首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
U-937 cells differentiated with dimethylsulphoxide for 3-4 days express receptors for leukotriene D4 (LTD4), which are coupled to Ca2+ mobilization and phosphatidylinositol (PI) metabolism. Treatment of U-937 cells with an inhibitor of protein kinase C (PKC) [staurosporine (100 nM)] augmented the Ca2+ mobilized by LTD4. The peak concentration of the LTD4-induced increase in [Ca2+]i was 1500 nM in untreated cells and 3000 nM in cells treated with staurosporine for 30 s. Maximal mobilization responses were observed at 1-10 microM LTD4 in both control and staurosporine-treated cells. The increased Ca2+ response to LTD4 after staurosporine treatment occurred within 30 s and was attributable to both intracellular and extracellular stores. Additionally, a second phase of Ca2+ mobilization occurred after stimulation with LTD4, which was elevated by pretreatment with staurosporine--this effect was maximal after 5-10 min of treatment. Staurosporine either had no effect or decreased the Ca2+ mobilization response of differentiated U-937 cells to other agonists, such as LTB4, platelet activating factor, ATP or the chemotactic peptide f-Met-Leu-Phe. Although staurosporine alone had no effect on basal PI metabolism it increased LTD4-induced PI metabolism. Staurosporine did not prevent the tachyphylaxis observed upon second challenge with LTD4, nor did it prevent LTD4-induced homologous densensitization. Other compounds which inhibit PKC (sphingosine and 1-O-hexadecyl-2-O-methylglycerol), also enhanced the Ca2+ response of U-937 cells to LTD4, but not to other agonists. These data show that inhibition of PKC enhanced responses of LTD4, suggesting that PKC plays a role in determining the responsiveness of LTD4 receptors.  相似文献   

2.
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation.  相似文献   

3.
Stimulation of Jurkat T cells with antibodies against the T cell receptor/CD3 complex induces a rise in the intracellular concentration of Ca2+ within seconds. The inositol phosphate-dependent Ca2+ mobilization induced by OKT3 was completely abrogated when Jurkat cells were pretreated for 1 min with the phorbol 12-myristate 13-acetate TPA (10nM), a concentration which activates protein kinase C (PKC). The effects of TPA on the Ca2+ fluxes were insensitive to treatment of the cells with known PKC inhibitors (H-7 and staurosporin) under conditions where the PKC-mediated phosphorylation was blocked. Furthermore, another activator of PKC, mezerein, inhibited the Ca2+ signal induced by OKT3. This inhibition, however, could completely be reversed by pretreatment with H-7 or staurosporine. We conclude that the TPA-mediated inhibition of Ca2+ fluxes in Jurkat T cells largely acts through a PKC-independent pathway.  相似文献   

4.
The alkaloid staurosporine, currently known as the most potent inhibitor of protein kinase C, PKC, was tested for its ability to inhibit phytochrome-mediated spore germination in Dryopteris filix-mas L., evaluated by the induction of chlorophyll synthesis. Approximately half-maximal inhibition was obtained at a concentration of 10(-5) M. This effect of staurosporine was phase-specific and was found during the same period in which the presence of extracellular calcium is necessary for realization of the light signal. Furthermore, the ability of staurosporine to prevent progression of a germinated spore into early gametophyte development, evaluated by the accumulation of chlorophyll, was examined. Again, staurosporine (10(-5) M) significantly diminished chlorophyll accumulation, determined quantitatively in vivo by single-cell measurements, in a non-phase specific way. The fact that the phase-specific inhibitory effect of staurosporine in preventing germination was coincident with the phase-specific requirement of Ca2+ suggests that both Ca2+ and staurosporine affect the same step in the signal-transduction chain. A phosphorylation event catalysed by PKC or any Ca2+ -dependent protein kinase is proposed as the target of staurosporine and Ca2+.  相似文献   

5.
T Sakai  Y Okano  Y Nozawa  N Oka 《Cell calcium》1992,13(5):329-340
Effects of protein kinase C (PKC) on bradykinin (BK)-induced intracellular calcium mobilization, consisting of rapid Ca2+ release from internal stores and a subsequent sustained Ca2+ inflow, were examined in Fura-2-loaded osteoblast-like MC3T3-E1 cells. The sustained Ca2+ inflow as inferred with Mn2+ quench method was blocked by Ni2+ and a receptor-operated Ca2+ channel blocker SK&F 96365, but not by nifedipine. The short-term pretreatment with phorbol 12-myristate 13-acetate (PMA), inhibited BK-stimulated Ca2+ inflow, and the prior treatment with PKC inhibitors, H-7 or staurosporine, enhanced the initial internal release and reversed the PMA effect. Moreover, 6 h pretreatment with PMA caused similar effect on the BK-induced inflow to that obtained with PKC inhibitors, whereas 24 h pretreatment was necessary to affect the internal release. On the other hand, the translocation and down-regulation of PKC isozymes were examined after PMA treatment of MC3T3-E1 cells by immunoblot analyses of PKCs with the isozyme-specific antibodies. 6 h treatment with PMA induced down-regulation of PKC beta, whereas longer treatment was needed for down-regulation of PKC alpha. Taken together, it was suggested that the BK-induced initial Ca2+ peak and the sustained Ca2+ inflow through the activation of a receptor-operated Ca2+ channel, are differentially regulated by PKC isozymes alpha and beta, respectively, in osteoblast-like MC3T3-E1 cells.  相似文献   

6.
The study investigated the role of protein kinase C (PKC) in the modulation of agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. The short-circuit current (ISC) technique was used to examine the effect of PKC activation and inhibition on subsequent ATP, angiotensin II and ionomycin-activated anion secretion by normal (CAPAN-1) and cystic fibrosis (CFPAC-1) pancreatic duct cells. The ISC responses induced by the Ca2+-mobilizing agents, which had been previously shown to be attributed to anion secretion, were enhanced in both CAPAN-1 and CFPAC-1 cells by PKC inhibitors, staurosporine, calphostin C or chelerythrine. On the contrary, a PKC activator, phorbol 12-myristate 13-acetate (PMA), was found to suppress the agonist-induced ISC in CFPAC-1 cells and the ionomycin-induced ISC in CAPAN-1 cells. An inactive form of PMA, 4alphad-phorbol 12, 13-didecanote (4alphaD), was found to exert insignificant effect on the agonist-induced ISC, indicating a specific effect of PMA. Our data suggest a role of PKC in modulating agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. Therapeutic strategy to augment Ca2+-activated anion secretion by cystic fibrosis pancreatic duct cells may be achieved by inhibition or down-regulation of PKC.  相似文献   

7.
Sun QY  Liu H  Li XB  Song XF  Yu JQ  Li GH  Chen DY 《Theriogenology》1996,46(2):359-367
Fresh semen was collected from adult male giant pandas and the role of Ca2+, Ca2+ ionophore A23187 and protein kinase C (PKC) in sperm motility and acrosome reaction (AR) was assessed by lens culinaris agglutinin conjugated with fluorescein isothiocyanate (FITC-LCA) labeling and transmission electron microscopy. The AR in giant panda spermatozoa was characterized by vesiculation of the outer acrosomal membrane through its invagination. Both the sperm motility and the AR rate decreased significantly (p < 0.05) in Ca2+-free and low Ca2+ medium. The addition of 10 microM Ca2+ ionophore A23187 potently stimulated AR. After incubation for capacitation, the PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated AR in a dose-dependent manner and its effect could be overcome by the PKC inhibitor staurosporine. These results suggest that Ca2+ and PKC play an important role in the sperm acrosome reaction of the giant panda.  相似文献   

8.
The mechanisms of muscarinic receptor-linked increase in cAMP accumulation in SH-SY5Y human neuroblastoma cells has been investigated. The dose-response relations of carbachol-induced cAMP synthesis and carbachol-induced rise in intracellular free Ca2+ were similar. The stimulated cAMP synthesis was inhibited by about 50% when cells were entrapped with the Ca2+ chelator BAPTA or in the presence of the protein kinase C (PKC) inhibitor staurosporine. Production of cAMP could be induced also by the Ca2+ ionophore, ionomycin and by TPA, an activator of PKC. When added together TPA and ionomycin had a synergistic effect. When cAMP synthesis was activated with cholera toxin, PGE1 or PGE1 + pertussis toxin carbachol stimulated cAMP production to the same extent as in control cells. Ca2+ and protein kinase C thus seem to be the mediators of muscarinic-receptor linked cAMP synthesis by a direct action on adenylate cyclase.  相似文献   

9.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

10.
The effects of calcium, calmodulin, protein kinase C (PKC) and protein tyrosine kinase (PTK) modulators were examined on the volume-activated taurine efflux in the erythroleukemia cell line K562. Exposure to hypoosmotic solution significantly increased taurine efflux and intracellular calcium concentration ([Ca2+]i). The Ca2+ channel blockers La3+ (1 mM), verapamil (200 microM) and nifedipine (100 microM) inhibited the hypoosmotically-induced [Ca2+]i increase by more than 90%, while the volume-activated taurine efflux was inhibited by 61.3 +/- 9.5, 74.1 +/- 9.3 and 38.0 +/- 1.5%, respectively. Furthermore, the calmodulin inhibitors W7 (50 microM) and trifluoperazine (10 microM) and the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62 (2 microM) significantly blocked the volume-activated taurine efflux by 93.4 +/- 2.7, 77.9 +/- 3.5 and 61.3 +/- 15.8%, respectively. In contrast, the PKC inhibitor staurosporine (200 nM) or the PKC activator phorbol 12-myristate 13-acetate (100 nM) did not have significant effects on the volume-activated taurine efflux. However, pretreatment with PTK inhibitors genistein, tyrphostin A25, and tyrphostin A47 blocked the volume-activated taurine efflux. These results suggest that the volume-activated taurine efflux in K562 cells may not directly involve Ca2+, but may require the presence of calmodulin and/or PTK.  相似文献   

11.
The role of protein kinase C (PKC) in modulating platelet activation has been examined in platelets pre-incubated with either the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) or the non-specific protein kinase inhibitor, staurosporine. In order to determine where in the signal transduction pathway PKC is exerting its effect platelets were activated either with a receptor-operated stimulus platelet activating factor (PAF) or by direct elevation of [Ca2+]i (ionomycin) or with arachidonic acid which is converted into thromboxane B2 (TxB2). In PAF-stimulated platelets activation of PKC inhibited both [Ca2+]i elevation and TxB2 generation but had no effect on 5-hydroxytryptamine (5-HT) release whilst staurosporine increased the duration of [Ca2+]i elevation and potentiated TxB2 generation but inhibited 5-HT release. In ionomycin-stimulated platelets modulation of PKC had no effect on [Ca2+]i elevation but in contrast to PAF-stimulated platelets PKC activation caused potentiation of TxB2 generation and 5-HT release whilst inhibition of PKC caused inhibition of TxB2 generation and 5-HT release. Modulation of PKC did not affect arachidonic acid-induced TxB2 generation. These findings suggest that in receptor activated platelets endogenously activated PKC is exerting a negative feedback role, however, when [Ca2+]i elevation is not modified by PKC activation or inhibition (such as in ionomycin stimulated platelets) the relationship between the state of PKC activation and subsequent platelet functional responses corresponds more closely. The findings from this study suggest a different relationship between PKC and TxB2 generation than between PKC and dense granule release in PAF-stimulated platelets.  相似文献   

12.
The intracellular signal transduction mechanism leading to desmosome formation in low-calcium-grown keratinocytes after addition of calcium to the medium was studied by immunofluorescence using antibodies to desmoplakins I and II (cytoplasmic desmosomal proteins) and by electron microscopy before and after addition of calcium; protein kinase C (PKC) activators 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibutyrate (PDBu), and 1,2-dioctanoylglycerol (DOG); calcium ionophore A23187; selective PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and staurosporine; and a Ca2+/calmodulin-dependent kinase inhibitor, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). In previous studies using a low-calcium-grown human epidermal squamous cell carcinoma, we have shown that an increase in extracellular Ca2+ caused a four-fold increase in PKC activity and addition of TPA (10 ng/ml) induced a transient increase in membrane-bound PKC activity in association with cell-cell contact formation. The present study showed that TPA (10 ng/ml). PDBu (10 ng/ml), and DOG (1 mg/ml) induced a rapid cell-cell contact and redistribution of desmoplakins from cytoplasm to the plasma membrane with desmosome formation within 60-120 min, which was similar, although less marked, to the effect of increased Ca2+. The TPA-induced desmosome formation was inhibited by selective PKC inhibitors, H-7 (20 microM) or staurosporine (100 nM). On the other hand, calcium ionophore A23187 induced only a temporary increase in the number of desmoplakin-containing fluorescent spots in the cytoplasm and a temporary cell-cell attachment without desmosome formation. The calcium-induced desmosome formation was partially inhibited by 20-100 microM H-7 or 100 nM staurosporine; however, it was not inhibited by W-7 at a concentration of 25 microM, at which this agent selectively inhibits calmodulin-dependent protein kinase. These results suggest that PKC activation plays an important role in desmoplakin translocation from the cytoplasm to the plasma membrane as one of the processes of calcium-induced desmosome formation.  相似文献   

13.
The effects of protein kinase C inhibition by staurosporine was studied on Ca-dependent tone of the rabbit facial vein. Tone was produced either by stretch or by readmission of Ca2+ in a non-depolarizing Ca2+-free salt solution. Stretch-induced tone was inhibited by staurosporine. When tissues were incubated in a Ca2+-free solution, staurosporine (50 nM) inhibited the contractile responses produced by readmission of Ca2+. These observations suggest that maintenance of stretch-induced extracellular Ca2+-dependent tone may be regulated by protein kinase C.  相似文献   

14.
Many cells generate oscillations in cytoplasmic free Ca2+ concentration ('free Ca') when stimulated with Ca-mobilizing hormones. The frequency of repetitive free-Ca transients in a rat hepatocyte is a function of hormone concentration and can be depressed by phorbol esters. We show here that the protein kinase C (PKC) inhibitors staurosporine and sphingosine can reverse the effects of phorbol dibutyrate on the frequency of free-Ca transients induced by phenylephrine or vasopressin. An important feature of the hepatocyte free-Ca oscillator is that the transient's time course, particularly the rate of fall of free Ca from peak to resting, depends on the species of agonist, and is measurably different for phenylephrine, vasopressin, angiotensin II or ATP. We show here that the rate of fall of free Ca in transients induced by phenylephrine or vasopressin is markedly decreased after treatment of the cells with a PKC inhibitor. A receptor-controlled oscillator model is discussed, in which PKC provides negative feedback during the falling phase of free-Ca transients.  相似文献   

15.
We have used a digitonin-permeabilized cell system to study the signal transduction pathways responsible for stimulus-secretion coupling in the rat peritoneal mast cell. Conditions were established for permeabilizing the mast cell plasma membrane without disrupting secretory vesicles. Exocytotic release of histamine from digitonin-permeabilized cells required a combination of micromolar concentrations of Ca2+ and the stable guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but was independent of exogenous ATP. In the presence of 40 microM-GTP[S], exocytosis was half-maximal at 1.3 microM-Ca2+ and maximal at 10 microM-Ca2+; GTP[S] alone (100 microM) had no effect on histamine release in the absence of added Ca2+. In the presence of 10 microM free Ca2+, 5 microM-GTP[S] was required for half-maximal exocytosis. To examine the possible role of protein kinase C (PKC) in exocytosis, we utilized 12-O-tetradecanoylphorbol 13-acetate (TPA) to activate PKC and studied its effect on histamine release from permeabilized mast cells. Cells that had been incubated with TPA (25 nM for 5 min) exhibited increased sensitivity to both GTP[S] and Ca2+. The PKC inhibitor staurosporine blocked the effect of TPA without inhibiting normal exocytosis in response to the combination of GTP[S] and Ca2+. In addition, down-regulation of mast-cell PKC by long-term TPA treatment (25 nM for 20 h) blocked the ability of the cells to respond to TPA and inhibited exocytosis in response to Ca2+ and GTP[S] by 40-50%. These results suggest that the sensitivity of the exocytotic machinery of the mast cell can be altered by PKC-catalysed phosphorylation events, but that activation of PKC is not required for exocytosis to occur.  相似文献   

16.
In the present study, we first investigated which of the factors, protein kinase C (PKC) or Ca2+, plays an important role in activation of phospholipase D (PLD) of rabbit peritoneal neutrophils stimulated by the chemoattractant FMLP. PLD activity was assessed by measuring [3H]phosphatidylethanol ([3H]PEt), the unambiguous marker of PLD, generated by [3H]lyso platelet-activating factor-prelabeled neutrophils in the presence of ethanol. PKC inhibitors, staurosporine and 1-(5-isoquinolinesulfonyl-2-methylpiperazine dihydrochloride, augmented the plateau level of [3H]PEt produced in FMLP-stimulated cells, although they had no effect on the initial rate of the formation. Furthermore, it was found that the FMLP-stimulated [3H]PEt formation was inhibited by pretreatment of cells with PMA, a PKC activator, and exposure of cells to staurosporine before PMA pretreatment moderately blocked the PMA inhibition. Ca2+ ionophore ionomycin, as well as FMLP, stimulated [3H]PEt formation, accompanied by a decrease in [3H]phosphatidylcholine, in a time- and concentration-dependent manner. Both FMLP and ionomycin absolutely required extracellular Ca2+ to increase [3H]PEt formation. These results imply that elevated intercellular Ca2+ by FMLP stimulation is the major factor for PLD activation and that PKC rather negatively regulates the enzyme activity. Interestingly, a calmodulin inhibitor, N-(6-aminohexyl)-5-chloro-1- naphthalenesulfonamide, and a myosin L chain kinase inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-1H-h exahydro-1,4-diazepine hydrochloride, both inhibited the ionomycin- and FMLP-stimulated [3H]PEt formation in a concentration-dependent manner. Results obtained in this study suggest that, in FMLP-stimulated rabbit peritoneal neutrophils, increased intracellular Ca2+ activates PLD through calmodulin/myosin L chain kinase pathway and, thereafter, the enzyme activation is turned off by simultaneously activated PKC.  相似文献   

17.
Protein kinase C sensitizes olfactory adenylate cyclase   总被引:3,自引:1,他引:2  
Effects of neurotransmitters on cAMP-mediated signal transduction in frog olfactory receptor cells (ORCs) were studied using in situ spike recordings and radioimmunoassays. Carbachol, applied to the mucosal side of olfactory epithelium, amplified the electrical response of ORCs to cAMP-generating odorants, but did not affect unstimulated cells. A similar augmentation of odorant response was observed in the presence of phorbol dibutyrate (PDBu), an activator of protein kinase C (PKC). The electrical response to forskolin, an activator of adenylate cyclase (AC), was also enhanced by PDBu, and it was attenuated by the PKC inhibitor Goe 6983. Forskolin-induced accumulation of cAMP in olfactory tissue was potentiated by carbachol, serotonin, and PDBu to a similar extent. Potentiation was completely suppressed by the PKC inhibitors Goe 6983, staurosporine, and polymyxin B, suggesting that the sensitivity of olfactory AC to stimulation by odorants and forskolin was increased by PKC. Experiments with deciliated olfactory tissue indicated that sensitization of AC was restricted to sensory cilia of ORCs. To study the effects of cell Ca2+ on these mechanisms, the intracellular Ca2+ concentration of olfactory tissue was either increased by ionomycin or decreased by BAPTA/AM. Increasing cell Ca2+ had two effects on cAMP production: (a) the basal cAMP production was enhanced by a mechanism sensitive to inhibitors of calmodulin; and (b) similar to phorbol ester, cell Ca2+ caused sensitization of AC to stimulation by forskolin, an effect sensitive to Goe 6983. Decreasing cell Ca2+ below basal levels rendered AC unresponsive to stimulation by forskolin. These data suggest that a crosstalk mechanism is functional in frog ORCs, linking the sensitivity of AC to the activity of PKC. At increased activity of PKC, olfactory AC becomes more responsive to stimulation by odorants, forskolin, and cell Ca2+. Neurotransmitters appear to use this crosstalk mechanism to regulate olfactory sensitivity.  相似文献   

18.
Nitric oxide (NO) produced by microglia has been implicated in the pathogenesis of various central nervous system diseases; however, the intracellular signal pathways for the production of NO are not well known. Protein kinase C (PKC) plays a key role in a variety of signal transduction processes. To elucidate how PKC regulates microglial NO production, we examined the effects of PKC inhibitors on lipopolysaccharide (LPS)-stimulated NO production by primary cultured rat microglia. Staurosporine, a non-selective PKC inhibitor, increased LPS-induced production of NO at 0.1-10 nM range of concentration. Protein kinase A (PKA) inhibitor, H89, did not affect LPS-induced NO production, suggesting that staurosporine effect is not mediated by inhibition of PKA. However, other two PKC inhibitors, whose specificities for PKC isoforms were different, G?6976 and Ro-32-0432, exhibited different effects on NO production from staurosporine; the former inhibited and the latter showed no effect. Interestingly, an activator of PKC, phorbol 12-myristate 13-acetate (PMA) also increased LPS-induced production of NO at 1-10 nM range of concentration, suggesting that prolonged incubation with PMA caused down-regulation of PKC. These results indicate that the inhibition or down-regulation of some PKC isoforms causes the enhancement of NO production. The different effects of PKC inhibitors on the NO production suggest that the different PKC isoforms play different roles in regulation of NO production in microglia.  相似文献   

19.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

20.
We have compared the transmembrane signals generated in human basophils by two distinct stimuli, anti-IgE antibody and FMLP (f-met peptide). Although both stimuli resulted in the activation of protein kinase C (PKC) and an increase in intracellular free calcium, there were substantial differences between the two which suggested that distinct signal transduction mechanisms were operating. We have confirmed an earlier observation that the cross-linking of IgE led to an increase in membrane PKC activity with no apparent concomitant loss of cytosolic PKC and established that in contrast, the univalent stimulus, f-met peptide, resulted in the canonical translocation of cytosolic PKC to the membrane. Furthermore, unlike anti-IgE-stimulated basophils, there was no clear relationship between the increase in PKC activity and the subsequent release of histamine. Two PKC inhibitors, staurosporine (0.1 to 1 nM) and sphingosine (25 to 50 microM), inhibited anti-IgE induced release, yet, potentiated the release of mediators after a challenge with 1 microM f-met peptide. Both stimuli led to an increase in the intracellular Ca2+ levels that correlated well with the release of histamine, however, the anti-IgE-induced responses were typically only 50% of those required to give equivalent histamine release when f-met peptide initiated release. Pharmacologic evidence suggested that the up-regulation of PKC was required for a full IgE-mediated Ca2+ response and that PKC contributed to the elevated Ca2+ levels that persist for up to 15 min after the addition of anti-IgE. In contrast, the PKC inhibitor, staurosporine, did not affect the initial increase in Ca2+ after the addition of f-met peptide but reduced the rate at which Ca2+ was removed from the cytosol. Experiments with the phorbol ester, PMA, suggested that substantial degranulation can occur in the absence of any increase in intracellular Ca2+. The addition of 10 ng/ml PMA 10 min before the addition of f-met peptide did not affect the magnitude of the initial Ca2+ transient but increased the rate at which Ca2+ levels returned to a stable baseline. Similar pretreatment with PMA almost completely abolished the anti-IgE antibody-induced Ca2+ response. These experiments, together with other previous data, suggest that the activation of PKC is a prodegranulatory component of the IgE-mediated signal transduction pathway, yet serves principally to modulate the Ca2+ signal when f-met peptide initiates release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号