首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In polarized epithelial cells, agonists trigger Ca2+ waves and oscillations. These patterns may be caused by the compartmentalization of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools into specific regions. We have investigated the relationship between the distribution of IP3 receptors (IP3Rs) and the spatiotemporal pattern of Ca2+ signaling in the duct cells of the rat submandibular gland (SMG). Using immunofluorescence, although labeling was somewhat heterogeneous, the IP3Rs were colocalized to the apical pole of the duct cells. Immunoelectron microscopy identified small apical vesicles bearing IP3R2 in some types of duct cells. Real-time confocal imaging of intact ducts demonstrated that, after carbachol stimulation, an initial Ca2+ spike occurred in the apical region. Subsequently, repetitive Ca2+ spikes spread from the apical to the middle cytoplasm. These apical Ca2+ initiation sites were found only in some “pioneer cells,” rather than in all duct cells. We performed both Ca2+ imaging and immunofluorescence on the same ducts and detected the strongest immunosignals of IP3R2 in the Ca2+ initiation sites of the pioneer cells. The subcellular localization and expression level of IP3Rs correlated strongly with the spatiotemporal nature of the intracellular Ca2+ signal and distinct Ca2+ responses among the rat SMG duct cells.  相似文献   

2.
Puffs are localized, transient elevations in cytosolic Ca2+ that serve both as the building blocks of global cellular Ca2+ signals and as local signals in their own right. They arise from clustered inositol 1,4,5-trisphosphate receptor/channels (IP3Rs), whose openings are coordinated by Ca2+-induced Ca2+ release (CICR). We utilized total internal reflection fluorescence imaging of Ca2+ signals in neuroblastoma cells with single-channel resolution to elucidate the mechanisms determining the triggering, amplitudes, kinetics, and spatial spread of puffs. We find that any given channel in a cluster has a mean probability of ∼66% of opening following opening of an initial “trigger” channel, and the probability of puff triggering thus increases steeply with increasing number of channels in a cluster (cluster size). Mean puff amplitudes scale with cluster size, but individual amplitudes vary widely, even at sites of similar cluster size, displaying similar proportions of events involving any given number of the channels in the cluster. Stochastic variation in numbers of Ca2+-inhibited IP3Rs likely contributes to the variability of amplitudes of repeated puffs at a site but the amplitudes of successive puffs were uncorrelated, even though we observed statistical correlations between interpuff intervals and puff amplitudes. Initial puffs evoked following photorelease of IP3—which would not be subject to earlier Ca2+-inhibition—also showed wide variability, indicating that mechanisms such as stochastic variation in IP3 binding and channel recruitment by CICR further determine puff amplitudes. The mean termination time of puffs lengthened with increasing puff amplitude size, consistent with independent closings of channels after a given mean open time, but we found no correlation of termination time with cluster size independent of puff amplitude. The spatial extent of puffs increased with their amplitude, and puffs of similar size were of similar width, independent of cluster size.  相似文献   

3.
Sustained elevation of intracellular calcium by Ca2+ release–activated Ca2+ channels is required for lymphocyte activation. Sustained Ca2+ entry requires endoplasmic reticulum (ER) Ca2+ depletion and prolonged activation of inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ release channels. However, a major isoform in lymphocyte ER, IP3R1, is inhibited by elevated levels of cytosolic Ca2+, and the mechanism that enables the prolonged activation of IP3R1 required for lymphocyte activation is unclear. We show that IP3R1 binds to the scaffolding protein linker of activated T cells and colocalizes with the T cell receptor during activation, resulting in persistent phosphorylation of IP3R1 at Tyr353. This phosphorylation increases the sensitivity of the channel to activation by IP3 and renders the channel less sensitive to Ca2+-induced inactivation. Expression of a mutant IP3R1-Y353F channel in lymphocytes causes defective Ca2+ signaling and decreased nuclear factor of activated T cells activation. Thus, tyrosine phosphorylation of IP3R1-Y353 may have an important function in maintaining elevated cytosolic Ca2+ levels during lymphocyte activation.  相似文献   

4.
Inositol (1,4,5)-trisphosphate receptors (IP3Rs) release intracellular Ca2+ as localized Ca2+ signals (Ca2+ puffs) that represent the activity of small numbers of clustered IP3Rs spaced throughout the endoplasmic reticulum. Although much emphasis has been placed on estimating the number of active Ca2+ release channels supporting Ca2+ puffs, less attention has been placed on understanding the role of cluster microarchitecture. This is important as recent data underscores the dynamic nature of IP3R transitions between heterogeneous cellular architectures and the differential behavior of IP3Rs socialized into clusters. Here, we applied a high-resolution model incorporating stochastically gating IP3Rs within a three-dimensional cytoplasmic space to demonstrate: 1), Ca2+ puffs are supported by a broad range of clustered IP3R microarchitectures; 2), cluster ultrastructure shapes Ca2+ puff characteristics; and 3), loosely corralled IP3R clusters (>200 nm interchannel separation) fail to coordinate Ca2+ puffs, owing to inefficient triggering and impaired coupling due to reduced Ca2+-induced Ca2+ release microwave velocity (<10 nm/s) throughout the channel array. Dynamic microarchitectural considerations may therefore influence Ca2+ puff occurrence/properties in intact cells, contrasting with a more minimal role for channel number over the same simulated conditions in shaping local Ca2+ dynamics.  相似文献   

5.

Background

Inositol 1,4,5-trisphosphate receptors (IP3R1, 2, and 3) are intracellular Ca2+ release channels that regulate various vital processes. Although the ryanodine receptor type 2, another type of intracellular Ca2+ release channel, has been shown to play a role in embryonic cardiomyocytes, the functions of the IP3Rs in cardiogenesis remain unclear.

Methodology/Principal Findings

We found that IP3R1−/−-IP3R2−/− double-mutant mice died in utero with developmental defects of the ventricular myocardium and atrioventricular (AV) canal of the heart by embryonic day (E) 11.5, even though no cardiac defect was detectable in IP3R1−/− or IP3R2−/− single-mutant mice at this developmental stage. The double-mutant phenotype resembled that of mice deficient for calcineurin/NFATc signaling, and NFATc was inactive in embryonic hearts from the double knockout-mutant mice. The double mutation of IP3R1/R2 and pharmacologic inhibition of IP3Rs mimicked the phenotype of the AV valve defect that result from the inhibition of calcineurin, and it could be rescued by constitutively active calcineurin.

Conclusions/Significance

Our results suggest an essential role for IP3Rs in cardiogenesis in part through the regulation of calcineurin-NFAT signaling.  相似文献   

6.
A database search of the Paramecium genome reveals 34 genes related to Ca2+-release channels of the inositol-1,4,5-trisphosphate (IP3) or ryanodine receptor type (IP3R, RyR). Phylogenetic analyses show that these Ca2+ release channels (CRCs) can be subdivided into six groups (Paramecium tetraurelia CRC-I to CRC-VI), each one with features in part reminiscent of IP3Rs and RyRs. We characterize here the P. tetraurelia CRC-IV-1 gene family, whose relationship to IP3Rs and RyRs is restricted to their C-terminal channel domain. CRC-IV-1 channels localize to cortical Ca2+ stores (alveolar sacs) and also to the endoplasmic reticulum. This is in contrast to a recently described true IP3 channel, a group II member (P. tetraurelia IP3RN-1), found associated with the contractile vacuole system. Silencing of either one of these CRCs results in reduced exocytosis of dense core vesicles (trichocysts), although for different reasons. Knockdown of P. tetraurelia IP3RN affects trichocyst biogenesis, while CRC-IV-1 channels are involved in signal transduction since silenced cells show an impaired release of Ca2+ from cortical stores in response to exocytotic stimuli. Our discovery of a range of CRCs in Paramecium indicates that protozoans already have evolved multiple ways for the use of Ca2+ as signaling molecule.Ca2+ is an important component of cell activity in all organisms, from protozoa to mammals. Thereby Ca2+ may originate from the outside medium and/or from internal stores (7, 18). Ca2+ release from internal stores is mediated by various Ca2+ release channels (CRCs), of which the inositol-1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) families have been studied most extensively (8, 9, 29, 63). IP3Rs and RyRs have been identified in various metazoan organisms (reviewed in references 9, 28, and 104). According to these reviews, there exist three genetically distinct isoforms of each receptor type in mammals and orthologues have been identified in various nonmammalian vertebrates, e.g., frogs, chickens, and fish. RyRs and IP3Rs were also cloned and sequenced in the invertebrates Drosophila melanogaster and Caenorhabditis elegans, which possess one copy of each receptor type.Functional evidence for Ca2+ release in response to ryanodine or IP3 receptor agonists has been described in several unicellular systems. Treatment of permeabilized Plasmodium chabaudi parasites with IP3 results in Ca2+ release, which is inhibited by the IP3 receptor antagonist heparin (69). Another apicomplexan parasite, Toxoplasma gondii, responds to agonists and antagonists of both, ryanodine and IP3 receptors, by mediating increases in intracellular Ca2+ concentration ([Ca2+]i) (56). Stimulation of Trypanosoma cruzi with carbachol results in increased [Ca2+]i and IP3 (59). IP3 and cyclic ADP-ribose induces Ca2+ release in Euglena gracilis microsome fractions in a dose-dependent manner (61). In the giant algae Chara corallina and Nitrella translucens, IP3 produces action potentials involving increased [Ca2+]i (93). Treatment of vacuolar membrane vesicles from Candida albicans with IP3 results in Ca2+ release, blocked by heparin and ruthenium red (14). IP3 generates and maintains a Ca2+ gradient in the hyphal tip of Neurospora crassa and the IP3-sensitive channels have been reconstituted and characterized with the planar bilayer method (87). In summary, these publications suggest that IP3-dependent signaling pathways are conserved among unicellular organisms, including protozoa.Despite these data, the molecular characterization of IP3 or ryanodine receptors in low eukaryotes is currently a challenge since the identification of orthologues has not been possible thus far, probably because of evolutionary sequence divergence (66). Traynor et al. (96) identified an IP3 receptor-like protein, IplA, in Dictyostelium discoideum, which possesses regions related to IP3R sequences, but thus far no evidence for IP3 interaction exists. We have recently described an IP3R in the ciliated protozoa Paramecium tetraurelia (referred to here as P. tetraurelia IP3RN) (53), with features characteristic of mammalian IP3Rs in terms of topology and ability for IP3 binding. The expression level of P. tetraurelia IP3RN is modulated by extracellular Ca2+ concentrations ([Ca2+]o) and immunofluorescence studies reveal an unexpected localization to the contractile vacuole complex (CVC), the major organelle involved in osmoregulation (2). The ionic composition of the contractile vacuole fluid by ion-selective microelectrodes (91) suggests that the organelle plays a major role in expelling an excess of cytosolic Ca2+. Therefore, these IP3Rs may here mediate a latent, graded reflux of Ca2+ for fine-tuning of [Ca2+]i and thus serve [Ca2+] homeostasis (53).Besides [Ca2+] homeostasis, the Paramecium cell has to regulate a variety of well-characterized processes (75). This includes exocytosis of dense-core secretory vesicles (trichocysts) (71, 74, 99). Each cell possesses up to 1,000 trichocysts attached to the cell membrane. Their contents can be extruded synchronously in response to natural stimuli, i.e., predators (34, as confirmed by Knoll et al. [49]), to artificial polyamine secretagogues such as aminoethyldextran (AED) (78), to caffeine (48) or to the ryanodine substitute, 4-chloro-meta-cresol (4-CmC) (46). Their expulsion strictly depends on Ca2+ (10) and is accompanied by an increase of intracellular [Ca2+]i (24, 47). This Ca2+ signal originates from rapid mobilization of cortical stores, the alveolar sacs (33, 64, 74), superimposed by Ca2+ influx (46, 72). It thus represents a SOC-type mechanism (SOC, store-operated Ca2+ entry) known from mammalian systems (81).Upon exocytosis stimulation ∼60% of their total Ca2+ is released from alveolar sacs (33). These are Ca2+ stores (90) represented by flat membrane compartments tightly attached at the cell membrane surrounding each trichocyst docking site. They possess a SERCA-type pump located at the membrane facing the cell center (36, 37) and a luminal high-capacity/low-affinity CaBP of the calsequestrin type (73). Thus far, Ca2+ release channels of these stores were identified only indirectly as cells respond by exocytosis to the RyR activators caffeine (54, 48) and 4-CmC (46). However, an involvement of conserved RyRs has remained questionable as ryanodine is not able to activate Ca2+ release from alveolar sacs, as is the case with IP3 (54). Therefore, one of the most intriguing questions is the elucidation of the molecular nature of the channels mediating Ca2+ release from alveolar sacs upon stimulated exocytosis.In the present work we describe a novel family of CRCs (P. tetraurelia CRC-IV-1), whose members display several properties of the channels postulated above. In detail, the identified CRC-IV-1 channels localize to the alveolar sacs. Functional and fluorochrome analyses after gene silencing reveal that they are essential for mediating Ca2+ release and exocytosis in response to AED, caffeine, or 4-CmC. Their classification as “novel” CRC type is based on a restricted relationship to the C-terminal channel domains of IP3Rs and RyRs. The overall size and the number of putative transmembrane domains resemble IP3Rs, but N-terminal parts of CRC-IV-1 channels do not show any conservation, such as an IP3-binding domain. Therefore, CRC-IV-1 channels represent distant relatives of IP3Rs and RyRs and may belong to an ancestral Ca2+ signaling pathway.  相似文献   

7.
The inositol trisphosphate (IP3) signaling pathway evokes local Ca2+ signals (Ca2+ puffs) that arise from the concerted openings of clustered IP3 receptor/channels in the ER membrane. Physiological activation is triggered by binding of agonists to G-protein-coupled receptors (GPCRs) on the cell surface, leading to cleavage of phosphatidyl inositol bisphosphate and release of IP3 into the cytosol. Photorelease of IP3 from a caged precursor provides a convenient and widely employed means to study the final stage of IP3-mediated Ca2+ liberation, bypassing upstream signaling events to enable more precise control of the timing and relative concentration of cytosolic IP3. Here, we address whether Ca2+ puffs evoked by photoreleased IP3 fully replicate those arising from physiological agonist stimulation. We imaged puffs in individual SH-SY5Y neuroblastoma cells that were sequentially stimulated by picospritzing extracellular agonist (carbachol, CCH or bradykinin, BK) followed by photorelease of a poorly-metabolized IP3 analog, i-IP3. The centroid localizations of fluorescence signals during puffs evoked in the same cells by agonists and photorelease substantially overlapped (within ∼1 μm), suggesting that IP3 from both sources accesses the same, or closely co-localized clusters of IP3Rs. Moreover, the time course and spatial spread of puffs evoked by agonists and photorelease matched closely. Because photolysis generates IP3 uniformly throughout the cytoplasm, our results imply that IP3 generated in SH-SY5Y cells by activation of receptors to CCH and BK also exerts broadly distributed actions, rather than specifically activating a subpopulation of IP3Rs that are scaffolded in close proximity to cell surface receptors to form a signaling nanodomain.  相似文献   

8.
This study presents an investigation of pacemaker mechanisms underlying lymphatic vasomotion. We tested the hypothesis that active inositol 1,4,5-trisphosphate receptor (IP3R)-operated Ca2+ stores interact as coupled oscillators to produce near-synchronous Ca2+ release events and associated pacemaker potentials, this driving action potentials and constrictions of lymphatic smooth muscle. Application of endothelin 1 (ET-1), an agonist known to enhance synthesis of IP3, to quiescent lymphatic smooth muscle syncytia first enhanced spontaneous Ca2+ transients and/or intracellular Ca2+ waves. Larger near-synchronous Ca2+ transients then occurred leading to global synchronous Ca2+ transients associated with action potentials and resultant vasomotion. In contrast, blockade of L-type Ca2+ channels with nifedipine prevented ET-1 from inducing near-synchronous Ca2+ transients and resultant action potentials, leaving only asynchronous Ca2+ transients and local Ca2+ waves. These data were well simulated by a model of lymphatic smooth muscle with: 1), oscillatory Ca2+ release from IP3R-operated Ca2+ stores, which causes depolarization; 2), L-type Ca2+ channels; and 3), gap junctions between cells. Stimulation of the stores caused global pacemaker activity through coupled oscillator-based entrainment of the stores. Membrane potential changes and positive feedback by L-type Ca2+ channels to produce more store activity were fundamental to this process providing long-range electrochemical coupling between the Ca2+ store oscillators. We conclude that lymphatic pacemaking is mediated by coupled oscillator-based interactions between active Ca2+ stores. These are weakly coupled by inter- and intracellular diffusion of store activators and strongly coupled by membrane potential. Ca2+ store-based pacemaking is predicted for cellular systems where: 1), oscillatory Ca2+ release induces depolarization; 2), membrane depolarization provides positive feedback to induce further store Ca2+ release; and 3), cells are interconnected. These conditions are met in a surprisingly large number of cellular systems including gastrointestinal, lymphatic, urethral, and vascular tissues, and in heart pacemaker cells.  相似文献   

9.
Numerous cellular processes are regulated by Ca2+ signals, and the endoplasmic reticulum (ER) membrane's inositol triphosphate receptor (IP3R) is critical for modulating intracellular Ca2+ dynamics. The IP3Rs are seen to be clustered in a variety of cell types. The combination of IP3Rs clustering and IP3Rs-mediated Ca2+-induced Ca2+ release results in the hierarchical organization of the Ca2+ signals, which challenges the numerical simulation given the multiple spatial and temporal scales that must be covered. The previous methods rather ignore the spatial feature of IP3Rs or fail to coordinate the conflicts between the real biological relevance and the computational cost. In this work, a general and efficient reduced-lattice model is presented for the simulation of IP3Rs-mediated multiscale Ca2+ dynamics. The model highlights biological details that make up the majority of the calcium events, including IP3Rs clustering and calcium domains, and it reduces the complexity by approximating the minor details. The model's extensibility provides fresh insights into the function of IP3Rs in producing global Ca2+ events and supports the research under more physiological circumstances. Our work contributes to a novel toolkit for modeling multiscale Ca2+ dynamics and advances knowledge of Ca2+ signals.  相似文献   

10.
Interactions between cyclic adenosine monophosphate (cAMP) and Ca2+ are widespread, and for both intracellular messengers, their spatial organization is important. Parathyroid hormone (PTH) stimulates formation of cAMP and sensitizes inositol 1,4,5-trisphosphate receptors (IP3R) to IP3. We show that PTH communicates with IP3R via “cAMP junctions” that allow local delivery of a supramaximal concentration of cAMP to IP3R, directly increasing their sensitivity to IP3. These junctions are robust binary switches that are digitally recruited by increasing concentrations of PTH. Human embryonic kidney cells express several isoforms of adenylyl cyclase (AC) and IP3R, but IP3R2 and AC6 are specifically associated, and inhibition of AC6 or IP3R2 expression by small interfering RNA selectively attenuates potentiation of Ca2+ signals by PTH. We define two modes of cAMP signaling: binary, where cAMP passes directly from AC6 to IP3R2; and analogue, where local gradients of cAMP concentration regulate cAMP effectors more remote from AC. Binary signaling requires localized delivery of cAMP, whereas analogue signaling is more dependent on localized cAMP degradation.  相似文献   

11.
Although inositol trisphosphate (IP3) functions in releasing Ca2+ in eggs at fertilization, it is not known how fertilization activates the phospholipase C that produces IP3. To distinguish between a role for PLCγ, which is activated when its two src homology-2 (SH2) domains bind to an activated tyrosine kinase, and PLCβ, which is activated by a G protein, we injected starfish eggs with a PLCγ SH2 domain fusion protein that inhibits activation of PLCγ. In these eggs, Ca2+ release at fertilization was delayed, or with a high concentration of protein and a low concentration of sperm, completely inhibited. The PLCγSH2 protein is a specific inhibitor of PLCγ in the egg, since it did not inhibit PLCβ activation of Ca2+ release initiated by the serotonin 2c receptor, or activation of Ca2+ release by IP3 injection. Furthermore, injection of a PLCγ SH2 domain protein mutated at its phosphotyrosine binding site, or the SH2 domains of another protein (the phosphatase SHP2), did not inhibit Ca2+ release at fertilization. These results indicate that during fertilization of starfish eggs, activation of phospholipase Cγ by an SH2 domain-mediated process stimulates the production of IP3 that causes intracellular Ca2+ release.  相似文献   

12.
Puffs are localized, transient elevations in cytosolic Ca2+ that serve both as the building blocks of global cellular Ca2+ signals and as local signals in their own right. They arise from clustered inositol 1,4,5-trisphosphate receptor/channels (IP3Rs), whose openings are coordinated by Ca2+-induced Ca2+ release (CICR). We utilized total internal reflection fluorescence imaging of Ca2+ signals in neuroblastoma cells with single-channel resolution to elucidate the mechanisms determining the triggering, amplitudes, kinetics, and spatial spread of puffs. We find that any given channel in a cluster has a mean probability of ∼66% of opening following opening of an initial “trigger” channel, and the probability of puff triggering thus increases steeply with increasing number of channels in a cluster (cluster size). Mean puff amplitudes scale with cluster size, but individual amplitudes vary widely, even at sites of similar cluster size, displaying similar proportions of events involving any given number of the channels in the cluster. Stochastic variation in numbers of Ca2+-inhibited IP3Rs likely contributes to the variability of amplitudes of repeated puffs at a site but the amplitudes of successive puffs were uncorrelated, even though we observed statistical correlations between interpuff intervals and puff amplitudes. Initial puffs evoked following photorelease of IP3—which would not be subject to earlier Ca2+-inhibition—also showed wide variability, indicating that mechanisms such as stochastic variation in IP3 binding and channel recruitment by CICR further determine puff amplitudes. The mean termination time of puffs lengthened with increasing puff amplitude size, consistent with independent closings of channels after a given mean open time, but we found no correlation of termination time with cluster size independent of puff amplitude. The spatial extent of puffs increased with their amplitude, and puffs of similar size were of similar width, independent of cluster size.  相似文献   

13.
Calcium puffs are localized Ca2+ signals mediated by Ca2+ release from the endoplasmic reticulum (ER) through clusters of inositol trisphosphate receptor (IP3R) channels. The recruitment of IP3R channels during puffs depends on Ca2+-induced Ca2+ release, a regenerative process that must be terminated to maintain control of cell signaling and prevent Ca2+ cytotoxicity. Here, we studied puff termination using total internal reflection microscopy to resolve the gating of individual IP3R channels during puffs in intact SH-SY5Y neuroblastoma cells. We find that the kinetics of IP3R channel closing differ from that expected for independent, stochastic gating, in that multiple channels tend to remain open together longer than predicted from their individual open lifetimes and then close in near-synchrony. This behavior cannot readily be explained by previously proposed termination mechanisms, including Ca2+-inhibition of IP3Rs and local depletion of Ca2+ in the ER lumen. Instead, we postulate that the gating of closely adjacent IP3Rs is coupled, possibly via allosteric interactions, suggesting an important mechanism to ensure robust puff termination in addition to Ca2+-inactivation.  相似文献   

14.
Plasma membrane large-conductance Ca2+-activated K+ (BKCa) channels and sarcoplasmic reticulum inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are expressed in a wide variety of cell types, including arterial smooth muscle cells. Here, we studied BKCa channel regulation by IP3 and IP3Rs in rat and mouse cerebral artery smooth muscle cells. IP3 activated BKCa channels both in intact cells and in excised inside-out membrane patches. IP3 caused concentration-dependent BKCa channel activation with an apparent dissociation constant (Kd) of ∼4 µM at physiological voltage (−40 mV) and intracellular Ca2+ concentration ([Ca2+]i; 10 µM). IP3 also caused a leftward-shift in BKCa channel apparent Ca2+ sensitivity and reduced the Kd for free [Ca2+]i from ∼20 to 12 µM, but did not alter the slope or maximal Po. BAPTA, a fast Ca2+ buffer, or an elevation in extracellular Ca2+ concentration did not alter IP3-induced BKCa channel activation. Heparin, an IP3R inhibitor, and a monoclonal type 1 IP3R (IP3R1) antibody blocked IP3-induced BKCa channel activation. Adenophostin A, an IP3R agonist, also activated BKCa channels. IP3 activated BKCa channels in inside-out patches from wild-type (IP3R1+/+) mouse arterial smooth muscle cells, but had no effect on BKCa channels of IP3R1-deficient (IP3R1−/−) mice. Immunofluorescence resonance energy transfer microscopy indicated that IP3R1 is located in close spatial proximity to BKCa α subunits. The IP3R1 monoclonal antibody coimmunoprecipitated IP3R1 and BKCa channel α and β1 subunits from cerebral arteries. In summary, data indicate that IP3R1 activation elevates BKCa channel apparent Ca2+ sensitivity through local molecular coupling in arterial smooth muscle cells.  相似文献   

15.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Their regulation by both IP3 and Ca2+ allows interactions between IP3Rs to generate a hierarchy of intracellular Ca2+ release events. These can progress from openings of single IP3R, through near-synchronous opening of a few IP3Rs within a cluster to much larger signals that give rise to regenerative Ca2+ waves that can invade the entire cell. We have used patch-clamp recording from excised nuclear membranes of DT40 cells expressing only IP3R3 and shown that low concentrations of IP3 rapidly and reversibly cause IP3Rs to assemble into small clusters. In addition to bringing IP3Rs close enough to allow Ca2+ released by one IP3R to regulate the activity of its neighbors, clustering also retunes the regulation of IP3Rs by IP3 and Ca2+. At resting cytosolic [Ca2+], lone IP3R are more sensitive to IP3 and the mean channel open time (~10ms) is twice as long as for clustered IP3R. When the cytosolic free [Ca2+] is increased to 1µM, to mimic the conditions that might prevail when an IP3R within a cluster opens, clustered IP3R are no longer inhibited and their gating becomes coupled. IP3, by dynamically regulating IP3R clustering, both positions IP3R for optimal interactions between them and it serves to exaggerate the effects of Ca2+ within a cluster. During the course of these studies, we have observed that nuclear IP3R stably express one of two single channel K + conductances (γK ~120 or 200pS). Here we demonstrate that for both states of the IP3R, the effects of IP3 on clustering are indistinguishable. These observations reinforce our conclusion that IP3 dynamically regulates assembly of IP3Rs into clusters that underlie the hierarchical recruitment of elementary Ca2+ release events.  相似文献   

16.
Calcium puffs are local transient Ca2+ releases from internal Ca2+ stores such as the endoplasmic reticulum or the sarcoplasmic reticulum. Such release occurs through a cluster of inositol 1,4,5-trisphosphate receptors (IP3Rs). Based on the IP3R model (which is determined by fitting to stationary single-channel data) and nonstationary single-channel data, we construct a new IP3R model that includes time-dependent rates of mode switches. A point-source model of Ca2+ puffs is then constructed based on the new IP3R model and is solved by a hybrid Gillespie method with adaptive timing. Model results show that a relatively slow recovery of an IP3R from Ca2+ inhibition is necessary to reproduce most of the experimental outcomes, especially the nonexponential interpuff interval distributions. The number of receptors in a cluster could be severely underestimated when the recovery is sufficiently slow. Furthermore, we find that, as the number of IP3Rs increases, the average duration of puffs initially increases but then becomes saturated, whereas the average decay time keeps increasing linearly. This gives rise to the observed asymmetric puff shape.  相似文献   

17.
Disrupting inositol 1,4,5-trisphosphate (IP3) receptor (IP3R)/B-cell lymphoma 2 (Bcl-2) complexes using a cell-permeable peptide (stabilized TAT-fused IP3R-derived peptide (TAT-IDPS)) that selectively targets the BH4 domain of Bcl-2 but not that of B-cell lymphoma 2-extra large (Bcl-Xl) potentiated pro-apoptotic Ca2+ signaling in chronic lymphocytic leukemia cells. However, the molecular mechanisms rendering cancer cells but not normal cells particularly sensitive to disrupting IP3R/Bcl-2 complexes are poorly understood. Therefore, we studied the effect of TAT-IDPS in a more heterogeneous Bcl-2-dependent cancer model using a set of ‘primed to death'' diffuse large B-cell lymphoma (DL-BCL) cell lines containing elevated Bcl-2 levels. We discovered a large heterogeneity in the apoptotic responses of these cells to TAT-IDPS with SU-DHL-4 being most sensitive and OCI-LY-1 being most resistant. This sensitivity strongly correlated with the ability of TAT-IDPS to promote IP3R-mediated Ca2+ release. Although total IP3R-expression levels were very similar among SU-DHL-4 and OCI-LY-1, we discovered that the IP3R2-protein level was the highest for SU-DHL-4 and the lowest for OCI-LY-1. Strikingly, TAT-IDPS-induced Ca2+ rise and apoptosis in the different DL-BCL cell lines strongly correlated with their IP3R2-protein level, but not with IP3R1-, IP3R3- or total IP3R-expression levels. Inhibiting or knocking down IP3R2 activity in SU-DHL-4-reduced TAT-IDPS-induced apoptosis, which is compatible with its ability to dissociate Bcl-2 from IP3R2 and to promote IP3-induced pro-apoptotic Ca2+ signaling. Thus, certain chronically activated B-cell lymphoma cells are addicted to high Bcl-2 levels for their survival not only to neutralize pro-apoptotic Bcl-2-family members but also to suppress IP3R hyperactivity. In particular, cancer cells expressing high levels of IP3R2 are addicted to IP3R/Bcl-2 complex formation and disruption of these complexes using peptide tools results in pro-apoptotic Ca2+ signaling and cell death.  相似文献   

18.
Calcium-dependent inactivation and the dynamics of calcium puffs and sparks   总被引:1,自引:0,他引:1  
Localized intracellular Ca2+ elevations known as puffs and sparks arise from the cooperative activity of inositol 1,4,5-trisphosphate receptor Ca2+ channels (IP3Rs) and ryanodine receptor Ca2+ channels (RyRs) clustered at Ca2+ release sites on the surface of the endoplasmic reticulum or sarcoplasmic reticulum. When Markov chain models of these intracellular Ca2+-regulated Ca2+ channels are coupled via a mathematical representation of a Ca2+ microdomain, simulated Ca2+ release sites may exhibit the phenomenon of “stochastic Ca2+ excitability” reminiscent of Ca2+ puffs and sparks where channels open and close in a concerted fashion. To clarify the role of Ca2+ inactivation of IP3Rs and RyRs in the dynamics of puffs and sparks, we formulate and analyze Markov chain models of Ca2+ release sites composed of 10–40 three-state intracellular Ca2+ channels that are inactivated as well as activated by Ca2+. We study how the statistics of simulated puffs and sparks depend on the kinetics and dissociation constant of Ca2+ inactivation and find that puffs and sparks are often less sensitive to variations in the number of channels at release sites and strength of coupling via local [Ca2+] when the average fraction of inactivated channels is significant. Interestingly, we observe that the single channel kinetics of Ca2+ inactivation influences the thermodynamic entropy production rate of Markov chain models of puffs and sparks. While excessively fast Ca2+ inactivation can preclude puffs and sparks, moderately fast Ca2+ inactivation often leads to time-irreversible puffs and sparks whose termination is facilitated by the recruitment of inactivated channels throughout the duration of the puff/spark event. On the other hand, Ca2+ inactivation may be an important negative feedback mechanism even when its time constant is much greater than the duration of puffs and sparks. In fact, slow Ca2+ inactivation can lead to release sites with a substantial fraction of inactivated channels that exhibit puffs and sparks that are nearly time-reversible and terminate without additional recruitment of inactivated channels.  相似文献   

19.
The subcellular localization of membrane Ca2+ channels is crucial for their functioning, but is difficult to study because channels may be distributed more closely than the resolution of conventional microscopy is able to detect. We describe a technique, stochastic channel Ca2+ nanoscale resolution (SCCaNR), employing Ca2+-sensitive fluorescent dyes to localize stochastic openings and closings of single Ca2+-permeable channels within <50 nm, and apply it to examine the clustered arrangement of inositol trisphosphate receptor (IP3R) channels underlying local Ca2+ puffs. Fluorescence signals (blips) arising from single functional IP3Rs are almost immotile (diffusion coefficient <0.003 μm2 s−1), as are puff sites over prolonged periods, suggesting that the architecture of this signaling system is stable and not subject to rapid, dynamic rearrangement. However, rapid stepwise changes in centroid position of fluorescence are evident within the durations of individual puffs. These apparent movements likely result from asynchronous gating of IP3Rs distributed within clusters that have an overall diameter of ∼400 nm, indicating that the nanoscale architecture of IP3R clusters is important in shaping local Ca2+ signals. We anticipate that SCCaNR will complement superresolution techniques such as PALM and STORM for studies of Ca2+ channels as it obviates the need for photoswitchable labels and provides functional as well as spatial information.  相似文献   

20.
Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号