首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new mechanical model for function of the pharyngeal jaw apparatus in generalized perciform fishes is developed from work with the family Haemulidae. The model is based on anatomical observations, patterns of muscle activity during feeding (electromyography), and the actions of directly stimulated muscles. The primary working stroke of the pharyngeal apparatus involves simultaneous upper jaw depression and retraction against a stabilized and elevating lower jaw. The working stroke is characterized by overlapping activity in most branchial muscles and is resolved into three phases. Four muscles (obliquus dorsalis 3, levator posterior, levator externus 3/4, and obliquus posterior) that act to depress the upper jaws become active in the first phase. Next, the retractor dorsalis, the only upper jaw retracting muscle, becomes active. Finally, there is activity in several muscles (transversus ventrales, pharyngocleithralis externus, pharyngohyoideus, and protractor pectoralis) that attach to the lower jaws. The combined effect of these muscles is to elevate and stabilize the lower jaws against the depressing and retracting upper jaws. The model identifies a novel mechanism of upper jaw depression, here proposed to be the primary component of the perciform pharyngeal jaw bite. The key to this mechanism is the joint between the epibranchial and toothed pharyngobranchial of arches 3 and 4. Dorsal rotation of epibranchials 3 and 4 about the insertion of the obliquus posterior depresses the lateral border of pharyngobranchials 3 and 4 (upper jaw). The obliquus dorsalis 3 muscle crosses the epibranchial-pharyngo-branchial joint in arches 3 and 4, and several additional muscles effect epibranchial rotation. Five upper jaw muscles cause upper jaw depression upon electrical stimulation: the obliquus dorsalis 3, levator posterior, levator externus 3/4, obliquus posterior, and transversus dorsalis. This result directly contradicts previous interpretations of function for the first three muscles. The presence of strong depression of the upper pharyngeal jaws explains the ability of many generalized perciform fishes to crush hard prey in their pharyngeal apparatus.  相似文献   

2.
Synopsis Pogonias cromis, black drum, is the largest durophagous sciaenid and feeds almost exclusively on hard-shelled bivalves and gastropods using powerful pharyngeal jaws. I estimated pharyngeal jaw bite forces used to crush live molluscs during feeding trials from juvenile and young adult Pogonias cromis, and they are the highest yet documented for bony fishes. Crushing ability in P. cromis scaled with strong positive allometry suggesting large adult fish may have one of the strongest bites among vertebrates. Physiological estimates of pharyngeal muscle strength derived from muscle cross sectional area accounted for only half of the force generated during actual feeding performance trials. The significant disparity between feeding performance and pharyngeal muscle strength in P. cromis indicates the presence of novel biomechanical linkages that enhance crushing ability for feeding on hard-shelled molluscs. I present a biomechanical model in which the lower pharyngeal jaw architecture of P. cromis emulates a second class lever mechanism that can amplify muscle forces transmitted to the shell of the prey.  相似文献   

3.
Within the catfish family Clariidae, species exist with different degrees of jaw adductor hypertrophy. This jaw adductor hypertrophy has been related to bite performance, in turn suggesting a link to dietary specialization. Thus, an increase in the degree of hypertrophy will likely be reflected in an increase in the amount of hard prey in the diet. In the present study, we examine the ontogenetic scaling of cranial structure and diet in a species of catfish with a moderate degree of jaw adductor hypertrophy, Clariallabes longicauda . Additionally, we investigate whether the observed changes in the morphology of the feeding system during growth are linked to changes in diet. The fish examined demonstrate a strong positively allometric growth of the jaw adductors, of head height and of maximal head width, suggesting that larger fish can feed on larger and harder prey. Dietary data confirm these hypotheses and reveal an increase in maximal prey size consumed, the proportion of large prey in the diet, and average prey hardness during ontogeny. Moreover, the observed changes in the proportion of large prey consumed and prey hardness are correlated with an increase in lower jaw width and maximal head width, respectively. An increase in the amount of evasive prey in the diet with fish size is correlated with an increase in hyoid length. In summary, not only size dependent, but also size-independent variation of the feeding system was associated with ontogenetic changes in diet in C. longicauda .  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 323–334.  相似文献   

4.
Kudoa hypoepicardialis n. sp. infects the space between the epicardium and the compact myocardium and, in intense infections, the pericardial chamber of man-of-war fish (Nomeus gronovii) (Nomeidae) (the type host), blue runner (Caranx crysos) (Carangidae), Warsaw grouper (Epinephelus nigritus) (Serranidae), Atlantic tripletail (Lobotes surinamensis) (Lobotidae), northern red snapper (Lutjanus campechanus) (Lutjanidae), black drum (Pogonias cromis) (Sciaenidae), and bluefish (Pomatomus saltatrix) (Pomatomidae) in the northern Gulf of Mexico. This is the first report of a Kudoa sp. from the heart of a fish in the Gulf of Mexico, and of these hosts, only the bluefish was previously identified as a host for a species of Kudoa. Spores of the new species varied slightly in size among these hosts but were regarded as conspecific based on their nearly identical (99.9%) small-subunit (SSU) ribosomal DNA (rDNA) sequence. The new species differs both from the 4 nominal species of Kudoa reported from fishes in the Gulf of Mexico and from K. pericardialis, an allopatric species that infects the pericardial cavity, by the combination of having a large spore, a small polar capsule, and a polar filament with a single coil. The new species is morphologically and genetically most similar to K. shiomitsui, an allopatric species that infects the heart and pericardial cavity, but is distinguished from it based on a 4.2% difference in the SSU rDNA sequence. Heart lesions primarily were restricted to the vicinity of plasmodia and included a layer of fibrinous inflammation characterized by lymphocytes, macrophages, and granulomas as well as epithelioid encapsulations around plasmodia. Heavily infected hosts had melanin-like deposits and adipose cells beneath the epicardium. and the epicardium was discontinuous and apparently breached by plasmodia in some regions. Cardiac muscle, gill, liver, spleen, intestine, and kidney were normal.  相似文献   

5.
Several studies have shown that round gobies (Neogobius melanostomus) undergo a dietary shift from arthropods to dreissenid mussels as they grow, and this shift is accompanied by changes in pharyngeal morphology associated with durophagy. In contrast, some populations of round gobies prey heavily on various arthropods, but it is unknown whether those populations develop pharyngeal morphology associated with durophagy or if they develop less robust and molarized structures. To test if there is a relationship between food habits and pharyngeal morphology, we compared those characters in round gobies from two sites in Erie Co., Pennsylvania: a dreissenid-present site (Presque Isle Bay, PIB, of Lake Erie) and a dreissenid-absent site (Fairview Gravel Pit, GP). Multivariate analysis of covariance (MANCOVA) revealed consistent ontogenetic changes at both sites in which lower pharyngeals of larger fish were more robust, possessed wider teeth, and had a greater area taken up by large diameter teeth. Pharyngeal morphology also differed between sites, with gobies from PIB having wider and more robust lower pharyngeals. Food habits differed markedly between round gobies from the two sites, with dreissenid mussels being the most important prey item for all length classes in PIB, and crustaceans being the most important prey item for all length classes at the GP. Canonical correlation analysis on all round gobies revealed a correlation between consumption of dreissenid prey and pharyngeal characters associated with durophagy. Although food habits and pharyngeal morphology of round gobies appear to be associated, the mechanism responsible for the association (i.e. phenotypic plasticity versus local adaptation) is not clear.  相似文献   

6.
The ability to separate edible from inedible portions of prey is integral to feeding. However, this is typically overlooked in favour of prey capture as a driving force in the evolution of vertebrate feeding mechanisms. In processing prey, cartilaginous fishes appear handicapped because they lack the pharyngeal jaws of most bony fishes and the muscular tongue and forelimbs of most tetrapods. We argue that the elaborate cranial muscles of some cartilaginous fishes allow complex prey processing in addition to their usual roles in prey capture. The ability to manipulate prey has evolved twice along different mechanical pathways. Batoid chondrichthyans (rays and relatives) use elaborate lower jaw muscles to process armored benthic prey, separating out energetically useless material. In contrast, megacarnivorous carcharhiniform and lamniform sharks use a diversity of upper jaw muscles to control the jaws while gouging, allowing for reduction of prey much larger than the gape. We suggest experimental methods to test these hypotheses empirically.  相似文献   

7.
A few orders of mammals contain many individuals with dominant masseter and pterygoid muscles that pull up and forward as they close the jaw. A dominant temporalis muscle that pulls the jaw up and to the rear is the more common condition in mammals. A long toothless region (diastema) is present in almost all mammals with a large masseter/pterygoid complex. The presence of a diastema, when few teeth have been lost and their size has not changed significantly over evolutionary time, implies that the jaws have lengthened, as in horses and selenodont artiodactyls. (A long jaw with a shorter diastema will also form if very long incisors develop as in rodents.) The sum of the forces of all the jaw muscles (represented by an arrow) typically divides the jaw into a posterior, toothless region and an anterior region where the teeth are located. In most mammals, the sum of all the bite forces at the teeth is maximized when the lengths of the projections of these two regions, onto a line perpendicular to the arrow, are in the ratio of 3 : 7. If the tooth-bearing region of the jaws becomes longer over evolutionary time this ratio will obviously be disturbed. A change in the location of some basic bony features of the jaw mechanism could maintain this ratio, but this requires major disruption of the skull and jaws. Alternatively, simply changing the masses of the muscles that close the jaw (smaller temporalis, larger masseter and/or pterygoid, or some combination), so that the lower jaw is pulled up and forward, rather than backward, also maintains the ratio. According to this view, if the jaw lengthens over evolutionary time, the relative sizes of the jaw muscles will change so that the masseter/pterygoid complex will become dominant.  © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 153 , 625–629.  相似文献   

8.
The sabretooth felids were widespread across much of the world in the Late Tertiary, and appear to have been an important group of large predators. Owing to the substantially different skull morphology of derived sabretooths compared with extant felids, there has been considerable debate over the killing mode, bite forces, and bending strength of the large upper canines, and over the implications of these characteristics on feeding ecology. Debates have, however, usually been based on indirect comparisons of force vectors. In this paper, I provide assessments of the estimated force output from the jaw adductor muscles, based on estimates of muscle cross-sectional areas and force vectors, along with canine bending strengths, in a variety of sabretooth felids, in comparison with extant felids. In general, sabretoothed felids had moderately powerful bites, albeit with less jaw adductor power for their body sizes compared with extant felids, sometimes markedly so. Less derived sabrecats appear to have had proportionally higher bite forces than derived forms. The length of the upper canines seemingly compromised their bending strength at any given body size, and again this was most marked in derived forms. However, compared with estimated jaw adductor forces, the canines of sabrecats appear, if anything, to have been stronger than those of extant conical-toothed felids. It has previously been suggested that large sabretoothed felids hunted large prey with a canine shearing bite, powered in part by the jaw adductors and in part by the muscles of the upper neck–occipital region. The present results of canine bending strengths versus the predicted bite force from the jaw adductors supports this suggestion.  © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 151 , 423–437.  相似文献   

9.
The black carp, Mylopharyngodon piceus (Osteichthyes: Cyprinidae), crushes its snail and other molluscan prey with robust pharyngeal jaws and strong bite forces. Using gross morphology, histological sectioning, and X‐ray reconstruction of moving morphology (XROMM), we investigated structural, behavioral, and mechanical aspects of pharyngeal jaw function in black carp. Strut‐like trabeculae in their pharyngeal jaws support large, molariform teeth. The teeth occlude with a hypertrophied basioccipital process that is also reinforced with stout trabeculae. A keratinous chewing pad is firmly connected to the basioccipital process by a series of small bony projections from the base of the pedestal. The pharyngeal jaws have no bony articulations with the skull, and their position is controlled by five paired muscles and one unpaired median muscle. Black carp can crush large molluscs, so we used XROMM to compare pharyngeal jaw postures as fish crushed ceramic tubes of increasing sizes. We found that black carp increase pharyngeal jaw gape primarily by ventral translation of the jaws, with ventral rotation and lateral flaring of the jaws also increasing the space available to accommodate large prey items. A stout, robust ligament connects left and right jaws together firmly, but allows some rotation of the jaws relative to each other. Contrasting with the pharyngeal jaw mechanism of durophagous perciforms with fused left and right lower pharyngeal jaws, we hypothesize that this ligamentous connection may serve to decouple tensile and compressive forces, with the tensile forces borne by the ligament and the compressive forces transferred to the prey. J. Morphol. 276:1422–1432, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Males of the lizard Podarcis melisellensis occur in three distinct colours that differ in bite performance, with orange males biting harder than white or yellow ones. Differences in bite force among colour morphs are best explained by differences in head height, suggesting underlying variation in cranial shape and/or the size of the jaw adductors. To explore this issue further, we examined variation in cranial shape, using geometric morphometric techniques. Additionally, we quantified differences in jaw adductor muscle mass. No significant differences in size corrected head shape were found, although some shape trends could be detected between the colour morphs. Orange males have relatively larger jaw adductors than yellow males. Not only the mass of the external jaw adductors, but also that of the internal jaw adductors was greater for the orange morph. Data for other cranial muscles not related to biting suggest that this is not the consequence of an overall increase in robustness in orange individuals. These results suggest that differences in bite performance among morphs are caused specifically by an increase in the mass of the jaw adductor, which may be induced by differences in circulating hormone levels.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 13–22.  相似文献   

11.
Moray eels (Muraenidae) are a relatively large group of anguilliform fishes that are notable for their crevice-dwelling lifestyle and renowned for their ability to consume large prey. Morays apprehend their prey by biting and then transport prey by extreme protraction and retraction of their pharyngeal jaw apparatus. Here, we present a detailed interpretation of the mechanisms of pharyngeal jaw transport based on work with Muraena retifera. We also review what is known of the moray pharyngeal jaw apparatus from the literature and provide comparative data on the pharyngeal jaw elements and kinematics for other moray species to determine whether interspecific differences in morphology and behavior are present. Rather than comprising broad upper and lower processing tooth plates, the pharyngeal jaws of muraenine and uropterygiine morays, are long and thin and possess large, recurved teeth. Compared with the muraenines, the pharyngobranchials of the uropterygiines do not possess a horn-shaped process and their connection to the fourth epibranchial is dorsal rather than medial. In addition, the lower tooth plates do not exhibit a lateral groove that serves as a site of muscle attachment for the pharyngocleitheralis and the ventral rather than the lateral side of the lower tooth plate attaches to the fourth ceratobranchial. In all morays, the muscles positioned for protraction and retraction of the pharyngeal apparatus have undergone elongation, while maintaining the generalized attachment sites on the bones of the skull and axial skeleton. Uropterygiines lack a dorsal retractor muscle and we presume that retraction of the pharyngeal jaws is achieved by the pharyngocleitheralis and the esophagus. The fifth branchial adductor is greatly hypertrophied in all species examined, suggesting that morays can strongly adduct the pharyngeal jaws during prey transport. The kinematics of biting behavior during prey capture and transport resulted in similar magnitudes of cranial movements although the timing of kinematic events was significantly different and the duration of transport was twice as long as prey capture. We speculate that morays have evolved this alternative prey transport strategy as a means of overcoming gape constraints, while hunting in the confines of coral reefs.  相似文献   

12.
13.
The jaw adductor musculature in Triassic stem-group sauropterygians is reconstructed on the basis of a paradigmatic model of muscle architecture (functional equivalence of sarcomeres) and using invariant traits of the anatomy of the trigeminal jaw adductor muscles in extant reptiles. The reconstructed jaw adductor musculature predicts trophic specializations in stem-group sauropterygians. Suction feeding is a component in prey capture for some benthic feeding, as well as for some pelagic feeding taxa. The differentiation of 'pincer' jaws is correlated with the potential for rapid, snapping bites. There is some evidence for habitat partitioning among Triassic stem-group sauropterygians with respect to trophic specialization. © 2002 The Linnean Society of London. Zoological Journal of the Linnean Society , 2002, 135 , 33–63.  相似文献   

14.
The ichthyofauna fished in Bahía de Navidad, Jalisco, Mexico in the Central Pacific was surveyed during 1998. Six thousand nine hundred and fourty-four organisms of 130 species were caught which weighted 3,231 kg. Nearly 30% of the species belonged to Carangidae. Haemulidae and Sciaenidae. The most important species in number and biomass were Microlepidotus brevipinnins, Caranx caninus and C. caballus. Species number, abundance and biomass fluctuated during the year. The largest number of species was caught in June (61), the minimum in March (33). January had the maximum abundance (1,397 organisms), while the minimum was obtained during August (251). The maximum biomass values were from January (556.5 kg), and the lowest from August (114.7 kg). Eighteen species accumulated 87% of the total abundance, while 20 species represented 86.3% of the biomass. There were large in differences species number, abundance and biomass nets of different mesh size.  相似文献   

15.
16.
《Journal of morphology》2017,278(10):1412-1420
This study compares sand shiner (Notropis stramineus ) and silverjaw (Ericymba buccata ) minnows, in terms of the morphological shape changes of the upper, lower, and pharyngeal jaws over ontogeny. These two species of minnows initially feed on midge larvae and undergo an ontogenic prey shift. The traditional morphometrics measured—total length, snout‐to‐vent length, eye diameter, premaxilla length, lower jaw length, gape—were regressed onto total length to test for allometry. Digital pictures were processed with tpsDig and further analyzed with MorphoJ utilizing a regular geometric morphometrics procedure using principle component analyses. We examined gut contents for 16 fish of each species. For the silverjaw minnows, we found all jaw variables to exhibit positive allometric growth with increasing total length, while most of the jaw variables for the sand shiner exhibited negative allometric growth with increasing total length. This correlates with an ontogenic prey shift for both species. Sand shiner minnows have been found to be more omnivorous, feeding on algae later in life, while silverjaw minnows undergo a prey shift to larger invertebrates. These species lack oral dentition causing an increased reliance on the pharyngeal apparatus. Principle component analyses revealed elongation of pharyngeal jaw elements in the silverjaw minnows and a relative shortening and bulking of pharyngeal jaws in the sand shiner minnows. The ontogenic dietary shifts observed in these two species provide possible explanation for the morphological changes over ontogeny in jaw elements, which are likely enabling these species to occupy the same habitat with little niche overlap.  相似文献   

17.
We explored variations in the morphology and function of the envenomation system in the four families of snakes comprising the Colubroidea (Viperidae, Elapidae, Atractaspididae, and Colubridae) using our own prey capture records and those from the literature. We first described the current knowledge of the morphology and function of venom delivery systems and then explored the functional plasticity found in those systems, focusing on how the propensity of snakes to release prey after the strike is influenced by various ecological parameters. Front-fanged families (Viperidae, Elapidae, and Atractaspididae) differ in the morphology and topographical relationships of the maxilla as well as in the lengths of their dorsal constrictor muscles (retractor vomeris; protractor, retractor, and levator pterygoidei; protractor quadrati), which move the bones comprising the upper jaw, giving some viperids relatively greater maxillary mobility compared to that of other colubroids. Rear-fanged colubrids vary in maxillary rotation capabilities, but most have a relatively unmodified palatal morphology compared to non-venomous colubrids. Viperids launch rapid strikes at prey, whereas elapids and colubrids use a variety of behaviors to grab prey. Viperids and elapids envenomate prey by opening their mouth and rotating both maxillae to erect their fangs. Both fangs are embedded in the prey by a bite that often results in some retraction of the maxilla. In contrast, Atractaspis (Atractaspididae) envenomates prey by extruding a fang unilaterally from its closed mouth and stabbing it into the prey by a downward-backwards jerk of its head. Rear-fanged colubrids envenomate prey by repeated unilateral or bilateral raking motions of one or both maxillae, some aspects of which are kinematically similar to the envenomation behavior in Atractaspis. The envenomation behavior, including the strike and prey release behaviors, varies within families as a function of prey size and habitat preference. Rear-fanged colubrids, arboreal viperids, and elapids tend to hold on to their prey after striking it, whereas atractaspidids and many terrestrial viperids release their prey after striking it. Larger prey are more frequently released than smaller prey by terrestrial front-fanged species. Venom delivery systems demonstrate a range of kinematic patterns that are correlated to sometimes only minor modifications of a common morphology of the jaw apparatus. The kinematics of the jaw apparatus are correlated with phylogeny, but also show functional plasticity relating to habitat and prey.  相似文献   

18.
The extent to which elements of functional systems can change independently (modularity) likely influences the diversification of lineages. Major innovations in organismal design, like the pharyngeal jaw in cichlid fishes, may be key to a group's success when they relax constraints on diversification by increasing phenotypic modularity. In cichlid fishes, pharyngeal jaw modifications that enhanced the ability to breakdown prey may have freed their oral jaws from serving their ancestral dual role as a site of both prey capture and prey processing. This functional decoupling that allowed the oral jaws to become devoted solely to prey capture has been hypothesized to have permitted the two sets of cichlid jaws to evolve independently. We tested the hypothesis that oral and pharyngeal jaw mechanics are evolutionarily decoupled both within and among Neotropical Heroine cichlids. In the trophically polymorphic species Herichthys minckleyi, molariforms that exhibit enlarged molarlike pharyngeal jaw teeth were found to have approximately 400% greater lower jaw mass compared to H. minckleyi with the alternative papilliform pharyngeal morphology. However, oral jaw gape, lower jaw velocity ratios, anterior jaw linkage mechanics, and jaw protrusion did not differ between the morphotypes. In 40 other Heroine species, there was a weak correlation between oral jaw mechanics and pharyngeal jaw mass when phylogenetic history was ignored. Yet, after expansion of the cytochrome b phylogeny for Heroines, change in oral jaw mechanics was found to be independent of evolutionary change in pharyngeal jaw mass based on independent contrasts. Evolutionary decoupling of oral and pharyngeal jaw mechanics has likely played a critical role in the unparalleled trophic diversification of cichlid fishes.  相似文献   

19.
Functional and structural patterns in the pharyngeal jaw apparatus of euteleostean fishes are described and analysed as a case study of the transformation of a complex biological design. The sequential acquisition of structural novelties in the pharyngeal apparatus is considered in relation to both current hypotheses of euteleostean phylogeny and patterns of pharyngeal jaw function. Several euteleostean clades are corroborated as being monophyletic, and morphologically conservative features of the pharyngeal jaw apparatus are recognized. Functional analysis, using cinematography and electromyography, reveals four distinct patterns of muscle activity during feeding in primitive euteleosts (Esox) and in derived euteleostean fishes(Perca, Micropterus, Ambloplites, Pomoxis). The initial strike, buccal manipulation, pharyngeal manipulation, and the pharyngeal transport of prey into the oesophagus all involve unique muscle activity patterns that must be distinguished in analyses of pharyngeal jaw function. During pharyngeal transport, the upper and lower pharyngeal jaws are simultaneously protracted and retracted by the action of dorsal and ventral musculoskeletal gill arch couplings. The levator externus four and retractor dorsalis muscles, anatomical antagonists, overlap for 70–90°of their activity period. Levatores externi one and two are the main protractors of the upper pharyngeal jaws in the acanthopterygian fishes studied. The major features of pharyngeal jaw movement in primitive euteleosts are retained in many derived clades in spite of a dramatic structural reorganization of the pharyngeal region. Homologous muscles have radically changed their relative activity periods while pharyngeal jaw kinematics have been modified relatively little. Patterns of transformation of activity may thus bear little direct relationship to the sequence of structural modification in the evolution of complex designs. Overall function of a structural system may be maintained, however, through co-ordinated modifications of the timing of muscle activity and anatomical reorientation of the musculoskeletal system. Deeper understanding of the principles underlying the origin and transformation of functional design in vertebrates awaits further information on the acquisition of both structural and functional novelties at successive hierarchical levels within monophyietic clades. This is suggested as a key goal of future research in functional and evolutionary morphology.  相似文献   

20.
Summary Movements of the maxilla and mandible were recorded during drinking in the head-fixed pigeon and correlated with electromyographic activity in representative jaw muscle groups. During drinking, each jaw exhibits opening and closing movements along both the dorso-ventral and rostro-caudal axes which may be linked with or independent of each other. All subjects showed small but systematic increases in cycle duration over the course of individual drinking bouts. Cyclic jaw movements during drinking were correlated with nearly synchronous activity in the protractor (levator) of the upper jaw and in several jaw closer muscles, as well as with alternating activity in tongue protractor and retractor muscles. No EMG activity was ever recorded in the lower jaw opener muscle, suggesting that lower jaw opening in this preparation is produced, indirectly, by the contraction of other muscles. The results clarify the contribution of the individual jaws to the generation of gape variations during drinking in this species.Abbreviations AMEM adductor mandibulae externus muscle - DM depressor mandibulae muscle - EMG electromyographic - GENIO geniohyoideus muscle - LB lower beak - LED light-emitting diode - PQP protractor quadrati et pterygoidei muscle - PVL pterygoideus ventralis muscle, pars lateralis - SeH/StH serpihyoideus or stylohyoideus muscle - UB upper beak  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号