首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Circular dichroism (CD) and Fourier transform infrared spectroscopic studies have shown that the secondary structure of transforming growth factor alpha (TGF-alpha) is very similar to that of epidermal growth factor (EGF). The infrared spectra revealed a minor difference between the two proteins, in particular in the beta-sheet structure. A large difference was observed with CD between the two proteins in the apparent conformation each adopts when the disulfide bonds are reduced. Reduced TGF-alpha showed a distinct alpha-helical conformation only at a high trifluoroethanol concentration, whereas reduced EGF assumed an alpha-helical conformation in the absence of trifluoroethanol. This indicates that these two proteins adopt different secondary structures in the absence of disulfide bonds, although they assume similar folding structures in their presence. These data suggest that the disulfide bonds to a large degree dictate the conformation of these two proteins. Additionally, differences in the dynamic behavior between EGF and TGF-alpha were also observed. Infrared experiments showed that the hydrogen-deuterium exchange rate is much higher for TGF-alpha than for EGF, indicating that TGF-alpha is a more flexible molecule. The rate of reduction of the disulfide bonds by dithiothreitol was also faster for TGF-alpha. Therefore, it can be concluded that although EGF and TGF-alpha have a similar overall conformation, TGF-alpha is a more flexible molecule than EGF.  相似文献   

2.
3.
Transforming growth factor-alpha (TGF-alpha) is a single chain polypeptide hormone of 50 amino acids that stimulates growth of some human cancer cells via an autocrine mechanism. The domain(s) of TGF-alpha that bind and activate its receptor have not been reported. Hydrophilicity plots of TGF-alpha indicate three discrete sequences that are theoretically exposed on the hormone's surface and thus potentially able to interact with the TGF-alpha receptor. Fragments of TGF-alpha encompassing these hydrophilic domains were prepared by using solid-phase peptide synthesis (SPPS) techniques and purified by use of high performance liquid chromotography (HPLC). Assessment of biological activity of the TGF-alpha fragments indicated that none of the fragments significantly inhibited binding of EGF to the receptor, stimulated DNA synthesis of cells, inhibited EGF-induced DNA synthesis of cells, stimulated growth of cells in soft agar, or induced phosphorylation of the receptor or p35 protein. These results indicate that the receptor binding domain of TGF-alpha is not totally encompassed by any of the separate fragments tested and probably is formed by multiple separate regions of TGF-alpha.  相似文献   

4.
A hybrid gene encoding for a polypeptide consisting of the first 33 N-terminal amino acid (aa) residues of transforming growth factor-alpha (TGF-alpha) and a C terminus consisting of 20 aa residues of vaccinia growth factor (VGF) was chemically synthesized and expressed as a fusion protein in Escherichia coli. The primary structure of the hybrid gene product maintained the same positioning of the three disulfide bonds found in each parent molecule thus conserving the first two loop regions of TGF-alpha and the third loop region of VGF. After cleavage with CNBr its renatured biological activity was found to be comparable to TGF-alpha and VGF with respect to binding to the epidermal growth factor receptor, stimulation of DNA synthesis and induction of anchorage-independent growth of NRK cells in the presence of TGF-beta. Thus, we suggest that similar domains can be interchanged within the same family of molecules and equivalent functionality maintained.  相似文献   

5.
We have recently described the purification and characterization of an insulin-degrading enzyme (IDE) from Drosophila melanogaster that can cleave porcine insulin, is highly conserved through evolution and is developmentally regulated. We now report that the IDE is, in fact, an insulin EGF-binding protein (dp100) that we had isolated previously from Drosophila using an antihuman EGF receptor antiserum. This conclusion is based upon the following evidence. (a) dp100, identified by its ability to cross-link to labeled insulin, EGF, and transforming growth factor-alpha (TGF-alpha), and to be immunoprecipitated by anti-EGF receptor antisera, copurifies with the IDE activity. Thus, the purified IDE can be affinity labeled with either 125I-insulin, 125I-EGF, or 125I-TGF-alpha, and this labeling is specifically inhibited with unlabeled insulin, EGF, and the insulin B chain. (b) The antiserum to the human EGF receptor, which recognizes dp100, is able to specifically immunoprecipitate the insulin-degrading activity. (c) The purified IDE preparation contains a single protein of 110 kD which is recognized by both the anti-EGF receptor antiserum and anti-Drosophila IDE antiserum. (d) Polyclonal antiserum to the purified IDE, which specifically recognized only the 110-kD band in Drosophila Kc cells, immunoprecipitates dp100 cross-linked to 125I-TGF-alpha and dp100 cross-linked to 125I-insulin from the purified IDE preparation. (e) EGF, which competes with insulin for binding to dp100, also inhibits the degradation of insulin by the purified IDE. These results raise the possibility that a functional interaction between the insulin and EGF growth factor families can occur which is mediated by the insulin-degrading enzyme.  相似文献   

6.
Human plasma protein S is a nonenzymatic cofactor for activated protein C (APC) in the inactivation of coagulation factors Va and VIIIa, and helps to provide an essential negative feedback on blood coagulation. Previous indirect evidence suggested that the thrombin-sensitive region (TSR:residues 47–75, 1 disulfide) and the first epidermal growth factorlike region (EGF1: residues 76–116, 3 disulfides) of protein S may be functionally important for expression of its APC cofactor activity. To study the functional importance of these modules directly, access to the isolated TSR and EGF1 modules would be preferred. Recombinant expression of protein S intact TSR and correctly folded EGF1 has not been possible. Here we describe the synthesis of both TSR and EGF1 modules by stepwise solid phase peptide synthesis using the in situ neutralization/2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate activation procedure for tert-butoxycarbonyl chemistry. For the TSR, correct intramodular disulfide bonding was confirmed. To overcome folding difficulties with the EGF1, a two-step oxidation procedure was used in which the cysteines involved in the middle, crossing, disulfide bond (Cys85-Cys102) remained protected with acetamidomethyl (Acm) groups after hydrogen fluoride treatment of the peptide resin. Selective formation of the first two disulfide bonds (Cys80-Cys93 and Cys104-Cys113) was followed by release of the Acm groups and subsequent formation of the third disulfide bond (Cys85-Cys102). CD studies revealed 54% of β-sheet/turn in the EGF1 that is characteristic for EGF modules. Deuterium exchange studies suggested a very tightly packed core in EGF1 that is not accessible to the bulk solvent, likely a result from the compact structure caused by its three disulfide bonds. The 30% β-sheet structure observed in the TSR involved amide protons that could be readily exchanged by deuterons, likely reflecting a more flexible structure of the TSR loop in contrast to the rigid structure of EGF1. The establishment of synthetic access to the TSR and EGF1 of protein S provides a versatile tool to study interactions of these modules with the blood coagulation components of the anticoagulant plasma protein C pathway. © 1998 John Wiley & Sons, Inc. Biopoly 46: 53–63, 1998  相似文献   

7.
Intracellular transforming growth factors (TGFs) were extracted from a human rhabdomyosarcoma cell line and purified to apparent homogeneity by using gel filtration, cation-exchange, and high-performance liquid chromatography. Two types of transforming growth factor activities, TGF-alpha and TGF-beta, were detected. The intracellular polypeptides which belonged to the TGF-alpha family required TGF-beta for full activity in inducing nonneoplastic normal rat kidney fibroblasts to grow in soft agar. These peptides also bound to the membrane receptor for epidermal growth factor. As determined by sodium dodecyl sulfate-polyacrylamide gels, the apparent molecular weight of these intracellular TGF-alpha's was 18 000. Intracellular TGF-beta required either epidermal growth factor or TGF-alpha for stimulation of soft agar growth. The intracellular TGF-beta was purified to homogeneity as judged by a single peak after reverse-phase high-performance liquid chromatography and a single band on a sodium dodecyl sulfate-polyacrylamide gel. The intracellular TGF-beta from the human tumor cell line was similar in all respects tested (migration on sodium dodecyl sulfate-polyacrylamide gels, stimulation of soft agar growth, binding to the membrane receptor for TGF-beta, and amino acid composition) to intracellular TGF-beta from normal human placenta.  相似文献   

8.
Transforming growth factor-alpha (TGF-alpha) is a growth-promoting protein that binds to the epidermal growth factor (EGF) receptor. To identify critical residues that govern TGF-alpha-EGF receptor binding, we prepared site-specific substitution mutants of TGF-alpha. Mutant proteins were tested in receptor-binding and mitogenesis assays. Semiconservative substitutions at positions 4, 12, 18, and 45 decreased biological activity 2.1- to 14-fold. The conservative substitution of lysine for arginine at position 42 completely eliminated biological activity. Amino acid composition analysis of proteolytic fragments from TGF-alpha and the Lys-42 mutant indicated that these proteins contained the same disulfide bonds. These studies suggest that arginine 42 may be a contact point for TGF-alpha-EGF receptor interaction.  相似文献   

9.
Type beta transforming growth factor (TGF-beta) has been purified 200 000-fold from bovine kidneys. This peptide is characterized by its ability to induce anchorage-dependent normal rat kidney cells to grow in soft agar in the presence of epidermal growth factor (EGF); TGF-beta is not mitogenic for cells grown in monolayer culture. Purified TGF-beta does not compete with EGF for binding to membrane receptors. The concentration of TGF-beta required to elicit a half-maximal response for formation of colonies greater than 3100 micron2 in the soft agar assay is 2-3 pM (55 pg/mL) when assayed in the presence of 0.8 nM EGF (5 ng/mL). The four-step purification procedure which includes chromatography of acid--ethanol tissue extracts on polyacrylamide sizing gels, cation exchange, and two steps of high-pressure liquid chromatography results in a 10% overall yield of colony-forming activity with a recovery of 3-4 micrograms/kg. Amino acid analysis of purified TGF-beta shows 16 half-cystine residues per mole. Analysis of the purified polypeptide by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels indicates that TGF-beta is composed of two closely related polypeptide chains cross-linked by disulfide bonds. In the absence of beta-mercaptoethanol, the colony-forming activity is associated with a single silver-staining band of molecular weight 25 000; in the presence of beta-mercaptoethanol, the TGF-beta is converted to an inactive species that migrates as a single band of molecular weight 12 500-13 000. Sequence analysis indicates that at least the first 15 N-terminal amino acids of the two TGF-beta subunits are identical.  相似文献   

10.
Transforming growth factors from neoplastic and nonneoplastic tissues   总被引:38,自引:0,他引:38  
Transforming growth factors (TGFs) are a heterogeneous family of polypeptides that induce anchorage-independent growth in nonneoplastic anchorage-dependent cells. They have been found in many tissues, both neoplastic and nonneoplastic. All TGFs isolated thus far are of low molecular weight (6000-25,000), are acid and heat stable, and are inactivated by reagents that reduce disulfide bonds. TGFs have been classified as type alpha or type beta based on their interactions with the receptor for epidermal growth factor (EGF) and their requirement for EGF (or an EGF-like polypeptide) for functional activity. TGF-alpha and TGF-beta act synergistically. TGF-alpha induces phosphorylation of tyrosine in the EGF receptor. TGF-beta, isolated from bovine sources, accelerates experimental wound healing in rats.  相似文献   

11.
The capacity of epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) to induce internalization and degradation of the EGF receptor was compared in NIH-3T3 cells expressing the human EGF receptor. This study was initiated following the observation that TGF-alpha was much less efficient relative to EGF in generating a Mr = 125,000 amino-terminally truncated degradation product from the mature EGF receptor (EGF-dependent generation of this degradation product is described in S.J. Decker, J. Biol. Chem., 264:17641-17644). Pulse-chase experiments revealed that EGF generally stimulated EGF receptor degradation to a greater extent than TGF-alpha. Both ligands induced EGF receptor internalization to similar degrees. However, recovery of [125I]-EGF binding following incubation with EGF or TGF-alpha was much faster for TGF-alpha treated cells. Recovery of [125I]-EGF binding after TGF-alpha treatment did not appear to require protein synthesis. Tyrosine phosphorylation of EGF receptor from cells treated with TGF-alpha decreased more rapidly following removal of TGF-alpha compared to cells treated similarly with EGF. These data suggest that EGF routes the EGF receptor directly to a degradative pathway, whereas TGF-alpha allows receptor recycling prior to degradation, and that tyrosine phosphorylation could play a role in this differential receptor processing.  相似文献   

12.
Epidermal growth factor (EGF) receptor ligands such as EGF and transforming growth factor-alpha (TGF-alpha) play an important role in controlling the proliferation, survival, morphology, and motility of colonic epithelial cells. There is also increasing evidence that growth factors and extracellular matrix (ECM) proteins cooperate to regulate these cellular processes. We have reported previously that autocrine TGF-alpha and an unidentified ECM protein in the serum-free conditioned medium of the human colon carcinoma cell line LIM1215 synergize to induce spreading of these cells in low-density cultures. We have now purified the ECM protein secreted by LIM1215 cells and show that it synergizes with EGF to induce spreading of LIM1215 cells and other human cell lines from the colon and other tissues. The purified ECM migrated as a single protein band with an apparent molecular mass of approximately 800 kDa on SDS-PAGE under nonreducing conditions and, under reducing conditions, as three protein bands of approximately 360, 210, and 200 kDa. Immunoblotting experiments and mass spectrometry analysis of tryptic digests on the purified protein identified the 360-, 210-, and 200-kDa protein bands as laminin alpha5, beta1, and gamma1 chains, respectively, indicating that LIM1215 cells secrete laminin-10 (alpha5 beta1 gamma1). In serum-free medium, LIM1215 cells adhere to laminin-10 primarily via alpha2 beta1 and alpha3 beta1 integrin receptors. EGF-induced spreading of LIM1215 cells on laminin-10 is partially inhibited by pretreatment of the cells with blocking antibodies directed against integrin alpha3 or beta1 but not alpha2, alpha6, or beta4 subunits. Spreading is almost completely inhibited by blocking alpha3 + alpha2, alpha3 + alpha6, or beta1 + beta4 integrin chains and results in cell death. Increased spreading in the presence of EGF correlates with up-regulation of alpha6 beta4 integrins in these cells after exposure to EGF. These results indicate that colon cancer cells attach and spread on laminin-10 via multiple integrin receptors and suggest a critical role for alpha3 beta1 integrins in the spreading response. Together, our results support the concept that the adhesive properties of colon cancer cells are modulated by autocrine production of TGF-alpha and laminin-10 and autocrine induction of appropriate integrins.  相似文献   

13.
The primary structure of the chicken epidermal growth factor (EGF) receptor was deduced from the sequence of a cDNA clone containing the complete coding sequence and shown to be highly homologous to the human EGF receptor. NIH-3T3 cells devoid of endogenous EGF receptor were transfected with the appropriate cDNA constructs and shown to express either chicken or human EGF receptors. Like the human EGF receptor, the chicken EGF receptor is a glycoprotein with an apparent molecular weight of 170,000. Murine EGF bound to the chicken receptor with approximately 100-fold lower affinity than to the human receptor molecule. Surprisingly, human transforming growth factor alpha (TGF-alpha) bound equally well or even better to the chicken EGF receptor than to the human EGF receptor. Moreover, TGF-alpha stimulated DNA synthesis 100-fold better than did EGF in NIH 3T3 cells that expressed the chicken EGF receptor. The differential binding and potency of mammalian EGF and TGF-alpha by the avian EGF receptor contrasts with the similar affinities of the mammalian receptor for the two growth factors.  相似文献   

14.
The band 3 glycoprotein from human erythrocytes was found to be phosphorylated on tyrosine residues by the purified EGF receptor kinase and the purified src kinase in vitro. Kinetic analysis revealed that Km of the band 3 protein phosphorylation by the EGF receptor kinase was 0.17 microM and 0.65 microM in the absence and presence of EGF (3 X 10(-7)M), respectively, and that in the case of the src kinase it was 0.4 microM. From these data the band 3 protein can be regarded as one of the best substrates common for the EGF receptor kinase and the src kinase in vitro.  相似文献   

15.
Estrogen-stimulated growth of the human mammary adenocarcinoma cell line MCF-7 is significantly inhibited by monoclonal antibodies to the epidermal growth factor (EGF) receptor that act as antagonists of EGF's mitogenic events by competing for high-affinity EGF receptor binding sites. These antibodies likewise inhibit the EGF or transforming growth factor-alpha (TGF-alpha)-stimulated growth of these MCF-7 cells. An analogous pattern of specific EGF or TGF-alpha growth inhibitory activity was obtained using a synthetic peptide analog encompassing the third disulfide loop region of TGF-alpha, but containing additional modifications designed for increased membrane affinity [( Ac-D-hArg(Et)2(31),Gly32,33]HuTGF-alpha(31-43)NH2). The growth factor antagonism by this synthetic peptide was specific in that it inhibited EGF, TGF-alpha, or estrogen-stimulated growth of MCF-7 cells but did not inhibit insulin-like growth factor-1 (IGF-1)-stimulated cell growth. Altogether, these results suggest that a significant portion of the estrogen-stimulated growth of these MCF-7 cells is mediated in an autocrine/paracrine manner by release of EGF or TGF-alpha-like growth factors. The TGF-alpha peptide likewise inhibited EGF- but not fibroblast growth factor (FGF)- or platelet-derived growth factor (PDGF)-stimulated growth of NIH-3T3 cells in completely defined media; but had no effect on growth or DNA synthesis of G0-arrested cells, nor did it effect growth of NR-6 cells, which are nonresponsive to EGF. Although this synthetic peptide did not directly compete with EGF for cell surface receptor binding, it exhibited binding to a cell surface component (followed by internalization), which likewise was not competed by EGF. The peptide did not directly inhibit EGF-stimulated phosphorylation of the EGF receptor, nor did it inhibit phosphorylation of an exogenous substrate, angiotensin II, by activated EGF receptor. The TGF-alpha peptide did, however, affect the structure of laminin as manifested by laminin self-aggregation; this affect on laminin may, in turn, have a modulatory effect on EGF-mediated cell growth.  相似文献   

16.
Transforming growth factor-alpha(TGF-alpha), homologous to epidermal growth factor(EGF), is closely involved in hyperproliferation of human keratinocytes. Psoriasis is a common hyperproliferative skin disease characterized by hyperproliferation of keratinocytes and abnormal development of dermal capillary networks. In this study, we have examined whether keratinocytes could enhance angiogenesis. TGF-alpha or EGF efficiently stimulated formation of tubular-like structures of human omental microvascular endothelial(HOME) cells in type I collagen gels. Human keratinocytes produced TGF-alpha. To examine whether co-cultured keratinocytes could induce tubulogenesis of HOME cells in collagen gel, we have developed a co-culture system with human keratinocytes. Surprisingly, there appeared new development of many tubular-like structures of HOME cells in collagen gels when co-cultured with keratinocytes. This keratinocytes-dependent tubulogenesis was almost completely blocked when anti-TGF-alpha-antibody was present. The TGF-alpha molecules derived from keratinocytes appeared to enhance tubulogenesis of human microvascular endothelial cells. We propose the hypothesis that secretory TGF-alpha from human keratinocytes may promote an autocrine loop to proliferate the skin keratinocytes and also a paracrine loop to induce the skin angiogenesis.  相似文献   

17.
This paper describes a simple biomimetic strategy to prepare small cyclic proteins containing multiple disulfide bonds. Our strategy involves intramolecular acyl transfer reactions to assist both the synthesis and fragmentation of these highly constrained cyclic structures in aqueous solution. To illustrate our strategy, we synthesized the naturally occurring circulin B and cyclopsychotride (CPT), both consisting of 31 amino acid residues tightly packed in a cystine-knot motif with three disulfide bonds and an end-to-end cyclic form. The synthesis of these small cyclic proteins can be achieved by orthogonal ligation of free peptide thioester via the thia zip reaction, which involves a series of reversible thiol-thiolactone exchanges to arrive at an alpha-amino thiolactone, which then undergoes an irreversible, spontaneous ring contraction through an S,N-acyl migration to form the cyclic protein. A two-step disulfide formation strategy is employed for obtaining the desired disulfide-paired products. Partial acid hydrolysis through intramolecular acyl transfer of X-Ser, X-Thr, Asp-X, and Glu-X sequences is used to obtain the assignment of the circulins disulfide bond connectives. Both synthetic circulin B and CPT are identical to the natural products and, thus, the total synthesis confirms the disulfide connectivity of circulin B and CPT contain a cystine-knot motif of 1-4, 2-5, and 3-6. In general, our strategy, based on the convergence of chemical proteolysis and aminolysis of peptide bonds through acyl transfer, is biomimetic and provides a useful approach for the synthesis and characterization of large end-to-end cyclic peptides and small proteins.  相似文献   

18.
Transforming growth factor-alpha (TGF-alpha) is an autocrine growth factor for epidermal keratinocytes that can induce its own expression (autoinduction). Because the regulation of this process may be important for the control of epidermal growth, we examined the roles of EGF receptor tyrosine kinase and protein kinase C (PKC) in TGF-alpha autoinduction in cultured human keratinocytes. Antiphosphotyrosine immunoblot analysis demonstrated that EGF and TGF-alpha rapidly and markedly stimulated tyrosine phosphorylation of a 170 kDa protein in growth factor-deprived keratinocytes. This protein was identified as the EGF receptor by immuno-precipitation using anti-EGF receptor mAbs. Tyrosine phosphorylation and TGF-alpha mRNA accumulation in response to EGF and TGF-alpha were both inhibited by a monoclonal antibody against the EGF receptor and by the EGF receptor tyrosine kinase inhibitor RG50864, demonstrating the involvement of the tyrosine kinase activity of the receptor in TGF-alpha autoinduction. The monoclonal antibody inhibited keratinocyte growth and TGF-alpha autoinduction with similar potency (IC50 approximately 0.1 microgram/ml). TGF-alpha and the PKC activator tetradecanoyl phorbol 12-myristyl, 13-acetate (TPA) had similar effects on TGF-alpha steady-state mRNA levels, suggesting that PKC activation might be a downstream mediator of TGF-alpha autoinduction. However, down-regulation of more than 90% of keratinocyte PKC activity by bryostatin pretreatment abrogated the induction of TGF-alpha mRNA in response to TPA without affecting the autoinductive response or EGF-stimulated tyrosine phosphorylation. These results indicate that EGF receptor and PKC stimulate TGF-alpha gene expression by different pathways, and suggest that PKC is not required for TGF-alpha autoinduction in this system. Moreover, the fact that EGF-stimulated tyrosine phosphorylation and TGF-alpha autoinduction were not potentiated after PKC down-regulation suggests that PKC does not exert a tonic inhibitory influence on EGF receptor tyrosine kinase activity in normal human keratinocytes.  相似文献   

19.
A novel extraction procedure, previously used on the cell walls of dermatophytes, has been applied to the epidermis of newborn rat. A leucine-rich fraction was isolated which contained over 60% of the total epidermal radioactivity from [3H]leucine in 15 to 20% of the total protein. This fraction was further purified by chromatography in DEAE-cellulose and Sephadex G-200. The protein with the highest specific activity from [3H]leucine was isolated and gave a single band in sodium dodecyl sulfate polyacrylamide gels of molecular weight = 58,000. Antibody to this protein gave a single precipitin band by immunodiffusion and immunoelectrophoresis in agar with the purified protein. This antibody ultrastructurally immunolocalized specifically over tonofilaments in all layers of the epidermis, but showed no reaction in the dermis. The synthesis of this protein in vitro was inhibited by puromycin but not by actinomycin D, suggesting ribosomal synthesis involving a relatively long lived messenger.  相似文献   

20.
We have recently shown that epidermal growth factor (EGF) is capable of positive regulation of IFN-gamma production, thus establishing a functional relationship between nonhemopoietic growth factors and the immune system. In order to study this relationship further, EGF and the EGF-related growth factors transforming growth factor-alpha (TGF-alpha) and vaccinia virus growth factor (VGF), which stimulate cellular proliferation via binding to the EGF receptor, were studied for their functional and physicochemical effects on IFN-gamma production. In contrast to the positive signal of purified murine EGF and recombinant human EGF (both at 1 nM), neither synthetic TGF alpha nor recombinant VGF were capable of restoring competence for IFN-gamma production by Th cell-depleted spleen cell cultures. TGF-alpha and VGF, in molar excess, also failed to block the helper signal of EGF for IFN-gamma production. Thus TGF-alpha and VGF failed to functionally compete for the EGF receptor in the murine spleen cell system. Both TGF-alpha and VGF stimulated murine 3T3 cell proliferation at concentrations similar to those of EGF, and thus their failure to provide help for IFN-gamma production was not due to a general lack of biologic activity. Binding studies with 125I-EGF suggest that the EGF receptor on murine lymphocytes is not constitutively expressed, but inducible by the T cell mitogen staphylococcal enterotoxin A. TGF-alpha did not compete with 125I-EGF for the induced receptor. The data suggest that lymphocytes express a novel inducible EGF receptor that differs from that expressed on cells such as 3T3 fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号