified by gel filtration column chromatography and the amount of 2-keto-3-deoxyoctonate (KDO) was determined. Column purified LPS from both strains were conjugated to rhodamine isothiocyanate on celite to examine binding of this purified, labeled surface component to aseptically grownGlycine soja (wild soybean) seedlings as a basis for symbiotic specificity using fluorescent microscopy. Rhodamine conjugated LPS from both strains ofRhizobium japonicum did not exhibit specific binding to wild soybean seedling roots.Paper no. 8130 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27650, USA.  相似文献   

6.
Summary Antibiotic resistant mutants 8-0 StrR, 110 TetR and 138 KanR derived from wild typeRhizobium japonicum strains were inoculated into silt loam soil to cell concentrations greater than 2×108/g of soil. Population changes were monitored using antibiotic media and strain identification was done using immunodiffusion assay on microcores of soil. Immunodiffusion bands formed by the mutant strains with homologous antisera essentially duplicated bands formed by the parent strain. Strains 110 TetR and 8-0 StrR had cross reacting antigens whereas antigens of strain 138 KanR reacted only with the homologous antiserum. Populations ofR. japonicum strains introduced into sterile soil increased over a period of four weeks under both single and mixed culture inoculations. All populations decreased by the end of six weeks and thereafter remained constant. When theseR. japonicum strains were introduced into non-sterile soil, the population did not increase over the initial population added. Population decreased gradually for two weeks and then maintained thereafter. It was possible to recover very low populations of antibiotic resistantR. japonicum strains from both sterile and unsterile soils using media containing specific antibiotics. Detection ofR. japonicum strains by immunodiffusion was accomplished only when the population was 109 cells/g of soil. The method using antibiotic resistant mutants permitted an evaluation of the interactions of variousR. japonicum strains in soil with respect to their survival and multiplication.  相似文献   

7.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

8.
Summary The ecology, strain evaluation, genetics of host strain interactions and physiology of nitrogen fixation ofRhizobium japonicum in association with the soybean,Glycine max, were studied. Results of inoculation experiments with selected strains ofRhizobium japonicum indicated that indigenous strains occupied most of the nodules of soybeans grown in highRhizobium japonicum populated soils. Nodule sampling indicated that inoculation did not result in quicker nodulation or a higher incidence of root nodules (primary or secondary) than uninoculated checks. Rhizosphere studies indicated that colonization by introduced strains did occur but did not compete successfully with field strains for nodule sites. Recovery of specific serological types from nodules was influenced by planting intervals. The distribution of the serotypes varied with the time of planting and the age of the plant. Temperature studies indicated that the distribution of serotypes recovered from the nodules was influenced by temperature. Field studies showed the selectivity of soybean genotypes on strains ofRhizobium japonicum. Some strains were more common in the nodules of some varieties than in others. Closely related varieties had similar populations in their nodules. Three genes which control nodule response in soybeans are reported. Nitrogen fixation profiles were determined for some variety-strain interactions. Combinations previously classified as inefficient showed some nitrogenase activity as measured by the acetylene reduction technique. Research Microbiologist; Research Agronomist; Research Plant Physiologist, Soybean Investigations, Crops Research Division, Beltsville, Md. (USDA, ARS); and Plant Pathologist currently located at Michigan State University, East Lansing, Michigan.  相似文献   

9.
A study was conducted to determine whether colonization of legume roots and nodulation byRhizobium meliloti andBradyrhizobium japonicum could be enhanced by using inocula containing microorganisms that produce antibiotics suppressing soil or rhizosphere inhabitants but not the root-nodule bacteria. An antibiotic-producing strain of Pseudomonas and one of Bacillus were isolated, and mutants ofR. meliloti andB. japonicum sp. resistant to the antibiotics were used. The colonization of the alfalfa rhizosphere and nodulation byR. meliloti were enhanced by inoculation of soil withPseudomonas sp. in soil initially containing 2.7×105 R. meliloti per g. The colonization of soybean roots byB. japonicum was enhanced by inoculating soil with three cell densities ofBacillus sp., and nodulation was stimulated byBacillus sp. added at two cell densities. In some tests, the dry weights of soybeans and seed yield increased as a result of these treatments, and co-inoculation with Bacillus also increased pod formation. Inoculation of seeds withBacillus sp. and the root-nodule bacterium enhanced nodulation of soybeans and alfalfa, but colonization byB. japonicum andR. meliloti was stimulated only during the early period of plant growth. Studies were also conducted withStreptomyces griseus and isolates ofR. meliloti andB. japonicum resistant to products of the actinomycete. Nodulation of alfalfa byR. meliloti was little or not affected by the actinomycete alone; however, both nodulation and colonization were enhanced if the soil was initially amended with chitin andS. griseus was also added. Chitin itself did not affectR. meliloti. Treatments of seeds with chitin orS. griseus alone did not enhance colonization of alfalfa roots byR. meliloti or soybean roots byB. japonicum, but the early colonization of the roots by both bacterial species was promoted if the seeds received both chitin andS. griseus; this treatment also increased nodulation and dry weights of alfalfa and soybeans and the N content of alfalfa. It is suggested that co-inoculation of legumes with antibiotic-producing microorganisms and root-nodule bacteria resistant to those antibiotics is a promising means of promoting nodulation and possibly nitrogen fixation.  相似文献   

10.
Summary Fast-growingRhizobium japnicum strains derived from the People's Republic of China were compared with a fast-growingRhizobium isolate from Lablab for their ability to nodulate tropical legumes grown in Leonard-jars and test tube culture. Fast-growingR. japonicum strains were all effective to varying degrees in their symbiosis withVigna unguiculata. Two strains USDA 192 and USDA 201, effectively nodulatedGlycine whightii and one strain, USDA 193, effectively nodulatedMacroptilium atropurpureum. Other nodulation responses in tropical legumes were ineffective. The fast-growing isolate from Lablab was more promiscuous, effectively nodulating with a larger host range. The fast-growing Lablab strain was considered more akin, on a symbiotic basis, to the slow-growing cowpea type rhizobia than the fast-growing China strains ofR. japonicum whilst maintaining physiological characteristics of other fast-growing rhizobia.  相似文献   

11.
Summary A microscopic assessment is presented of the comparative infection capacity of wild-type and hybrid strains ofRhizobium leguminosarum bv.viciae withR. l. bv.trifolii strain ANU 843 on white clover seedlings. TheR. l. bv.viciae hybrid strains contained defined DNA segments coding for different combinations ofR. l. bv.trifolii host-specific nodulation genes. White clover plants were examined over a 72 h period to assessRhizobium infectivity, the morphological changes in root hair growth; colonisation ability of rhizobia; infection thread initiation and the ability to induce cortical cell division.R. l. bv.viciae strain 300 induced root hair curling more slowly than strain ANU 843 or any of the hybrid strain 300 bacteria, and when curling had taken place, there was poorer colonization by strain 300 within the folded hair cell, no evidence of infection thread formation and only limited cortical cell division 72 h after inoculation. The addition of the host-specific nodulation genes ofR. l. bv.trifolii to strain 300 was necessary to induce infection threads and establish a normal pattern of nodulation of the roots of white clovers.  相似文献   

12.
Three Glycine genotypes, G. max cv. Williams, G. soja PI 468397, and G. soja PI 342434 in combination with the two rhizobial strains Bradyrhizobium japonicum USDA 123 and Rhizobium fredii USDA 193 were analysed for phytoalexin concentration in the nodules. In the nodules of PI 468397/B. japonicum USDA 123 a very strong glyceollin I accumulation occurred around 30 d.p.i. Ultrastructural analysis of these nodules revealed several symptoms of a severe plant defense response associated with plant cell death (hypersensitive reaction): The cytoplasm of the infected cells was degraded and organelles had vanished. The cell walls of the infected cells showed remarkable thickening. This plant defense response could only be observed in this strain/genotype interaction. The same strain did not elicit a phytoalexin accumulation in the other plant genotypes tested, indicating that this response occurs at the genotype-specific level. This special character of G. soja PI 468397 is heritable as indicated by glyceollin I analysis of the nodules formed by F1 hybrids of PI 468397xWilliams inoculated with B. japonicum USDA 123. The genotype/strain specific occurrence of the hypersensitive response in root nodules resembles the race/cultivar specific incompatibility of several plant-pathogen interactions. This specificity, together with the phenomenon of the HR itself, points out the close physiological relationship between the late stages of the root nodule symbiosis and a plant/pathogen interaction.  相似文献   

13.
J. Evans 《Plant and Soil》1982,66(3):439-442
Summary The effect of mineral nitrogen on establishment and activity of symbioses between soybean and several strains ofRhizobium japonicum and on the establishment of nodules ofR. japonicum isolated from nodules of field crops is studied. All strains were highly susceptible to the effects of 200 ppm NO3–N on the establishment of symbiosis; 50 ppm NO3–N had little effect. Response of symbioses establishhed in the absence of mineral N to short term exposure to nitrate or ammonium varied significantly between strains. Nodule isolates from soybean crops growing in nitrifying soil were no less susceptible to the inhibitory effects of mineral N on nodule formation than a laboratory culture of the commercial inoculant strain.  相似文献   

14.
Summary Four cultivars ofTrifolium subterraneum were nodulated by five strains ofRhizobium leguminosarum; all combinations except one gave 100% nodulation. Rates of nodule formation and total nodule numbers were similar to those with an effectiveR. trifolii strain. The nodules were more commonly associated with lateral roots and were ineffective in nitrogen fixation.  相似文献   

15.
Summary The content of endogenous gibberellin (GA)-like substances of roots and root nodules of SOya, and GA production byRhizobium japonicum cultures, were investigated by a combined thin layer chromatographic (TLC)-dwarf pea epicotyl bioassay technique. GAs were more concentrated in root nodules than in the roots, totalling 1.34 and 0.16 nM GA3 equivalents g−1 dry wt. respectively. GA production byR. japonicum cultures was demonstrated (1.00 nM GA3 equivalentsl −1) and comparison of the GA components of plant and bacterial culture medium extracts, suggested that rhizobial GA production may contribute to the nodule GA content. Cis-trans abscisic acid (ABA) was identified in root and nodule extracts by TLC-gas liquid chromatography (GLC), and amounted to 0.18 and 2.21 nM g−1 dry wt. respectively, whereas 0.30 and 4.63 nM ABA equivalents g−1 dry wt. were detected by a TLC-wheat embryo bioassay technique. ABA was not detected in extracts of bacterial cultures.  相似文献   

16.
Two field experiments were carried out at the UAPNPBS experimental station, Seropédica, with two sorghum and one rice cultivars. The establishment, and inoculation effects, ofAzospirillum spp. andHerbaspirillum strains marked with antibiotic resistance were investigated. One grain sorghum (BR 300) and one sugar sorghum (Br 505) cultivar were used.Azospirillum lipoferum strain S82 (isolated from surface sterilized roots of sorghum) established in both cultivars and comprised 40 to 80% of theAzospirillum spp. population in roots and stems 60 days after plant emergence (DAE).Azospirillum amazonense strain AmS91 (isolated from surface-sterilized roots of sorghum) reached only 50%. At 90 DAE, S82 almost disappeared (less than 30% of establishment) while the establishment of AmS91 remained constant in roots and stems. No establishment ofH. seropedicae strain H25 (isolated from surface-sterilized roots of sorghum) orA. lipoferum strain S65 (isolated from the root surface of sorghum) could be observed on inoculated roots. Inoculation with S82, AmS91 or S65 but not withH. seropedicae H25, increased plant dry weight of both cultivars and total N in grain of the grain sorghum. In rice,A. lipoferum Al 121 andA. brasilense Sp 245 (isolated from surface sterilized rice and wheat roots respectively) established in the roots but there was no increase inAzospirillum spp. numbers due to inoculation. None of the strains affected plant growth or rice grain yield.Azospirillum amazonense, A82 andH. seropedicae Z95, which did not establish in roots, significantly enhanced seed germination.  相似文献   

17.
Summary We have determined the DNA sequence of aRhizobium meliloti gene that encodes glutamine synthetase II (GSII). The deduced amino acid sequence was compared to that ofBradyrhizobium japonicum GSII and those of various plant and mammalian glutamine synthetases (GS) in order to evaluate a proposal that the gene for this enzyme was recently transferred from plants to their symbiotic bacteria. There is 83.6% identity between theR. meliloti andB. japonicum proteins. The bacterial GSII proteins average 42.5% identity with the plant GS proteins and 41.8% identity with their mammalian counterparts. The plant proteins average 53.7% identity with the mammalian proteins. Thus, the GS proteins are highly conserved and the divergence of these proteins is proportional to the phylogenetic divergence of the organisms from which the sequences were determined. No transfer of genes across large taxonomic gaps is needed to explain the presence of GSII in these bacteria.  相似文献   

18.
Two strains of Bradyrhizobium japonicum wereevaluated with five commercial cultivars of soybean(Clark, Crauford, Davis, Centaur, and Nessen) and onehypernodulating mutant NOD1-3. The hypernodulatingNOD1-3 produced 30–50 times more nodules thancommercial cultivars either inoculated with B.japonicum strain USDA 123 or RCR 3409. The currentexperiments were extended to determine if therestricted nodulation of commercial cultivars could be overcome by grafting them to a hypernodulated shoot (NOD1-3). Grafting of NOD1-3 shoots to Clark and Davis roots induced hypernodulation on roots of Clark and Davis but did not enhance nodulation when grafted onto the roots of Crauford, Centaur, and Nessen. The shoots of Clark, Davis, Centaur and Nessen significantlyinhibited nodule formation on the root of NOD1-3,while Crauford shoots did not alter nodule formationon the roots of NOD1-3 as compared with self-grafts ofNOD1-3. It appears that the shoot of NOD1-3 has theability to alter autoregulatory control of nodulationof Clark and Davis cultivars, but did not withCrauford, Centaur and Nessen. The results suggestedthat the regulation of nodulation in soybean cultivarsClark and Davis is controlled by the shoot factors,while the Crauford was root controlled.Reciprocal-grafts between NOD1-3 and Centaur or Nessenindicate that both shoot and root factors involved inregulation of nodulation and the regulation ofnodulation did not depend on bradyrhizobial strains. Isoflavonoid analyses from extracts of grafted plantsshowed that NOD1-3 shoots had markedly higher rootisoflavonoid concentrations in roots of both Clark andNOD1-3. The shoot control of hypernodulation may becausally related to differential root isoflavonoidlevels, which are also controlled by the shoot. Thecurrent work was extended to investigate the effect ofapplication of an isoflavonoid (daidzein) on nodulationand nitrogen fixation of soybean cultivars Clark andCentaur as well as in vitro growth of Bradyrhizobium japonicum. Application of theisoflavonoid (daidzein) significantly enhanced thenodulation and nitrogenase activity of Clark but notof Centaur indicating that this character is notrelated to isoflavonoids. Therefore, autoregulationin Clark and Centaur plants may be separate events inlegume-rhizobia symbiosis and regulated by differentkinds of signals. Addition of daidzein to yeastmannitol broth medium promoted the growth of B.japonicum strain USDA 123 and RCR 3409. It seemsthat this compound is able to help the nodulation ofsoybean cv Clark by a Bradyrhizobium strain. Understanding the signaling pathways between rhizobiaand their host plants may allow modifications of thisinteraction to improve symbiotic performance.  相似文献   

19.
Summary Conditions leading to agglutination ofRhizobium japonicum 3I1b110 with soybean seed lectin were examined. Ability of cells to be agglutinated was transient and was optimal for cultures grown for 4–5 days on yeast extract mannitol plates. Similar lectin-binding results were obtained with cells from the same cultures using fluorescence microscopy with fluorescein isothiocyanate-labelled lectin. These results revise the previous model for soybean lectin-R. japonicum interactions, since it was based on the inability of soybean lectin to agglutinate these bacteria.  相似文献   

20.
Summary The infection of white clover seedlings byRhizobium strains with different host range properties was assessed using various microscopic techniques. Several wild-type andRhizobium leguminosarum biovarvicias hybrid strains containing definedR. l. bv.trifolii host range genes were used. The morphological changes in the root tissue of uninoculated and rhizobia inoculated white clovers were identified and compared. In particular, changes were observed in the induction of inner cortical cell division, alterations to nodule development and lateral root formation. The responses of the infected roots and the types of structures formed support the hypothesis that lateral roots and nodules may be physiologically homologous structures. To establish a normal pattern of nodulation on white clover roots, both sets of known host specific nodulation genes (operonsnod FERL andnod MNX) ofR. l. bv.trifolii were required. However, some nodule development occurred when only thenod FERL genes were present in the hybrid strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号