共查询到20条相似文献,搜索用时 0 毫秒
1.
Lanfranchi PA Somers VK 《American journal of physiology. Regulatory, integrative and comparative physiology》2002,283(4):R815-R826
The arterial baroreflex contributes importantly to the short-term regulation of blood pressure and cardiovascular variability. A number of factors (including reflex, humoral, behavioral, and environmental) may influence gain and effectiveness of the baroreflex, as well as cardiovascular variability. Many central neural structures are also involved in the regulation of the cardiovascular system and contribute to the integrity of the baroreflex. Consequently, brain injuries or ischemia may induce baroreflex impairment and deranged cardiovascular variability. Baroreflex dysfunction and deranged cardiovascular variability are also common findings in cardiovascular disease. A blunted baroreflex gain and impaired heart rate variability are predictive of poor outcome in patients with heart failure and myocardial infarction and may represent an early index of autonomic activation in left ventricular dysfunction. The mechanisms mediating these relationships are not well understood and may in part be the result of cardiac structural changes and/or altered central neural processing of baroreflex signals. 相似文献
2.
Van de Louw A Médigue C Papelier Y Cottin F 《American journal of physiology. Regulatory, integrative and comparative physiology》2008,295(6):R1934-R1940
Heart rate and blood pressure variations during spontaneous ventilation are related to the negative airway pressure during inspiration. Inspiratory airway pressure is positive during mechanical ventilation, suggesting that reversal of the normal baroreflex-mediated pattern of variability may occur. We investigated heart rate and blood pressure variability and baroreflex sensitivity in 17 mechanically ventilated patients. ECG (RR intervals), invasive systolic blood pressure (SBP), and respiratory flow signals were recorded. High-frequency (HF) amplitude of RR and SBP time series and HF phase differences between RR, SBP, and ventilatory signals were continuously computed by Complex DeModulation (CDM). Cross-spectral analysis was used to assess the coherence and the gain functions between RR and SBP, yielding baroreflex sensitivity indices. The HF phase difference between SBP and ventilatory signals was nearly constant in all patients with inversion of SBP variability during the ventilator cycle compared with cycling with negative inspiratory pressure to replicate spontaneous breathing. In 12 patients (group 1), the phase difference between RR and ventilatory signals changed over time and the HF-RR amplitude varied. In the remaining five patients (group 2), RR-ventilatory signal phase and HF-RR amplitude showed little change; however, only one of these patients exhibited a RR-ventilatory signal phase difference mimicking the normal pattern of respiratory sinus arrhythmia. Spectral coherence between RR and SBP was lower in the group with phase difference changes. Positive pressure ventilation exerts mainly a mechanical effect on SBP, whereas its influence on HR variability seems more complex, suggesting a role for neural influences. 相似文献
3.
Muenter Swift N Cutler MJ Fadel PJ Wasmund WL Ogoh S Keller DM Raven PB Smith ML 《American journal of physiology. Heart and circulatory physiology》2003,285(6):H2411-H2419
Muscle sympathetic nerve activity (MSNA) and arterial pressure increase concomitantly during apnea, suggesting a possible overriding of arterial baroreflex inhibitory input to sympathoregulatory centers by apnea-induced excitatory mechanisms. Apnea termination is accompanied by strong sympathoinhibition while arterial pressure remains elevated. Therefore, we hypothesized that the sensitivity of carotid baroreflex control of MSNA would decrease during apnea and return upon apnea termination. MSNA and heart rate responses to -60-Torr neck suction (NS) were evaluated during baseline and throughout apnea. Responses to +30-Torr neck pressure (NP) were evaluated during baseline and throughout 1 min postapnea. Apnea did not affect the sympathoinhibitory or bradycardic response to NS (P > 0.05); however, whereas the cardiac response to NP was maintained postapnea, the sympathoexcitatory response was reduced for 50 s (P < 0.05). These data demonstrate that the sensitivity of carotid baroreflex control of MSNA is not attenuated during apnea. We propose a transient rightward and upward resetting of the carotid baroreflex-MSNA function curve during apnea and that return of the function curve to, or more likely beyond, baseline (i.e., a downward and leftward shift) upon apnea termination may importantly contribute to the reduced sympathoexcitatory response to NP. 相似文献
4.
Vaschillo E Lehrer P Rishe N Konstantinov M 《Applied psychophysiology and biofeedback》2002,27(1):1-27
This study describes the use of a biofeedback method for the noninvasive study of baroreflex mechanisms. Five previously untrained healthy male participants learned to control oscillations in heart rate using biofeedback training to modify their heart rate variability at specific frequencies. They were instructed to match computer-generated sinusoidal oscillations with oscillations in heart rate at seven frequencies within the range of 0.01–0.14 Hz. All participants successfully produced high-amplitude target-frequency oscillations in both heart rate and blood pressure. Stable and predictable transfer functions between heart rate and blood pressure were obtained in all participants. The highest oscillation amplitudes were produced in the range of 0.055–0.11 Hz for heart rate and 0.02–0.055 Hz for blood pressure. Transfer functions were calculated among sinusoidal oscillations in the target stimuli, heart rate, blood pressure, and respiration for frequencies at which subjects received training. High and low target-frequency oscillation amplitudes at specific frequencies could be explained by resonance among various oscillatory processes in the cardiovascular system. The exact resonant frequencies differed among individuals. Changes in heart rate oscillations could not be completely explained by changes in breathing. The biofeedback method also allowed us to quantity characteristics of inertia, delay, and speed sensitivity in baroreflex system. We discuss the implications of these findings for using heart rate variability biofeedback as an aid in diagnosing various autonomic and cardiovascular system disorders and as a method for treating these disorders. 相似文献
5.
Fisher JP Young CN Fadel PJ 《American journal of physiology. Heart and circulatory physiology》2008,294(5):H2296-H2304
Whether the activation of metabolically sensitive skeletal muscle afferents (i.e., muscle metaboreflex) influences cardiac baroreflex responsiveness remains incompletely understood. A potential explanation for contrasting findings of previous reports may be related to differences in the magnitude of muscle metaboreflex activation utilized. Therefore, the present study was designed to investigate the influence of graded intensities of muscle metaboreflex activation on cardiac baroreflex function. In eight healthy subjects (24 +/- 1 yr), the graded isolation of the muscle metaboreflex was achieved by post-exercise ischemia (PEI) following moderate- (PEI-M) and high- (PEI-H) intensity isometric handgrip performed at 35% and 45% maximum voluntary contraction, respectively. Beat-to-beat heart rate (HR) and blood pressure were measured continuously. Rapid pulse trains of neck pressure and neck suction (+40 to -80 Torr) were applied to derive carotid baroreflex stimulus-response curves. Mean blood pressure increased significantly from rest during PEI-M (+13 +/- 3 mmHg) and was further augmented during PEI-H (+26 +/- 4 mmHg), indicating graded metaboreflex activation. However, the operating point gain and maximal gain (-0.51 +/- 0.09, -0.48 +/- 0.13, and -0.49 +/- 0.12 beats.min(-1).mmHg(-1) for rest; PEI-M and PEI-H) of the carotid-cardiac baroreflex function curve were unchanged from rest during PEI-M and PEI-H (P > 0.05 vs. rest). Furthermore, the carotid-cardiac baroreflex function curve was progressively reset rightward from rest to PEI-M to PEI-H, with no upward resetting. These findings suggest that the muscle metaboreflex contributes to the resetting of the carotid baroreflex control of HR; however, it would appear not to influence carotid-cardiac baroreflex responsiveness in humans, even with high-intensity activation during PEI. 相似文献
6.
Background
Baroreflex allows to reduce sudden rises or falls of arterial pressure through parallel RR interval fluctuations induced by autonomic nervous system. During spontaneous breathing, the application of positive end-expiratory pressure (PEEP) may affect the autonomic nervous system, as suggested by changes in baroreflex efficiency and RR variability. During mechanical ventilation, some patients have stable cardiorespiratory phase difference and high-frequency amplitude of RR variability (HF-RR amplitude) over time and others do not. Our first hypothesis was that a steady pattern could be associated with reduced baroreflex sensitivity and HF-RR amplitude, reflecting a blunted autonomic nervous function. Our second hypothesis was that PEEP, widely used in critical care patients, could affect their autonomic function, promoting both steady pattern and reduced baroreflex sensitivity.Methods
We tested the effect of increasing PEEP from 5 to 10 cm H2O on the breathing variability of arterial pressure and RR intervals, and on the baroreflex. Invasive arterial pressure, ECG and ventilatory flow were recorded in 23 mechanically ventilated patients during 15 minutes for both PEEP levels. HF amplitude of RR and systolic blood pressure (SBP) time series and HF phase differences between RR, SBP and ventilatory signals were continuously computed by complex demodulation. Cross-spectral analysis was used to assess the coherence and gain functions between RR and SBP, yielding baroreflex-sensitivity indices.Results
At PEEP 10, the 12 patients with a stable pattern had lower baroreflex gain and HF-RR amplitude of variability than the 11 other patients. Increasing PEEP was generally associated with a decreased baroreflex gain and a greater stability of HF-RR amplitude and cardiorespiratory phase difference. Four patients who exhibited a variable pattern at PEEP 5 became stable at PEEP 10. At PEEP 10, a stable pattern was associated with higher organ failure score and catecholamine dosage.Conclusions
During mechanical ventilation, stable HF-RR amplitude and cardiorespiratory phase difference over time reflect a blunted autonomic nervous function which might worsen as PEEP increases. 相似文献7.
Fisher JP Ogoh S Ahmed A Aro MR Gute D Fadel PJ 《American journal of physiology. Heart and circulatory physiology》2007,293(1):H777-H783
We investigated the influence of aging on cardiac baroreflex function during dynamic exercise in seven young (22 +/- 1 yr) and eight older middle-aged (59 +/- 2 yr) healthy subjects. Carotid-cardiac baroreflex function was assessed at rest and during moderate-intensity steady-state cycling performed at 50% heart rate reserve (HRR). Five-second pulses of neck pressure and neck suction from +40 to -80 Torr were applied to determine the operating point gain (G(OP)) and maximal gain (G(MAX)) of the full carotid-cardiac baroreflex function curve and examine baroreflex resetting during exercise. At rest, mean arterial pressure (MAP) and heart rate were similar between the younger and older subjects. In contrast, the resting G(OP) and G(MAX) were significantly lower in the older subjects. The increase in MAP from rest to exercise was greater in the older subjects (Delta +20 +/- 2 older vs. Delta +6 +/- 3 younger mmHg; P < 0.001). However, the G(OP) was similar in both groups during exercise because of a reduction in the younger subjects. In contrast, G(MAX) was unchanged from rest and therefore remained lower in older subjects (-0.19 +/- 0.05 older vs. -0.42 +/- 0.05 younger beats.min(-1).mmHg(-1); 50% HRR; P < 0.001). Furthermore, exercise resulted in an upward and rightward resetting of the cardiac baroreflex function curve in both groups. Collectively, these findings suggest that the cardiac baroreflex function curve appropriately resets during exercise in older subjects but operates at a reduced G(MAX) primarily because of age-related reductions in carotid-cardiac control manifest at rest. 相似文献
8.
Monahan KD Ray CA 《American journal of physiology. Heart and circulatory physiology》2005,288(2):H737-H743
Animal studies suggest that prostanoids (i.e., such as prostacyclin) may sensitize or impair baroreceptor and/or baroreflex responsiveness depending on the site of administration and/or inhibition. We tested the hypothesis that acute inhibition of cyclooxygenase (COX), the rate-limiting enzyme in prostanoid synthesis, impairs baroreflex regulation of cardiac period (R-R interval) and muscle sympathetic nerve activity (MSNA) in humans and augments pressor reactivity. Baroreflex sensitivity (BRS) was determined at baseline (preinfusion) and 60 min after (postinfusion) intravenous infusion of a COX antagonist (ketorolac; 45 mg) (24 +/- 1 yr; n = 12) or saline (25 +/- 1 yr; n = 12). BRS was assessed by using the modified Oxford technique (bolus intravenous infusion of nitroprusside followed by phenylephrine). BRS was quantified as the slope of the linear portion of the 1) R-R interval-systolic blood pressure relation (cardiovagal BRS) and 2) MSNA-diastolic blood pressure relation (sympathetic BRS) during pharmacological changes in arterial blood pressure. Ketorolac did not alter cardiovagal (19.4 +/- 2.1 vs. 18.4 +/- 2.4 ms/mmHg preinfusion and postinfusion, respectively) or sympathetic BRS (-2.9 +/- 0.7 vs. -2.6 +/- 0.4 arbitrary units.beat(-1).mmHg(-1)) but significantly decreased a plasma biomarker of prostanoid generation (plasma thromboxane B2) by 53 +/- 11%. Cardiovagal BRS (21.3 +/- 3.8 vs. 21.2 +/- 3.0 ms/mmHg), sympathetic BRS (-3.4 +/- 0.3 vs. -3.2 +/- 0.2 arbitrary units.beat(-1).mmHg(-1)), and thromboxane B2 (change in -1 +/- 12%) were unchanged in the control (saline infusion) group. Pressor responses to steady-state incremental (0.5, 1.0, and 1.5 microg.kg(-1).min(-1)) infusion (5 min/dose) of phenylephrine were not altered by ketorolac (n = 8). Collectively, these data indicate that acute pharmacological antagonism of the COX enzyme does not impair BRS (cardiovagal or sympathetic) or augment pressor reactivity in healthy young adults. 相似文献
9.
Aftanas LI Brak IV Gilinskaia OM Sidorova PV Reva NV Makhnev VP 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2008,94(2):163-175
Fail of fast recovering to normal state after aversive event is the key feature of individual intolerance to emotional stress. Within the framework of this idea, dynamics of the arterial blood pressure reactivity was studied studied using defensive reaction of the cardiac defense response elicited by strong aversive acoustic stimuli. Dynamical patterns of cardiovascular responses observed in this reaction makes made it possible to perform affective chronometry of defensive arousal. Healthy male volunteers with normal arterial blood pressure and patients with firstly diagnosed and untreated essential hypertension were studied. The beat-by-beat dynamics of blood pressure values were registered by means of finger-cuff Finapres technology. It was shown that among healthy individuals with normal resting blood pressure values hyperreactive persons with delayed late systolic and diastolic blood pressure increases ocurred. It was suggested that similiarity of delayed pressor effects ofhypereactive healthy individuals and those of hypertension patients incate a high risk of essential hypertension in highly reactive individuals. 相似文献
10.
Wang JJ O'Brien AB Shrive NG Parker KH Tyberg JV 《American journal of physiology. Heart and circulatory physiology》2003,284(4):H1358-H1368
The differences in shape between central aortic pressure (P(Ao)) and flow waveforms have never been explained satisfactorily in that the assumed explanation (substantial reflected waves during diastole) remains controversial. As an alternative to the widely accepted frequency-domain model of arterial hemodynamics, we propose a functional, time-domain, arterial model that combines a blood conducting system and a reservoir (i.e., Frank's hydraulic integrator, the windkessel). In 15 anesthetized dogs, we measured P(Ao), flows, and dimensions and calculated windkessel pressure (P(Wk)) and volume (V(Wk)). We found that P(Wk) is proportional to thoracic aortic volume and that the volume of the thoracic aorta comprises 45.1 +/- 2.0% (mean +/- SE) of the total V(Wk). When we subtracted P(Wk) from P(Ao), we found that the difference (excess pressure) was proportional to aortic flow, thus resolving the differences between P(Ao) and flow waveforms and implying that reflected waves were minimal. We suggest that P(Ao) is the instantaneous summation of a time-varying reservoir pressure (i.e., P(Wk)) and the effects of (primarily) forward-traveling waves in this animal model. 相似文献
11.
James P Fisher Shigehiko Ogoh Colin N Young David M Keller Paul J Fadel 《Journal of applied physiology》2007,103(3):941-947
We sought to examine the influence of exercise intensity on carotid baroreflex (CBR) control of heart rate (HR) and mean arterial pressure (MAP) at the onset of exercise in humans. To accomplish this, eight subjects performed multiple 1-min bouts of isometric handgrip (HG) exercise at 15, 30, 45 and 60% maximal voluntary contraction (MVC), while breathing to a metronome set at eupneic frequency. Neck suction (NS) of -60 Torr was applied for 5 s at end expiration to stimulate the CBR at rest, at the onset of HG (<1 s), and after approximately 40 s of HG. Beat-to-beat measurements of HR and MAP were recorded throughout. Cardiac responses to NS at onset of 15% (-12 +/- 2 beats/min) and 30% (-10 +/- 2 beats/min) MVC HG were similar to rest (-10 +/- 1 beats/min). However, HR responses to NS were reduced at the onset of 45% and 60% MVC HG (-6 +/- 2 and -4 +/- 1 beats/min, respectively; P < 0.001). In contrast to HR, MAP responses to NS were not different from rest at exercise onset. Furthermore, both HR and MAP responses to NS applied at approximately 40s of HG were similar to rest. In summary, CBR control of HR was transiently blunted at the immediate onset of high-intensity HG, whereas MAP responses were preserved demonstrating differential baroreflex control of HR and blood pressure at exercise onset. Collectively, these results suggest that carotid-cardiac baroreflex control is dynamically modulated throughout isometric exercise in humans, whereas carotid baroreflex regulation of blood pressure is well-maintained. 相似文献
12.
Cottin F Médigue C Papelier Y 《American journal of physiology. Heart and circulatory physiology》2008,295(3):H1150-H1155
The aim of the study was to assess the instantaneous spectral components of heart rate variability (HRV) and systolic blood pressure variability (SBPV) and determine the low-frequency (LF) and high-frequency baroreflex sensitivity (HF-BRS) during a graded maximal exercise test. The first hypothesis was that the hyperpnea elicited by heavy exercise could entail a significant increase in HF-SBPV by mechanical effect once the first and second ventilatory thresholds (VTs) were exceeded. It was secondly hypothesized that vagal tone progressively withdrawing with increasing load, HF-BRS could decrease during the exercise test. Fifteen well-trained subjects participated in this study. Electrocardiogram (ECG), blood pressure, and gas exchanges were recorded during a cycloergometer test. Ventilatory equivalents were computed from gas exchange parameters to assess VTs. Spectral analysis was applied on cardiovascular series to compute RR and systolic blood pressure power spectral densities, cross-spectral coherence, gain, and alpha index of BRS. Three exercise intensity stages were compared: below (A1), between (A2), and above (A3) VTs. From A1 to A3, both HF-SBPV (A1: 45 +/- 6, A2: 65 +/- 10, and A3: 120 +/- 23 mm2Hg, P < 0.001) and HF-HRV increased (A1: 20 +/- 5, A2: 23 +/- 8, and A3:40 +/- 11 ms2, P < 0.02), maintaining HF-BRS (gain, A1: 0.68 +/- 0.12, A2: 0.63 +/- 0.08, and A3: 0.57 +/- 0.09; alpha index, A1: 0.58 +/- 0.08, A2: 0.48 +/- 0.06, and A3: 0.50 +/- 0.09 ms/mmHg, not significant). However, LF-BRS decreased (gain, A1: 0.39 +/- 0.06, A2: 0.17 +/- 0.02, and A3: 0.11 +/- 0.01, P < 0.001; alpha index, A1: 0.46 +/- 0.07, A2: 0.20 +/- 0.02, and A3: 0.14 +/- 0.01 ms/mmHg, P < 0.001). As expected, once VTs were exceeded, hyperpnea induced a marked increase in both HF-HRV and HF-SBPV. However, this concomitant increase allowed the maintenance of HF-BRS, presumably by a mechanoelectric feedback mechanism. 相似文献
13.
Kim A Deo SH Fisher JP Fadel PJ 《Journal of applied physiology (Bethesda, Md. : 1985)》2012,112(8):1361-1371
To date, no studies have examined whether there are either sex- or ovarian hormone-related alterations in arterial baroreflex resetting and function during dynamic exercise. Thus we studied 16 young men and 18 young women at rest and during leg cycling at 50% heart rate (HR) reserve. In addition, 10 women were studied at three different phases of the menstrual cycle. Five-second pulses of neck pressure (NP) and neck suction (NS) from +40 to -80 Torr were applied to determine full carotid baroreflex (CBR) stimulus response curves. An upward and rightward resetting of the CBR function curve was observed during exercise in all groups with a similar magnitude of CBR resetting for mean arterial pressure (MAP) and HR between sexes (P > 0.05) and at different phases of the menstrual cycle (P > 0.05). For CBR control of MAP, women exhibited augmented pressor responses to NP at rest and exercise during mid-luteal compared with early and late follicular phases. For CBR control of HR, there was a greater bradycardic response to NS in women across all menstrual cycle phases with the operating point (OP) located further away from centering point (CP) on the CBR-HR curve during rest (OP-CP; in mmHg: -13 ± 3 women vs. -3 ± 3 men; P < 0.05) and exercise (in mmHg: -31 ± 2 women vs. -15 ± 3 men; P < 0.05). Collectively, these findings suggest that sex and fluctuations in ovarian hormones do not influence exercise resetting of the baroreflex. However, women exhibited greater CBR control of HR during exercise, specifically against acute hypertension, an effect that was present throughout the menstrual cycle. 相似文献
14.
Nollo G Faes L Porta A Antolini R Ravelli F 《American journal of physiology. Heart and circulatory physiology》2005,288(4):H1777-H1785
Although in physiological conditions RR interval and systolic arterial pressure (SAP) are likely to interact in a closed loop, the traditional cross-spectral analysis cannot distinguish feedback (FB) from feedforward (FF) influences. In this study, a causal approach was applied for calculating the coherence from SAP to RR (K(s-r)) and from RR to SAP (K(r-s)) and the gain and phase of the baroreflex transfer function. The method was applied, compared with the noncausal one, to RR and SAP series taken from 15 healthy young subjects in the supine position and after passive head-up tilt. For the low frequency (0.04-0.15 Hz) spectral component, the enhanced FF coupling (K(r-s) = 0.59 +/- 0.21, significant in 14 subjects) and the blunted FB coupling (K(s-r) = 0.17 +/- 0.17, significant in 4 subjects) found at rest indicated the prevalence of nonbaroreflex mechanisms. The tilt maneuver recovered FB influences (K(s-r) = 0.47 +/- 0.16, significant in 14 subjects), which were stronger than FF interactions (K(s-r) = 0.34 +/- 0.19, significant in 9 subjects). At the respiratory frequency, the RR-SAP regulation was balanced at rest (K(s-r) = 0.30 +/- 0.18 and K(r-s) = 0.29 +/- 0.20, significant in 11 and 8 subjects) and shifted toward FB mechanisms after tilt (K(s-r) = 0.35 +/- 0.19 and K(r-s) = 0.19 +/- 0.11, significant in 14 and 8 subjects). The causal baroreflex gain estimates were always lower than the corresponding noncausal values and decreased significantly from rest to tilt in both frequency bands. The tilt-induced increase of the phase lag from SAP to RR suggested a shift from vagal to sympathetic modulation. Thus the importance of nonbaroreflex interactions pointed out the necessity of accounting for causality in the cross-spectral analysis of the interactions between cardiovascular variables in healthy humans. 相似文献
15.
Gayat E Mor-Avi V Weinert L Yodwut C Lang RM 《American journal of physiology. Heart and circulatory physiology》2011,301(5):H1916-H1923
Most techniques previously used to assess left ventricular (LV) end-systolic elastance (E(es)) and ventricular-arterial coupling (C(LV-A)) relied on invasive measurements and data acquisition over a wide range of loading conditions. Our goals were to 1) assess the feasibility of noninvasive assessment of E(es) and C(LV-A) using real-time three-dimensional echocardiography (RT3DE) and arterial tonometry; 2) test the ability of this approach to detect changes in LV contractility; and 3) study its reproducibility. We studied pharmacologically induced changes in inotropic state (5 and 10 μg·kg(-1)·min(-1) dobutamine) in normal volunteers (N = 8) and compared 10 normal volunteers with 10 patients with dilated cardiomyopathy (DCM; ejection fraction < 35%). RT3DE LV images, calibrated carotid artery tonometry, and Doppler tracings were obtained to noninvasively estimate E(es) and C(LV-A), using two alternative calculations. Dobutamine caused a significant stepwise increase in blood pressure, heart rate, ejection fraction, and E(es) and a decreased C(LV-A). In patients with DCM, E(es) was significantly reduced and C(LV-A) elevated, compared with controls. Both inter- and intraobserver variability were good for all measured parameters, as reflected by intraclass correlation coefficients (>0.8) and coefficients of variation (<20%). While both E(es) estimates showed significant differences between DCM patients and controls, one estimate resulted in no overlap and better reproducibility (interobserver intraclass correlation coefficient: 0.83 vs. 0.47, coefficients of variation: 20 vs. 29%). This is the first study to test the feasibility of using RT3DE-derived LV volumes in conjunction with arterial tonometry to noninvasively quantify LV elastance and C(LV-A). This approach was found to be sensitive enough to detect expected differences in LV contractility and reproducible. Due to its noninvasive nature, this methodology may have clinical implications in various disease states. 相似文献
16.
Shimizu T 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》2000,7(2):P51-P54
The study on development in altered gravity has been investigated in a wide range of animal species from a molecular level or cell culture to mammalian bodies. However development of the baroreflex has been studied in limited mammalian species even on the ground except the turtle to study diving reflex. The rat or mouse has been selectively used for studying the relationship between development of various functions and gravity especially microgravity, because of the limited body size for the loading space on the space ship, an experimental-animal most often used, and other biological characteristics. We have used the rat and rabbit for investigating the effect of microgravity on the development of the aortic baroflex. In the present paper a few results of our experiments using the rat will be shown and the appropriateness of the rat as a model system for studying the baroflex development in altered gravity will be discussed. 相似文献
17.
Porta A Furlan R Rimoldi O Pagani M Malliani A van de Borne P 《Biological cybernetics》2002,86(3):241-251
The coherence function measures the amount of correlation between two signals x and y as a function of the frequency, independently of their causal relationships. Therefore, the coherence function is not useful
in deciding whether an open-loop relationship between x and y is set (x acts on y, but the reverse relationship is prevented) or x and y interact in a closed loop (x affects y, and vice versa). This study proposes a method based on a bivariate autoregressive model to derive the strength of the causal
coupling on both arms of a closed loop. The method exploits the definition of causal coherence. After the closed-loop identification
of the model coefficients, the causal coherence is calculated by switching off separately the feedback or the feedforward
path, thus opening the closed loop and fixing causality. The method was tested in simulations and applied to evaluate the
degree of the causal coupling between two variables known to interact in a closed loop mainly at a low frequency (LF, around
0.1 Hz) and at a high frequency (HF, at the respiratory rate): the heart period (RR interval) and systolic arterial pressure
(SAP). In dogs at control, the RR interval and the SAP are highly correlated at HF. This coupling occurs in the causal direction
from the RR interval to the SAP (the mechanical path), while the coupling on the reverse causal direction (the baroreflex
path) is not significant, thus pointing out the importance of the direct effects of respiration on the RR interval. Total
baroreceptive denervation, by opening the closed loop at the level of the influences of SAP on RR interval, does not change
these results. In elderly healthy men at rest, the RR interval and SAP are highly correlated at the LF and the HF. At the
HF, a significant coupling in both causal directions is found, even though closed-loop interactions are detected in few cases.
At the LF, the link on the baroreflex pathway is negligible with respect to that on the reverse mechanical one. In heart transplant
recipients, in which SAP variations do not cause RR interval changes as a result of the cardiac denervation, the method correctly
detects a significant coupling only on the pathway from the RR interval to the SAP.
Received: 28 June 2001 / Accepted in revised form: 23 October 2001 相似文献
18.
We determined the acute effects of methoxamine, a specific alpha1-selective adrenoceptor agonist, on the left ventricular-arterial coupling in streptozotocin (STZ)-diabetic rats, using the end-systolic pressure-stroke volume relationships. Rats given STZ 65 mg x kg(-1) iv (n = 8) were compared with untreated age-matched controls (n = 8). A high-fidelity pressure sensor and an electromagnetic flow probe measured left ventricular (LV) pressure and ascending aortic flow, respectively. Both LV end-systolic elastance E(LV,ES) and effective arterial elastance Ea were estimated from the pressure-ejected volume loop. The optimal afterload Q(load) determined by the ratio of Ea to E(LV,ES) was used to measure the optimality of energy transmission from the left ventricle to the arterial system. In comparison with controls, diabetic rats had decreased LV end-systolic elastance E(LV,ES), at 513 +/- 30 vs. 613 +/- 29 mmHg x mL(-1), decreased effective arterial elastance Ea, at 296 +/- 20 vs. 572 +/- 48 mmHg x mL(-1), and decreased optimal afterload Q(load), at 0.938 +/- 0.007 vs. 0.985 +/- 0.009. Methoxamine administration to STZ-diabetic rats significantly increased LV end-systolic elastance E(LV,ES), from 513 +/- 30 to 602 +/- 38 mmHg x mL(-1), and effective arterial elastance Ea, from 296 +/- 20 to 371 +/- 28 mmHg x mL(-1), but did not change optimal afterload Q(load). We conclude that diabetes worsens not only the contractile function of the left ventricle, but also the matching condition for the left ventricular-arterial coupling. In STZ-diabetic rats, administration of methoxamine improves the contractile status of the ventricle and arteries, but not the optimality of energy transmission from the left ventricle to the arterial system. 相似文献
19.
Cividjian A Toader E Wesseling KH Karemaker JM McAllen R Quintin L 《American journal of physiology. Regulatory, integrative and comparative physiology》2011,300(4):R949-R957
The delay τ between rising systolic blood pressure (SBP) and baroreflex bradycardia has been found to increase when vagal tone is low. The α(2)-agonist clonidine increases cardiac vagal tone, and this study tested how it affects τ. In eight conscious supine human volunteers clonidine (6 μg/kg po) reduced τ, assessed both by cross correlation baroreflex sensitivity and sequence methods (both P < 0.05). Experiments on urethane-anaesthetized rats reproduced the phenomenon and investigated the underlying mechanism. Heart rate (HR) responses to increasing SBP produced with an arterial balloon catheter showed reduced τ (P < 0.05) after clonidine (100 μg/kg iv). The central latency of the reflex was unaltered, however, as shown by the unchanged timing with which antidromically identified cardiac vagal motoneurons (CVM) responded to the arterial pulse. Testing the latency of the HR response to brief electrical stimuli to the right vagus showed that this was also unchanged by clonidine. Nevertheless, vagal stimuli delivered at a fixed time in the cardiac cycle (triggered from the ECG R-wave) slowed HR with a 1-beat delay in the baseline state but a 0-beat delay after clonidine (n = 5, P < 0.05). This was because clonidine lengthened the diastolic period, allowing the vagal volleys to arrive at the heart just in time to postpone the next beat. Calculations indicate that naturally generated CVM volleys in both humans and rats arrive around this critical time. Clonidine thus reduces τ not by changing central or efferent latencies but simply by slowing the heart. 相似文献
20.
Wang SY Zhang LF Wang XB Cheng JH 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》2000,7(2):P145-P146
Simultaneous analysis of heart rate variability (HRV), blood pressure variability (BPV) and baroreflex sensitivity (BRS) with different types of measures may provide non-duplicative information about autonomic cardiovascular regulation. Therefore, a multiple signal analysis of cardiovascular time series will enhance the physiological understanding of neuro cardiovascular regulation with deconditioning in bedrest or related gravitational physiological studies. It has been shown that age is an important determinant of HRV and BRS in healthy subjects. Whereas in the case of BPV, the effect of aging seems to depend upon the activity status of the subjects. In view of the facts that most of the previous works were dealing with only the variability of one kind of cardiovascular parameters in one study with conventional time-domain and/or frequency-domain analysis, we therefore designed the present work to compare the HRV, BPV and BRS between young and middle-aged male healthy subjects in one study with the same subjects using various techniques, including the approximate entropy (ApEn) measurement, a statistic quantifying HRV "complexity" derived from non-linear dynamics. 相似文献