首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Intracellular signals elicited by LDLs are likely to play a role in the pathogenesis associated with increased LDL blood levels. We have previously determined that LDL stimulation of human skin fibroblasts, used as a model system for adventitial fibroblasts, activates p38 mitogen-activated protein kinases (MAPKs), followed by IL-8 production and increased wound-healing capacity of the cells. The proximal events triggering these responses had not been characterized, however. Here we show that MAPK kinases MKK3 and MKK6, but not MKK4, are the upstream kinases responsible for the activation of the p38 MAPKs and stimulation of wound closure in response to LDLs. Phosphoinositide 3 kinases (PI3Ks) and Ras have been suggested to participate in lipoprotein-induced MAPK activation. However, specific PI3K inhibitors or expression of a dominant-negative form of Ras failed to blunt LDL-induced p38 MAPK activation. The classical LDL receptor does not participate in LDL signaling, but the contribution of other candidate lipoprotein receptors has not been investigated. Using cells derived from scavenger receptor class B type I (SR-BI) knockout mice or the BLT-1 SR-BI inhibitor, we now show that this receptor is required for LDLs to stimulate p38 MAPKs and to promote wound healing. Identification of MKK3/6 and SR-BI as cellular relays in LDL-mediated p38 activation further defines the signaling events that could participate in LDL-mediated pathophysiological responses.  相似文献   

2.
Elevated low-density lipoprotein (LDL) levels induce activation of the p38 mitogen-activated protein kinase (MAPK), a stress-activated protein kinase potentially participating in the development of atherosclerosis. The nature of the lipoprotein components inducing p38 MAPK activation has remained unclear however. We show here that both LDLs and high-density lipoproteins (HDLs) have the ability to stimulate the p38 MAPKs with potencies that correlate with their cholesterol content. Cholesterol solubilized in methyl-beta-cyclodextrin was sufficient to activate the p38 MAPK pathway. Liposomes made of phosphatidylcholine (PC) or sphingomyelin, the two main phospholipids found in lipoproteins, were unable to stimulate the p38 MAPKs. In contrast, PC liposomes loaded with cholesterol potently activated this pathway. Reducing the cholesterol content of LDL particles lowered their ability to activate the p38 MAPKs. Cell lines representative of the three main cell types found in blood vessels (endothelial cells, smooth muscle cells and fibroblasts) all activated their p38 MAPK pathway in response to LDLs or cholesterol-loaded PC liposomes. These results indicate that elevated cholesterol content in lipoproteins, as seen in hypercholesterolemia, favors the activation of the stress-activated p38 MAPK pathway in cells from the vessel wall, an event that might contribute to the development of atherosclerosis.  相似文献   

3.
Because adventitial fibroblasts play an important role in the repair of blood vessels, we assessed whether elevation in LDL concentrations would affect fibroblast function and whether this depended on activation of intracellular signaling pathways. We show here that in primary human fibroblasts, LDLs induced transient activation of the p38 mitogen-activated protein kinase (MAPK) pathway, but not the c-Jun N-terminal kinase MAPK pathway. This activation did not require the recruitment of the LDL receptor (LDLR), because LDLs efficiently stimulated the p38 MAPK pathway in human and mouse fibroblasts lacking functional LDLR, and because receptor-associated protein, an LDLR family antagonist, did not block the LDL-induced p38 activation. LDL particles also induced lamellipodia formation and cell spreading. These effects were blocked by SB203580, a specific p38 inhibitor. Our data demonstrate that LDLs can regulate the shape of fibroblasts in a p38 MAPK-dependent manner, a mechanism that may participate in wound healing or vessel remodeling as in atherosclerosis.  相似文献   

4.
Human plasma phospholipid transfer protein (PLTP) plays an important role in lipoprotein metabolism. In this study, we investigated the effects of lipoproteins on the secretion of PLTP in cultured BeWo choriocarcinoma cells. Low-density lipoproteins (LDLs) decreased PLTP secretion in a dose- and time-dependent manner, whereas very low density lipoproteins and high-density lipoproteins (HDLs) had little effect. LDL suppression of PLTP secretion was not altered by the inhibition of both LDL receptor and LDL receptor-related protein with receptor-associated protein. Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, U0126, could abolish the LDL-mediated inhibition of PLTP secretion. Furthermore, LDL, but not HDL, could stimulate the expression of MAPK phosphatase-1 (MKP-1) in BeWo cells that resulted in the inactivation of p44/p42 extracellular signal-regulated kinase (ERK) 1 and 2, the family members of MAPKs. These results support the conclusion that LDL-mediated suppression of PLTP secretion in BeWo cells is through a LDL receptor-independent MAPK signaling pathway.  相似文献   

5.
Introduction: TRAIL (TNF-Related Apoptosis Inducing Ligand) is a member of the TNF superfamily of cell death inducing ligands. Interestingly, while malignant cells are responsive to TRAIL-induced cell death when used alone or in combination with other agents, normal cells do not appear to be sensitive to this ligand, making it a desirable therapeutic compound against many cancers, including many ovarian carcinomas. Interleukin-8 (IL-8), a member of the C-X-C chemokine family, has been found to be at significantly higher level in the ascites from patients with ovarian cancer. We have previously demonstrated a role for IL-8 in blocking TRAIL's ability to induce apoptosis in the ovarian cancer cell line, OVCAR3, possibly by repressing the DR4 TRAIL receptor expression and blocking caspase-8 cleavage. In addition, we showed a member of the mitogen-activated protein kinase (MAPK) superfamily, p38γ, is among the genes regulated in OVCAR3 cells by TRAIL and IL-8. The present study further investigates involvement of the p38 MAPK pathway in IL-8's ability to block TRAIL-induced apoptosis in the ovarian surface epithelial cancer cell line, OVCAR3. Results: In this study we demonstrate that p38γ as well as p38α play a significant role in IL-8's ability to block TRAIL-induced apoptosis. Through array analysis, as well as confirmation with other methods, we detected regulation of p38γ and p38α following treatment of the cancer cell line with IL-8 or TRAIL. We also tested two other isoforms of p38 MAPK, p38β and p38δ, but did not find significant regulation by IL-8 or TRAIL. We also examined activation of the p38 MAPK pathway, up-stream as well as down-stream, and noticed activation of the pathway following treatment with TRAIL and decreased activity when IL-8 was introduced. With the use of specific inhibitors, we were able to further confirm the role of this pathway in TRAIL-induced apoptosis, and IL-8's ability to block this apoptosis, in ovarian cancer cell lines. Conclusion: Taken together, these results further solidify the role of IL-8 in blocking the TRAIL-induced apoptosis in these ovarian carcinoma cells and provide new molecular insight into this potentially important therapeutic target.  相似文献   

6.
Summary Endothelial lesion by oxidized low-density liproproteins (LDL) is one of the first stages in the development of atherosclerosis. The effect of these lipoproteins can range from a functional lesion of the endothelium to death of the endothelial cells by apoptosis. High-density lipoproteins (HDL) are one of the factors which can have a protective effect against the development of atheromatous plaques. The aim of this study is to establish whether the death of endothelial cells by apoptosis induced by oxidized LDLs is prevented by HDLs. ECV304 endothelial cells and bovine aorta endothelial cells were incubated with native LDLs, oxidized LDLs, and a combination of both oxidized LDLs and HDLs. Oxidized LDLs caused a significant increase of mortality mainly by apoptosis. However, when HDLs were added together with oxidized LDLs the percentage of total mortality, the degree of lipoprotein oxidation in the medium, and the percentage of cells in apoptosis were all significantly decreased. HDLs protect against the cytotoxicity of oxidized LDLs possibly by preventing the propagation of the oxidative chain in these lipoproteins.Abbreviations LDL low-density lipoproteins - HDL high-density lipoproteins - BAEC bovine aortic endothelial cell - TBARS thiobarbituric acid-reactive substances  相似文献   

7.
The sialic acid content of electronegative low density lipoprotein (LDL) and LDL isolated from human aortic intima was measured. Sialic acid level in electronegative LDL of healthy subjects was 1.7-fold lower than in native LDL. Sialic acid content in electronegative LDL of coronary atherosclerosis patients was 3-fold lower than in native LDL. Lipoproteins isolated from grossly normal human aortic intima and from fatty streaks contained 20-56% less sialic acid as compared to blood plasma LDL. A negative correlation was established between the ability of electronegative and aortic LDL to stimulate lipid accumulation in cells cultured from uninvolved human aortic intima and lipoprotein sialic acid content. The results obtained indicate that electronegative and aortic LDLs have a low sialic acid content, i.e., are desialylated lipoproteins. Considered together with the fact that all known atherogenic LDLs have similar characteristics, our findings suggest that modified LDLs are the same lipoprotein particles subjected to multiple modification.  相似文献   

8.
Low density lipoproteins (LDLs) play an important role in the pathogenesis of atherosclerosis. LDL has been shown to be mitogenic and proapoptotic for vascular smooth muscle cells. However, the mechanisms are poorly understood and may result from an alteration in intracellular mitogenic signaling either directly by LDL or indirectly through an autocrine effect involving growth factor secretion and/or growth factor receptor expression. Insulin-like growth factor-1 (IGF-1) is an autocrine/paracrine factor for vascular smooth muscle cells and has potent anti-apoptotic effects. Thus, we hypothesized that part of the proliferative responses to LDLs may be explained by its modulation of IGF-1 or IGF-1 receptor (IGF-1R) expression. Treatment of rat vascular smooth muscle cells with increasing doses of native LDL dose-dependently increased IGF-1 mRNA by up to 2.6-fold; however, native LDL had no effect on IGF-1R mRNA expression. In contrast, the same doses of oxidized LDL significantly reduced IGF-1 and IGF-1R mRNA by 80 and 61%, respectively, and reduced IGF-1 and IGF-1R protein expression by 63 and 46%. In addition, native and oxidized LDL significantly increased IGF-1-binding protein-2 and IGF-1-binding protein-4 expression as measured by Western ligand blot. Most interestingly, anti-IGF-1 antiserum completely inhibited LDL-induced but not serum-induced increase in (3)H-thymidine incorporation, indicating a requirement for IGF-1 in the LDL-stimulated mitogenic signaling pathway. In summary, these results suggest that native and oxidized LDLs have differential effects on IGF-1 and IGF-1R expression. Because IGF-1 is a potent survival factor for vascular smooth muscle cells, our findings suggest that moderately oxidized LDL may favor proliferation of smooth muscle cells, whereas oxidized LDL may contribute to plaque apoptosis by local depletion of IGF-1 and IGF-1R.  相似文献   

9.
10.
Human S100A7 (psoriasin) is highly expressed in psoriasis and other inflammatory diseases; however, the function of S100A7 in wound repair remains largely unknown. Here we demonstrated that skin injury increased the expression of S100A7. Damaged cells from wounded skin induced the expression of S100A7 via the activation of Toll-like receptor 3 (TLR3) followed by the activation of p38 MAPK. S100A7, in turn, acted on keratinocytes to induce the expression of terminal differentiation marker gene loricrin through the activation of p38 MAPK and caspase-1. The differentiation of keratinocytes induced by S100A7 resulted in skin stratification, thus efficiently promoting wound closure. Taken together, our results demonstrate that the activation of TLR3 accelerates wound closure via the induction of S100A7 to induce keratinocyte differentiation. These findings also provide new insights into the development of different forms of treatment with skin wounds.  相似文献   

11.
Inhibitors of p38 mitogen-activated protein kinase (MAPK) diminish inflammatory arthritis in experimental animals. This may be effected by diminishing the production of inflammatory mediators, but this kinase is also part of the IL-1 signal pathway in articular chondrocytes. We determined the effect of p38 MAPK inhibition on proliferative and synthetic responses of lapine chondrocytes, cartilage, and synovial fibroblasts under basal and IL-1-activated conditions.Basal and growth factor-stimulated proliferation and proteoglycan synthesis were determined in primary cultures of rabbit articular chondrocytes, first-passage synovial fibroblasts, and cartilage organ cultures. Studies were performed with or without p38 MAPK inhibitors, in IL-1-activated and control cultures. Media nitric oxide and prostaglandin E2 were assayed.p38 MAPK inhibitors blunt chondrocyte and cartilage proteoglycan synthesis in response to transforming growth factor beta; responses to insulin-like growth factor 1 (IGF-1) and fetal calf serum (FCS) are unaffected. p38 MAPK inhibitors significantly reverse inhibition of cartilage organ culture proteoglycan synthesis by IL-1. p38 MAPK inhibition potentiated basal, IGF-1-stimulated and FCS-stimulated chondrocyte proliferation, and reversed IL-1 inhibition of IGF-1-stimulated and FCS-stimulated DNA synthesis. Decreases in nitric oxide but not prostaglandin E2 synthesis in IL-1-activated chondrocytes treated with p38 MAPK inhibitors are partly responsible for this restoration of response. Synovial fibroblast proliferation is minimally affected by p38 MAPK inhibition.p38 MAPK activity modulates chondrocyte proliferation under basal and IL-1-activated conditions. Inhibition of p38 MAPK enhances the ability of growth factors to overcome the inhibitory actions of IL-1 on proliferation, and thus could facilitate restoration and repair of diseased and damaged cartilage.  相似文献   

12.
Mature dendritic cell generation promoted by lysophosphatidylcholine   总被引:5,自引:0,他引:5  
During the acute phase response, the interplay between high density lipoproteins and low density lipoproteins (LDL) favors transient generation of oxidized LDL with proinflammatory activities. We hypothesized that oxidative modification of LDL is an endogenous signal for the immune system, and we have shown that oxidized LDL promotes mature dendritic cell transition from monocyte, therefore linking the nonspecific acute phase response to adaptive immunity. Lysophosphatidylcholine (LPC) is a major lipid component of oxidized LDL with reported proinflammatory activities. We now report that LPC acts through G protein-coupled receptors on differentiating monocytes to generate mature dendritic cells with the ability to stimulate IL-2 and IFN-gamma production by allogeneic T lymphocytes. LPC is most effective in lipoprotein-deprived serum and can be inhibited by an excess of native LDLs reflecting normal plasma conditions. Therefore, by controlling the balance between native and oxidized lipoproteins and the resulting production of LPC, the acute phase reactants may provide a context of Ag presentation that is transiently favorable to immune activation. Intralipid, a therapeutic lipid emulsion for parenteral nutrition with unexplained immunomodulatory properties, also blocked LPC activity. This opens perspectives for the understanding and treatment of acute and chronic inflammatory diseases.  相似文献   

13.

Background

Wound healing is a highly dynamic process that requires signaling from the extracellular matrix to the fibroblasts for migration and proliferation, and closure of the wound. This rate of wound closure is impaired in diabetes, which may be due to the increased levels of the precursor for advanced glycation end products, 3-deoxyglucosone (3DG). Previous studies suggest a differential role for p38 mitogen-activated kinase (MAPK) during wound healing; whereby, p38 MAPK acts as a growth kinase during normal wound healing, but acts as a stress kinase during diabetic wound repair. Therefore, we investigated the signaling cross-talk by which p38 MAPK mediates wound healing in fibroblasts cultured on native collagen and 3DG-collagen.

Methodology/Principal Findings

Using human dermal fibroblasts cultured on 3DG-collagen as a model of diabetic wounds, we demonstrated that p38 MAPK can promote either cell growth or cell death, and this was dependent on the activation of AKT and ERK1/2. Wound closure on native collagen was dependent on p38 MAPK phosphorylation of AKT and ERK1/2. Furthermore, proliferation and collagen production in fibroblasts cultured on native collagen was dependent on p38 MAPK regulation of AKT and ERK1/2. In contrast, 3DG-collagen decreased fibroblast migration, proliferation, and collagen expression through ERK1/2 and AKT downregulation via p38 MAPK.

Conclusions/Significance

Taken together, the present study shows that p38 MAPK is a key signaling molecule that plays a significantly opposite role during times of cellular growth and cellular stress, which may account for the differing rates of wound closure seen in diabetic populations.  相似文献   

14.
Paracoccidioides brasiliensis is a pathogenic, dimorphic fungus that causes paracoccidioidomycosis, a systemic human mycosis that is highly prevalent in Latin America. In this study, we demonstrated that P. brasiliensis yeasts induced interleukin (IL)-8 and IL-6 secretion by human lung epithelial A549 cells. However, tumor necrosis factor-α and interferon-γ were undetectable in these cultures. Moreover, P. brasiliensis yeasts induced activation of p38 mitogen-activated protein kinase (MAPK), c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 in A549 cells, and IL-8 and IL-6 secretion promoted by this fungus was dependent on activation of p38 MAPK and ERK 1/2. In addition, IL-8 and IL-6 levels were significantly higher in culture supernatants of A549 cells that were incubated with formaldehyde-fixed P. brasiliensis compared to cultures of cells that were infected with live yeasts. Our results indicate that the observed cytokine level differences were due to protease expression, in live yeasts, that degraded these cytokines. Degradation of human recombinant IL-8 and IL-6 by live P. brasiliensis was inhibited by AEBSF and aprotinin, suggesting that these proteases belong to a family of serine proteases. This is the first report showing that P. brasiliensis may modulate host inflammation by expressing proteases that degrade proinflammatory cytokines.  相似文献   

15.
Low density lipoproteins (LDL) inhibit the Na+/H+ antiport and thereby sensitize platelet towards agonist. However, mechanisms underlying the suppressing effect of LDL on Na+/H+ exchange are unclear. We here show that the lowering of intracellular pH and the suppression of the sodium propionate-induced Na+/H+ exchange in the presence of LDL are abolished by SKF86002, a selective inhibitor of p38MAP kinase (p38MAPK). The inhibitory effect of LDL on Na+/H+ exchange was mimicked by H2O2, which directly activates p38MAPK. Exposure of platelets to LDL or H2O2 led to phosphorylation of p38MAPK, its upstream regulator MAP kinase kinase 3/6 (MKK 3/6), and its downstream target heat shock protein 27 (HSP27), and this effect was abrogated in SKF86002-pretreated platelets. In addition, both LDL and H2O2 produced the SKF86002-sensitive phosphorylation of an oligopeptide encompassing p38MAPK phosphorylation sequence derived from NHE-1, a major Na+/H+ exchanger in platelets. We further show that the sensitizing effects of LDL on the thrombin-induced platelet activation, as reflected by aggregation and granule secretion, are abolished in cells pretreated with SKF86002. We conclude that activation of p38MAPK is required for the inhibitory effect of LDL on Na+/H+ antiport and thereby for LDL-dependent sensitization in human platelets.  相似文献   

16.
17.
Elevated activity of 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMG-CoA reductase) was observed in the rabbit ovary and corpus luteum during pregnancy. Based on this study, it was proposed that de novo cholesterol synthesis rather than the uptake of exogenous plasma cholesterol (lipoproteins) was of primary importance in providing steroid substrate for progesterone synthesis by the rabbit luteal cell. Using a perifusion system, the present study challenges this hypothesis by demonstrating that both low- and high-density lipoproteins (at protein concentrations of 100 micrograms/ml and 50 micrograms/ml, respectively) were able to acutely stimulate progesterone production by dissociated rabbit luteal cells. The increase in progesterone synthesis was due to increased cholesterol substrate and not to protein-enhanced progesterone release. The ability of luteal cells to respond to lipoproteins was dependent on both dose- and sequence of treatment, with high-density lipoprotein (HDL) being unable to stimulate progesterone production if preceded by perifusion with low-density lipoprotein (LDL) or HDL. In addition, 17 beta-estradiol appeared to regulate lipoprotein utilization by attenuating the LDL response after 1 h of perifusion. We conclude that lipoproteins may provide cholesterol substrate for progesterone biosynthesis in vitro and that 17 beta-estradiol, in addition to maintaining progesterone production by luteal cells, may also regulate lipoprotein utilization. Thus, maintenance of steady progesterone secretion in response to estradiol supercedes that of LDL-stimulated progesterone secretion by rabbit luteal cells in vitro. This study suggests an interaction between estrogen and lipoproteins that may prove physiologically important in regulating progesterone production by rabbit luteal cells in vivo.  相似文献   

18.
19.
Accumulating evidence suggests that progenitor cells may decrease destructive inflammation and reduce tissue loss by antiapoptotic mechanisms. However, they remain poorly characterized, and many questions remain regarding the mechanisms by which they may positively affect wound healing, tissue remodeling, or tissue regeneration. It has been speculated that various growth factors are responsible, but what components of the wound milieu stimulate progenitor cell production of growth factors and by what mechanisms? We hypothesized that tumor necrosis factor-alpha (TNF-alpha) stimulated progenitor cell secretion of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and insulin-like growth factor I (IGF-I) by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism. Human mesenchymal stem cells (hMSCs) and human adipose progenitor cells (hAPCs) were divided into four groups: control, p38 MAPK inhibitor (p38MKI), TNF, and TNF + p38MKI. After 24 h of incubation, supernatants were harvested for ELISA of VEGF, HGF, and IGF-I. Cells were collected for Western blot analysis of p38 MAPK activation. Secretion of VEGF, HGF, and IGF-I in hMSCs and hAPCs was significantly increased by stimulation with TNF and was associated with increased activation of p38 MAPK. The p38 MAPK inhibitor decreased production of TNF-stimulated VEGF, HGF, and IGF-I in hMSCs and hAPCs. However, p38 MAPK inhibitor alone had no effect on production of growth factors. These data demonstrate that progenitor cells are potent sources of VEGF, HGF, and IGF-I. TNF, a prominent tissue cytokine, strongly stimulated production of growth factors by hMSCs and hAPCs via a p38 MAPK-dependent mechanism.  相似文献   

20.
This study was conducted to determine the secretion rate and composition of lipoproteins secreted by HepG2 cells as influenced by the type of fatty acid present in the incubation medium. Cells were preincubated for 24 h with palmitic, oleic, elaidic, linoleic or conjugated linoleic acid (CLA), and the lipoproteins secreted during a subsequent incubation period of 24 h were collected for analysis. The secretion rate of apolipoprotein B-100 (apoB) was significantly greater in HepG2 cells preincubated with elaidic acid compared with those preincubated with palmitic or oleic acid; apoB secretion was greater in cells preincubated with CLA compared with those preincubated with linoleic acid. The lipid composition of secreted lipoproteins was also influenced by fatty acid treatment, resulting in significantly smaller lipoprotein particles secreted by cells preincubated with elaidic acid and CLA compared with those secreted by cells treated with oleic acid and linoleic acid, respectively. Our results are relevant to human metabolism for the following reasons: (1) the size of plasma low-density lipoproteins (LDLs) is determined, at least in part, by the composition of apoB-containing lipoproteins secreted by the liver; (2) small plasma LDL particles are associated with an increased risk of coronary heart disease; and (3) specific dietary fatty acids can affect the composition and size of plasma LDLs, thereby imparting a relative atherogenicity to plasma LDLs independent of LDL cholesterol concentration. The present study therefore suggests that elaidic acid and CLA promote the hepatic secretion of small apoB-containing lipoproteins, which could lead to an increased production of small plasma LDL particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号