首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strong hybridization signals were obtained from total DNA of two conifers, lodgepole pine (Pinus contorta) and Norway spruce (Picea abies), in a Southern blot analysis using a probe derived from the chloroplast gidA gene of the green alga Chlamydomonas reinhardtii. The pine fragments detected by the probe were found to originate from the chloroplast genome and, as judged by the signal intensity, this was also true for the spruce fragments. Sequence analysis of the hybridizing pine chloroplast DNA region revealed an open reading frame potentially encoding a 459 amino acid polypeptide, highly homologous to that deduced from the algal gene and to ORF465 of liverwort chloroplast DNA. Upstream of the gidA sequence, we found a trnN(GUU) gene and an open reading frame of 291 codons which was 78% identical to the frxC gene of liverwort. Since ORF465 is located immediately downstream of trnN and frxC in liverwort, the genetic organization of this region is very similar in the two plants. In contrast, neither the gidA nor the frxC gene is present in the chloroplast DNA of tobacco or rice. It was recently reported that deletions in the gidA region of the chloroplast genome of Chlamydomonas reinhardtii abolish the light-independent pathway of chlorophyll synthesis which exists in many algae and lower plants. The presence of the gidA gene on the chloroplast genomes of conifers may therefore be of significance with respect to the ability of these plants to synthesize chlorophyll in the dark.  相似文献   

2.
Summary The chloroplast gene for the epsilon subunit (atpE) of the CF1/CF0 ATPase in the green alga Chlamydomonas reinhardtii has been localized and sequenced. In contrast to higher plants, the atpE gene does not lie at the 3 end of the beta subunit (atpB) gene in the chloroplast genome of C. reinhardtii, but is located at a position 92 kb away in the other single copy region. The uninterrupted open reading frame for the atpE gene is 423 bp, and the epsilon subunit exhibits 43% derived amino acid homology to that from spinach. Codon usage for the atpE gene follows the restricted pattern seen in other C. reinhardtii chloroplast genes.The genes for the CF0 subunits I (atpF) and IV (atpI) of the ATPase complex have also been mapped on the chloroplast genome of C. reinhardtii. The six chloroplast ATPase genes in C. reinhardtii are dispersed individually between the two single copy regions of the chloroplast genome, an organization strikingly different from the highly conserved arrangement in two operon-like units seen in chloroplast genomes of higher plants.Abbreviations bp base pairs - CF1 chloroplast coupling factor 1 - CF0 chloroplast coupling factor 0 - F1 coupling factor 1 - F0 coupling factor 0 - kb kilobase pairs  相似文献   

3.
4.
Summary Ribulose bisphosphate carboxylase-oxygenase (Rubisco) is a key enzyme in the photosynthetic fixation of CO2 by the chloroplast. The synthesis of the enzyme is an example of the cooperation between the chloroplast and the nucleocytoplasmic compartments, as it is assembled from subunits encoded in the two respective genomes. I have used a synthetic oligonucleotide probe to isolate the nuclear Rubisco small subunit genes (rbcS) directly from a genomic library of Chlamydomonas reinhardtii DNA. They constitute only a small family: there are two rbcS genes, and an additional related sequence, in the C. reinhardtii genome. All three are clustered within 11kb at a single locus, and should thus be particularly well suited for genetic manipulation. The pattern of expression of rbcS RNA is dependent on the growth conditions.  相似文献   

5.
This review summarizes evidence at the molecular genetic, protein and regulatory levels concerning the existence and function of a putative ABC-type chloroplast envelope-localized sulfate transporter in the model unicellular green alga Chlamydomonas reinhardtii. From the four nuclear genes encoding this sulfate permease holocomplex, two are coding for chloroplast envelope-targeted transmembrane proteins (SulP and SulP2), a chloroplast stroma-targeted ATP-binding protein (Sabc) and a substrate (sulfate)-binding protein (Sbp) that is localized on the cytosolic side of the chloroplast envelope. The sulfate permease holocomplex is postulated to consist of a SulP–SulP2 chloroplast envelope transmembrane heterodimer, flanked by the Sabc and the Sbp proteins on the stroma side and the cytosolic side of the inner envelope, respectively. The mature SulP and SulP2 proteins contain seven transmembrane domains and one or two large hydrophilic loops, which are oriented toward the cytosol. The corresponding prokaryotic-origin genes (SulP and SulP2) probably migrated from the chloroplast to the nuclear genome during the evolution of Chlamydomonas reinhardtii. These genes, or any of its homologues, have not been retained in vascular plants, e.g. Arabidopsis thaliana, although they are encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the Photosystem II D1 reaction center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in Chlamydomonas reinhardtii is discussed along with its impact on the repair of Photosystem II from a frequently occurring photo-oxidative damage and H2-evolution related metabolism in this green alga.  相似文献   

6.
The chloroplast genome ofChlamydomonas reinhardtii has been transformed with a chimeric gene consisting of the chloroplastatpA promoter and the bacterial gene for aminoglycoside adenine transferase (aadA). TheatpA-aadA cassette has been placed within the chloroplast DNAEcoRI restriction enzyme fragment 14, or within the chloroplastBamH1 fragment 10. The chimeric constructs were introduced into the chloroplast by particle bombardment. Integration of the cassette into chloroplast DNA then occurred via homologous recombination of sequences flanking the cassette with their corresponding chloroplast sequences. We demonstrate that the chloroplastatpA promoter inatpA-aadA routinely recombines with its endogenous counterpart, resulting in heteroplasmic chloroplast DNA populations that may persist for many generations. The heterologous gene does not require a 3 inverted repeat sequence for its expression. TheatpA-aadA gene copy number, which is dictated here by its position in the chloroplast genome, is proportional to the steady state level ofatpA-aadA mRNA. However, neither genomic position, gene copy number, or mRNA level have a significant effect on cellular resistance to spectinomycin, nor activity of theaadA gene productin vitro. These results suggest that, in the case ofaadA, the limiting step for expression of this gene is at the translational or post-translational level. TheatpA-aadA cassette should prove a useful model for future studies on the maintenance and expression of heterologous genes inC. reinhardtii chloroplasts.  相似文献   

7.
Genomic clones encoding the plastidic fructose- 1,6-bisphosphate aldolase ofChlamydomonas reinhardtii were isolated and sequenced. The gene contains three introns which are located within the coding sequence for the mature protein. No introns are located within or near the sequence encoding the transit-peptide, in contrast to the genes for plastidic aldolases of higher plants. Neither the number nor the positions of the three introns of theC. reinhardtii aldolase gene are conserved in the plastidic or cytosolic aldolase genes of higher plants and animals. The 5 border sequences of introns in the aldolase gene ofC. reinhardtii exhibit the conserved plant consensus sequence. The 3 acceptor splice sites for introns 1 and 3 show much less similarity to the eukaryotic consensus sequences than do those of intron 2. The plastidic aldolase gene has two tandemly repeated CAAT box motifs in the promoter region. Genomic Southern blots indicate that the gene is encoded by a single locus in theC. reinhardtii genome.  相似文献   

8.
9.
Genomic, proteomic, phylogenetic and evolutionary aspects of a novel gene encoding a putative chloroplast-targeted sulfate permease of prokaryotic origin in the green alga Chlamydomonas reinhardtii are described. This nuclear-encoded sulfate permease gene (SulP) contains four introns, whereas all other known chloroplast sulfate permease genes lack introns and are encoded by the chloroplast genome. The deduced amino acid sequence of the protein showed an extended N-terminus, which includes a putative chloroplast transit peptide. The mature protein contains seven transmembrane domains and two large hydrophilic loops. This novel prokaryotic-origin gene probably migrated from the chloroplast to the nuclear genome during evolution of C. reinhardtii. The SulP gene, or any of its homologues, has not been retained in vascular plants, e.g. Arabidopsis thaliana, although it is encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). A comparative structural analysis and phylogenetic origin of chloroplast sulfate permeases in a variety of species is presented.  相似文献   

10.
11.
Summary The mitochondrial DNA of the two interfertile algal species Chlamydomonas smithii and Chlamydomonas reinhardtii are co-linear with the exception of ca. 1 kb insertion (the a insert) present in C. smithii DNA only. In vegetative diploids resulting from interspecific crosses, mitochondrial genomes are transmitted biparentally except for the a insert which is transmitted to all C. reinhardtii molecules in a manner reminiscent of the intron-mediated conversion event that occurs at the omega locus in yeast mitochondria, under the action of the I-SceI endonuclease. Here we report that the insert corresponds to a typical group I intron of 1075 bp, inserted within the gene for apocytochrome b and containing a 237 codon open reading frame (ORF). We also report the complete sequence of the apocytochrome b gene of C. smithii. Comparison with the sequence of the same gene in C. reinhardtii reveals the precise intron insertion site. These data, together with the previous genetic data provide the first example of intron mobility in mitochondria of the plant kingdom. The product of the intronic ORF shows 36% amino acid identity with the I-SceI endonuclease whereas the intron ribozyme shows a 60% identity at the nucleotide level with the Neurospora crassa cob · 1 intron. The possibility of a recent horizontal transfer of introns between fungi and algae is discussed.  相似文献   

12.
Codon use in the three sequenced chloroplast genomes (Marchantia, Oryza, and Nicotiana) is examined. The chloroplast has a bias in that codons NNA and NNT are favored over synonymous NNC and NNG codons. This appears to be a consequence of an overall high A + T content of the genome. This pattern of codon use is not followed by the psb A gene of all three genomes and other psb A sequences examined. In this gene, the codon use favors NNC over NNT for twofold degenerate amino acids. In each case the only tRNA coded by the genome is complementary to the NNC codon. This codon use is similar to the codon use by chloroplast genes examined from Chlamydomonas reinhardtii. Since psb A is the major translation product of the chloroplast, this suggests that selection is acting on the codon use of this gene to adapt codons to tRNA availability, as previously suggested for unicellular organisms.  相似文献   

13.
We have extended to about 75 the number of genes mapped on the Chlamydomonas moewusii and Chlamydomonas reinhardtii chloroplast DNAs (cpDNAs) by partial sequencing of the very closely related C. eugametos and C. moewusii cpDNAs and by hybridizations with Chlamydomonas chloroplast gene-specific sequences. Only four of these genes (tscA and three reading frames) have not been identified in any other algal cpDNAs and thus may be specific to Chlamydomonas. Although the C. moewusii and C. reinhardtii cpDNAs differ by complex sequence rearrangements, 38 genes scattered throughout the genome define 12 conserved clusters of closely linked loci. Aside from the rRNA operon, four of these gene clusters share similarity to evolutionarily primitive operons found in other cpDNAs, representing in fact remnants of these operons. Our results thus indicate that most of the ancestral bacterial operons that characterize the chloroplast genome organization of land plants and early-diverging photosynthetic eukaryotes have been disrupted before the emergence of the polyphyletic genus Chlamydomonas. All gene rearrangements between the C. moewusii and C. reinhardtii cpDNAs, with the exception of those accounting for the relocations of atpA, psbI and rbcL, occurred within corresponding regions of the genome. One of these rearrangements seems to have led to disruption of the ancestral region containing rpl23, rpl2, rps19, rpl16, rpl14, rpl5, rps8 and the psaA exon 1. This gene cluster, which bears striking similarity to the Escherichia coli S10 and spc operons, spans a continuous DNA segment in C. reinhardtii, while it maps to two separate fragments in C. moewusii.  相似文献   

14.
We cloned a 6.0-kb HindIII fragment from the cyanobacteriumPlectonema boryanum using the chloroplast chlB (ORF513) geneof the liverwort (Marchantia polymorpha) as a probe. An openreading frame (ORF508) encoding a polypeptide of 508 amino acidresidues was found within the nucleotide sequence of the 4,437-bpHindIII-EcoRV subfragment. The deduced amino acid sequence ofORF508 shows very high similarity to that encoded by the liverwortchlB gene (72.7%). A mutant, YFB14, in which ORF508 was inactivatedby the insertion of a kanamycin-resistance cartridge, was unableto synthesize chlorophyll, accumulating protochlorophyllidein darkness while synthesizing chlorophyll normally in the light.Thus, the chlB gene is the third gene that is essential forthe light-independent reduction of protochlorophyllide. Theother two genes are chlL and chlN, and the results suggest thatthe light-independent protochlorophyllide reductase consistsof at least three subunits, which are encoded by chlL, chlNand chlB. Using an antiserum prepared against a ChlB-6xHis fusionprotein expressed in Escherichia coli, we detected a proteinwith an apparent molecular weight of 58,000 in the membranefraction of the cyanobacterium. These results indicate thateither the cytoplasmic or thylakoid membranes could be the siteof the light-independent reduction of protochlorophyllide. (Received November 16, 1995; Accepted February 7, 1996)  相似文献   

15.
Summary A Chlamydomonas reinhardtii (C. reinhardtii) chloroplast expression vector, papc-B, containing the apc-B gene that encodes the beta subunit of the light-harvesting antenna protein allophycocyanin (APC) of cyanobacteria, was constructed and transferred to the chloroplast genome of C. reinhardtii by the biolistic method. The transformants were identified by Southern blot, Western blot and ELISA assays after selection on resistant medium. The recombinant APC beta subunit was expressed in the C. reinhardtii chloroplast and accounted for up to 2–3% (w/w) of the total soluble protein (TSP), suggesting a promising prospect of using C. reinhardtii chloroplasts to produce functional plant-derived proteins.  相似文献   

16.
Genomics of green algal hydrogen research   总被引:5,自引:0,他引:5  
This article summarizes knowledge on genes and their respective proteins in the field of green algal hydrogen research. Emphasis is placed on recently cloned genes from the unicellular green alga Chlamydomonas reinhardtii, including HydA1 and HydA2, which encode homologous [Fe]-hydrogenases, Tla1, which encodes a chlorophyll antenna size regulatory gene, SulP, which encodes a chloroplast sulfate permease, and Sta7, which encodes an isoamylase. Analysis of the structure and function of these genes and of their respective proteins in C. reinhardtii, and related unicellular green algae, is presented in light of the role they play in the hydrogen metabolism in these organisms. A discussion is offered as to the potential application of these genes in the field of hydrogen photoproduction.  相似文献   

17.
Summary The first AUG in the Chlamydomonas reinhardtii ADP/ATP translocator (CRANT) mRNA initiates an open reading frame (ORF) which is very similar (51–79% amino acid identity) to other ANT proteins. In contrast to higher plants, no evidence for a long amino-terminal extension was obtained. The 5 non-transcribed region of the single-copy CRANT gene contains sequence motifs present in other C. reinhardtii nuclear genes. Four introns, whose positions are not conserved in other ANT genes, interrupt the protein coding region. A short heat shock specifically reduces CRANT mRNA levels. CRANT mRNA levels were unaffected by a mutation in photosynthesis. In a dark/light regime CRANT mRNA levels are high in the dark phase and low in the early light phase. Data on translation initiation sites, splice junctions and the codon preferences of C. reinhardtii nuclear genes were compiled. With the exception of two rare codons, ACA and GGA, the CRANT gene exhibits the biased codon usage of C. reinhardtii nuclear genes that are highly expressed during normal vegetative growth.  相似文献   

18.
A carotenoid gene (crtR-B) from the green alga Haematococcus pluvialis, encoding β-carotene hydroxylase that was able to catalyze the conversion of β-carotene to zeaxanthin and canthaxanthin to astaxanthin, was cloned into Chlamydomonas reinhardtii chloroplast expression vector p64D to yield plasmid p64DcrtR-B. The vector p64DcrtR-B was transferred to the chloroplast genome of C. reinhardtii using micro-particle bombardment. PCR and Southern blot analyses indicated that crtR-B was integrated into the chloroplast genome of the transformants. RT-PCR assays showed that the H. pluvialis crt R-B gene was expressed in C. reinhardtii transformants. The transformants rapidly synthesized carotenoids in larger quantities than the wild-type upon being transferred from moderate to high-intensity white light. This research provides a foundation for further study to elucidate the possible mechanism of photo-protection by xanthophylls and other carotenoids in high light conditions or through exposure to UV radiation.  相似文献   

19.
Transformation of the nuclear, chloroplast, and mitochondrial genomes can now be accomplished inChlamydomonas reinhardtii. Many biosynthetic pathways are carried out in the chloroplast, and efforts to manipulate these pathways will require that gene products be directed to this compartment. Chloroplast proteins are encoded in either the chloroplast or nuclear genome. In the latter case they are synthesized in the cytoplasm and imported post-translationally into the chloroplast. Thus, strategies for expressing foreign genes or overexpressing endogenous genes whose products reside in the chloroplast could involve either genome. This paper reviews the present status of transformation methodology for the nuclear and chloroplast genomes inChlamydomonas. Considerations for expressing gene products in the chloroplast are discussed. Experimental evidence for homologous recombination during transformation of the nuclear genome is presented.  相似文献   

20.
We have cloned and sequenced the genes atpB and atpE, coding for CF1 subunits and , respectively, of the chloroplast genome of the brown alga Dictyota dichotoma. Although the coding site of atpE cannot be demonstrated by heterologous Southern hybridizations, a 417 bp reading frame 3 to atpB was identified as the gene atpE by sequence similarities with atpE genes from other sources. A maximum sequence identity of 30% is found between the predicted amino acid sequence of the Dictyota subunit and the corresponding cyanobacterial subunits. Including conserved amino acid replacements, the Dictyota subunit exhibits about 70% sequence similarity with the cyanobacterial and land plant subunits. As in cyanobacteria, the atpE gene does not overlap the preceding gene atpB. The deduced amino acid sequence of atpB is 74–79% identical to the corresponding cyanobacterial and chloroplast subunits. Entirely conserved are regions referred to as the catalytic and/or regulatory sites of ATP formation, including interacting regions between subunits and . A phylogram predicted from F1/CF1- subunits of eleven different organisms suggests a common evolutionary origin of plastids from chlorophytes and brown algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号