首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrodermal response (EDR) of frogs to various acoustic stimuli was measured in the form of the skin potential response (SPR). There was no correlation between the polarity of the SPR and the intensity of the stimuli. When different frequencies were presented at the same intensity, the amplitude of the SPR to each was inversely proportional to the sound pressure at which that frequency just elicited an SPR. The amplitude of the sound-induced SPR increased monotonically with increasing sound pressure. The latency of the SPR decreased with increasing intensity of the acoustic stimulus. Acoustic stimuli repeated at intervals of 1 and 2 min elicited responses with progressively decreased amplitude and increased latency; with 4 min intervals there was little habituation. Fatigue participates to only a very slight extent in reducing the amplitude of the SPR and increasing its latency. The results are compared with the published data on frogs and mammals, including humans.  相似文献   

2.
Repetitive transcranial magnetic stimulation of the motor cortex (rTMS) can be used to modify motor cortical excitability in human subjects. At stimulus intensities near to or above resting motor threshold, low-frequency rTMS (approximately 1 Hz) decreases motor cortical excitability, whereas high-frequency rTMS (5-20 Hz) can increase excitability. We investigated the effect of 10 min of intermittent rTMS on motor cortical excitability in normal subjects at two frequencies (2 or 6 Hz). Three low intensities of stimulation (70, 80, and 90% of active motor threshold) and sham stimulation were used. The number of stimuli were matched between conditions. Motor cortical excitability was investigated by measurement of the motor-evoked potential (MEP) evoked by single magnetic stimuli in the relaxed first dorsal interosseus muscle. The intensity of the single stimuli was set to evoke baseline MEPs of approximately 1 mV in amplitude. Both 2- and 6-Hz stimulation, at 80% of active motor threshold, reduced the magnitude of MEPs for approximately 30 min (P < 0.05). MEPs returned to baseline values after a weak voluntary contraction. Stimulation at 70 and 90% of active motor threshold and sham stimulation did not induce a significant group effect on MEP magnitude. However, the intersubject response to rTMS at 90% of active motor threshold was highly variable, with some subjects showing significant MEP facilitation and others inhibition. These results suggest that, at low stimulus intensities, the intensity of stimulation may be as important as frequency in determining the effect of rTMS on motor cortical excitability.  相似文献   

3.
A propagated potential produced in the Pacinian corpuscle in response to mechanical stimuli leaves a refractory state of 7 to 10 msec. duration. The refractory state is presumably produced at the first intracorpuscular node of Ranvier. The recovery of receptor excitability for producing an all-or-none response to mechanical stimulation follows the same time course as that of the electrically excited axon. Upon progressive reduction of stimulus interval (mechanical), the propagated potential falls progressively to 75 per cent of its resting magnitude and becomes finally blocked within the corpuscle. A non-propagated all-or-none potential, presumably corresponding to activity of the first node, is then detected. The critical firing level for all-or-none potentials increases progressively during the relative refractory period of the all-or-none potential, as the stimulus interval is shortened. Thus generator potentials up to 85 per cent of a propagated potential can be produced in absence of all-or-none activity. Generator potentials show: gradual over-all increase in amplitude and rate of rise as a function of stimulus strength; constant latency; and spontaneous fluctuations in amplitude. A generator potential leaves a refractory state (presumably at the non-myelinated ending) so that the amplitude of a second generator response which falls on its refractory trail is directly related to the time elapsed after the first generator response and inversely to its amplitude. The generator potential develops independently of any refractory state left by a preceding all-or-none potential.  相似文献   

4.
Summary Three species of Gymnotid fish, two species ofHypopomus andRhamphichthys rostratus, each having pulse type electric organ discharges (EOD) of different durations were studied to learn if any correlation exists between the spectral composition of the species specific EOD pulse and the frequency response characteristics of that species' electroreceptors. The receptor population consisted of two major categories (examples in Fig. 3). One category, termed pulse marker receptors, responded to suprathreshold stimulus pulses with a single spike at a short (<2 ms) latency. These receptors were tuned to the higher frequency components of a species' EOD (Fig. 4A) and were always 5 to 10 dB less sensitive than any other electroreceptors within a given species. The second major receptor category, burst duration coders, responded to an electrical stimulus with a burst of spikes at a longer latency, burst length was a function of stimulus amplitude. This second category could be further divided into three sub-categories according to the receptors' frequency response characteristics. The most commonly seen subcategory, wide band receptors (Fig. 4B), responded best to stimuli having frequencies equal to the dominant frequency component of the species' EOD in the two species ofHypopomus studied. A second subcategory, narrow band receptors (Fig. 4 A), had frequency response characteristics similar to those of the pulse marker receptors; however, these had thresholds 10 dB lower than those of the pulse marker. The third subcategory of burst duration coders, low frequency receptors (Fig. 4 C, D), responded best to stimulus frequencies ranging from about 50 to 150 Hz. Mechanisms of coding stimulus amplitude and responses to prolonged sinusoidal electrical stimuli were also studied in the various receptor types.It is suggested that the differences in the major receptor types and the different frequency response characteristics of the electroreceptors within a given species allows the animals to identify and evaluate signals resulting from their own EOD, the EODs of conspecifics and electrical stimuli generated by other species of electric fish.Supported by NIH Grant #1 RO1 NS 12337-01  相似文献   

5.
The weakly electric fish, Gathonemus niger, discharged with a frequency of 4 to 8 Hz during the day and 10 to 16 Hz during the night. The frequency of superimposed burst discharges (32 to 56 Hz) was independent of diurnal factors. The variation of the electric organ discharge frequency during the day was investigated in response to controlled electric stimulus patterns: (a) A free running stimulus frequency of 4 Hz, simulating the resting frequency of another fish, and different stimulus intensities, simulating different distances between two fish. (b) Free running frequencies of 4, 8, 16, …, 128 Hz and two particular stimulus intensities. (c) Discharge coupled stimuli (each discharge triggered an electric stimulus with a fixed delay) and different stimulus intensities.All three kinds of stimuli elicited defined and predictable response discharge patterns supporting the assumption that an electric fish would respond to a particular discharge pattern of another fish also in a similar and predictable manner. Low stimulus intensities (0·04 to 0·2 mV per cm) caused cessation of the discharge activity, a ‘hiding’ or ‘listening’ response. The discharge rate increased linearly with the logarithm of the stimulus intensity. The fish was particularly sensitive to stimulus frequencies which simulated its burst activity (32 to 56 Hz). Discharge coupled stimuli showed that the fish responded to about eight times lower stimulus intensities if the stimulus occurred between two discharges (15 to 30 m-s after the fish's discharge) than if the stimulus occurred within or immediately after the discharge. All suprathreshold stimuli elicited a typical discharge pattern: The irregular resting discharge activity became significantly regular. The degree of regularity was even improved during maintained stimulation. The regularisation of the discharge activity is thought to be involved in the fish's electrolocating system whereas frequency variations are considered as being involved in both the locating system and as communication signals among weakly electric fish.  相似文献   

6.
Adult healthy subjects did not manifest any difference in latency and amplitude of the wave P300 elicited by a positive ("good") and negative ("error") reinforcing stimuli. After the negative reinforcement, the P300 wave amplitude decreases in response to the standard stimulus (light bars) and increases to a lesser degree in response to test stimuli (the same bars but presented with different pauses). In the processes of learning to assess time microintervals in comparison with the standard, the latency of wave P300 to the test stimuli shortens. It is suggested that formation and consolidation of feedback connection elaborated with the participation of a reinforcing verbal stimulus constitute the physiological basis for learning of comparative assessment of time microintervals.  相似文献   

7.
We present observations on the multicyclic scratch reflex in spinal terrapins as produced by electrical stimuli applied to the shell at the specific regions at which a mechanical stimulus produces the reflex. EMGs and hip and knee movements are recorded. The responses to the electrical stimuli are similar to the responses to mechanical stimuli. There is a three phase EMG pattern (Stein and Grossman, 1980), to which the movement pattern is related (Bakker and Crowe, 1982). A response may consist of a series of up to 25 movement cycles with a total time course of up to about 30 sec. The initial cycles of a response are relatively fast (less than 1 sec), but the cycles at the expiration of the response may have a duration of 2-3 sec. A single electrical stimulus pulse is often insufficient to trigger a series response. Instead, a weak EMG burst of a few tenths of a second duration, together with a slight movement, is often seen. However, a second pulse can set the cycle series in motion even after an interval of 40 sec between the pulses. A further booster stimulus pulse given while a reflex response is taking place can increase the speed of the movement. If the booster pulse is given just after cessation of reflex activity it can restart the activity, but this second cycle series is often shorter than the first one. The results indicate that the excitability of the central program generator is not constant. Long duration changes in the excitability are produced within the spinal cord.  相似文献   

8.
Sixty-six normal adults ranging in age from 20 to 85 years were presented with stimuli containing explicit instructions to initiate or to inhibit a motor response (the words ‘push’ or ‘wait’). In one task, the effect of stimulus probability was investigated by varying probability between 0.25 and 0.75 for both Go and No-go stimuli. In another task, the effect of visual noise was investigated by degrading the stimuli with ampersands on half of the trials. Regression analysis was used to examine the effects of age on P3 amplitude and latency for each stimulus type. The effects of stimulus variables on P3, independent of age, were examined by standardizing each subject's data to those expected for a 20 year old.P3 latency to all stimuli and RT to Go stimuli increased with age. The latency of P3s to No-go stimuli was less sensitive to age than Go stimuli. P3 amplitude at Cz and Pz (but not Fz) diminished with age. P3s to Go stimuli were maximal at Pz and earlier than P3s to No-go stimuli. P3s to No-go stimuli were maximal at Cz. These differences between Go and No-go stimuli remained true under visual noise and probability manipulations. Visual noise prolonged the latency of Go and No-go P3. Less probable Go and No-go stimuli elicited larger and later P3s than more probable stimuli. Decreasing the probability of the No-go stimulus enhanced its central distribution.  相似文献   

9.
The present study investigated the spatial organization of electrical activity in the canine rectoanal region and its relationship to motility patterns. Contraction and resting membrane potential (E(m)) were measured from strips of circular muscle isolated 0.5-8 cm from the anal verge. Rapid frequency [25 cycles/min (cpm)] E(m) oscillations (MPOs, 12 mV amplitude) were present across the thickness of the internal anal sphincter (IAS; 0.5 cm) and E(m) was constant (-52 mV). Between the IAS and the proximal rectum an 18 mV gradient in E(m) developed across the muscle thickness with the submucosal edge at -70 mV and MPOs were replaced with slow waves (20 mV amplitude, 6 cpm). Slow waves were of greatest amplitude at the submucosal edge. Nifedipine (1 micro M) abolished MPOs but not slow waves. Contractile frequency changes were commensurate with the changes in pacemaker frequency. Our results suggest that changing motility patterns in the rectoanal region are associated with differences in the characteristics of pacemaker potentials as well as differences in the sites from which these potentials emanate.  相似文献   

10.
Direct cortical responses (DCR) to a series of electrical stimuli with a frequency of I to 50 per second with 10 to 20 pulses in each series were studied in chronic experiments on dogs. The nature of cortical responses differed, depending on stimulation parameters. As the stimulation frequency increased, the amplitude and number of late DCR components decreased, and with further increase of frequency, the early components decreased as well. The following types of responses were revealed: recruiting, intermittent and decremental. As the stimulation frequency increased all the three types of responses could be obtained in one and the same cortical point. Recruiting was not typical of high-amplitude and multi-component DCR with a long phase of depression of initial negativity and slightly pronounced short-term subsequent facilitation, while the intermittent type of response appeared at lower frequencies than in other dogs (5 to 10 per sec). A decremental type of response was observed in all the dogs at a stimulation frequency higher than 30 per sec. The duration of the series of after-discharges to a burst of electrical pulses depended on the pattern of the DCR to a single stimulus and on the intensity and frequency of stimulation. With similar parameters of stimulation, the greater the amplitude and the longer the duration of the slow negative DCR wave, the longer the period of after-discharges following a series of stimuli.  相似文献   

11.
Perfusion of the snail (Helix lucorum L.) CNS with DG-AVP (concentration 10(-6) M) in the course of low frequency intracellular stimulation (2-4-minute interval) of the defensive reflex command neurons led to an increase in the excitability. It was expressed both in the reduction of the spike generation latency, in the increased number of spikes in response to fixed stimuli, and in the activation of pacemaker potentials. If DG-AVP was added to the medium during endoneuronal habituation, there was no increase in the excitability. It is supposed that modification of the neuronal excitability may be caused by the DG-AVP effect on the pacemaker mechanism.  相似文献   

12.
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.  相似文献   

13.
Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate.  相似文献   

14.
K Enomoto  M F Cossu  T Maeno  C Edwards  T Oka 《FEBS letters》1986,203(2):181-184
Epidermal growth factor (EGF) induces a hyperpolarizing response of 5-20 mV amplitude in mouse mammary epithelial cells in culture. The amplitude of the hyperpolarizing response was reduced by more than 60% within several minutes after addition of blockers of voltage and/or Ca2+-dependent K+ channels such as tetraethylammonium (7 mM) or quinine (0.29 mM). Both nifedipine (0.15 mM), a blocker of the Ca2+ channel, and ruthenium red (2 mM), an inhibitor of the Ca2+-binding site, also reduced the amplitude of the hyperpolarizing response by more than 60%. The Ca2+ ionophore, A23187 (3.8 microM), induced a large hyperpolarization, which was 25-40 mV and lasted about 3 min. These data suggest that activity of the Ca2+-dependent K+ channel was involved in the EGF-induced hyperpolarizing response of the mammary epithelial cells.  相似文献   

15.
刺激大鼠蓝斑核区对胃电和胃运动的影响   总被引:8,自引:2,他引:6  
用乌拉坦麻醉的大鼠,同步描记血压、胃电和胃运动,观察了刺激蓝斑核区对胃电和胃运动的影响,分析了其作用途径。实验结果表明,刺激蓝斑核区后血压平均升高60.5mmHg(P<0.001);胃电慢波的振幅由对照的0.52mV 减弱到0.18mV(P<0.001)。快波的振幅和频率也减少。胃内压平均下降到对照值的29.9%(P<0.001)。在横断颈髓的动物刺激蓝斑核区后血压的升高幅度明显减弱,平均升高9mmHg,升压效应的潜伏期明显延长;胃电慢波的振幅由对照的0.53mV 减弱到 0.24mV(P<0.001)。胃内压平均下降到对照值的45.1%。对胃电和胃运动的这种抑制效应可被切断迷走神经所完全消除。在事先切断迷走神经但脊髓仍保留完整的动物,刺激蓝斑核区使胃内压平均下降36.6%(P<0.01)。根据以上结果认为,蓝斑核区可能参与对胃电和胃运动的中枢性调节。此调节机制可能经由脊髓和迷走两条通路实现。  相似文献   

16.
A conditioned slow negative vertex potential (CSNP) was studied in the interval between two stimuli: anticipatory and trigger, under different experimental conditions, namely; in response to a trigger stimulus the subject was to press an operating key; or to memorize the number of trigger stimuli; or to respond to the trigger stimulus by pressing the key and memorizing the number of anticipatory stimuli. A sound, geomatrical figures and separate words flashing up on a screen were used as stimuli. All of them were presented both as anticipatory and trigger signals. If a sound was used as an anticipatory stimulus, and a word as trigger one, the recorded CSNP was at its maximum in the case of a simple motor reaction, and at its lowest during retention. When the stimuli interchanged, was drawn to the anticipatory verbal stimulus, the CSNP amplitude diminished and the latency became shorter. The dependence of SCNP parameters on the subject's attention drawn to the anticipatory resp. trigger stimuli is discussed.  相似文献   

17.
Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.  相似文献   

18.
The electroresponsiveness of mammalian thalamic neurons was studied in a slice preparation of the guinea pig diencephalon. Although the morphology of the cells varied, their electroresponsive properties were the same. Stimulation of thalamic cells at a membrane potential more negative than--60 mV produced burst responses and stimulation of more depolarized levels produced tonic firing of fast spikes. The burst response is generated by an inactivating Ca++-conductance. It is seen as a slow Ca++-spike which in turn triggers fast Na+-spikes. The Ca++-conductance is deinactivated by hyperpolarization beyond--60 mV. The membranes of thalamic neurons contain a number of other conductances including a Ca++-dependent K+-conductance producing spike afterhyperpolarization and a non-inactivating Na+-conductance which plays an important role during tonic activity of the cells. The early part of a response to a long-lasting stimulus given at rest or at a hyperpolarized level is dominated by the burst and thus is is independent of the stimulus amplitude. During the late part of such a response the firing rate is highly dependent of the stimulus intensity. Current-frequency plots for the first inter-spike intervals after the burst during long stimuli are upward convex, but after "steady-state" is reached the plots are almost linear.  相似文献   

19.
We investigated the effects of 2,4-dinitrophenol (DNP), the uncoupler of mitochondrial oxidative phosphorylation, on the Ca2+ -sensitive Cl- current component of the transient outward current (I(TO2)). Amphotericin B perforated-patch, whole-cell patch-clamp technique was employed (35 degrees C) using enzymatically isolated single rabbit atrial myocytes. We defined I(TO2) as the amplitude of the 2 mM 4-aminopyridine resistant transient outward current sensitive to anthracene-9-carboxylic acid (A9C). Between +5 and +45 mV, 0.2 mM A9C inhibited I(TO2) by approximately 70% (n = 13). Within 30 s after application of 0.2 mM DNP, both normal I(TO2) transients (n = 8) and the I(TO2) transients that remained after A9C treatment (n = 8) were inhibited completely. In cells expressing I(TO2) (70% of total), DNP also suppressed an A9C-insensitive slow outward current by approximately 40%, but the holding current at -80 mV was unaffected. There was a approximately 2 min latency between inhibitory effects of DNP and subsequent membrane current increase, presumably caused by activation of the ATP-sensitive K+ channels (n = 16). We conclude that DNP acutely inhibits I(TO2) via a mechanism presumably separate from metabolic inhibition.  相似文献   

20.
A study has been made of the input-output relationships of the in situ stretch receptor organs at the tibio-femoral joint of the locust. Sinusoidal deformations of variable amplitudes and frequencies were applied at different angular levels of the tibia. Three units were mainly recorded with silver electrodes on the lateral femoral nerve of the insect. The experimental conditions for which the discharge was periodically abolished are described. The shape and the amplitude of the impulse frequency modulation signal were studied also in relation to the stimulus gradation applied at the input. This response was highly temperature dependent. A graphical representation of the gain is given by a Bode plot (1·7 dB/octave), but over the range of stimulus cycle frequencies the phase-advance of impulse frequency modulation was constant. In successive cycles, there was no phase relation for each spike, except when the response was limited to a single one. In this condition, the response seemed locked in phase over a small range of relatively high frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号