首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibrates are a group of hypolipidemic agents that efficiently lower serum triglyceride levels by affecting the expression of many genes involved in lipid metabolism. These effects are exerted via the peroxisome proliferator-activated receptor alpha (PPARalpha). In addition, fibrates also lower serum cholesterol levels, suggesting a possible link between the PPARalpha and cholesterol metabolism. Bile acid formation represents an important pathway for elimination of cholesterol, and the sterol 12alpha-hydroxylase is a branch-point enzyme in the bile acid biosynthetic pathway, which determines the ratio of cholic acid to chenodeoxycholic acid. Treatment of mice for 1 week with the peroxisome proliferator WY-14,643 or fasting for 24 h both induced the sterol 12alpha-hydroxylase mRNA in liver. Using the PPARalpha knockout mouse model, we show that the induction by both treatments was dependent on the PPARalpha. A reporter plasmid containing a putative peroxisome proliferator-response element (PPRE) identified in the rat sterol 12alpha-hydroxylase promoter region was activated by treatment with WY-14,643 in HepG2 cells, being dependent on co-transfection with a PPARalpha expression plasmid. The rat 12alpha-hydroxylase PPRE bound in vitro translated PPARalpha and retinoid X receptor alpha, albeit weakly, in electrophoretic mobility shift assay. Treatment of wild-type mice with WY-14,643 for 1 week resulted in an increased relative amount of cholic acid, an effect that was abolished in the PPARalpha null mice, verifying the functionality of the PPRE in vivo.  相似文献   

2.
Synthetic high affinity peroxisome proliferator-activated receptor (PPAR) agonists are known, but biologic ligands are of low affinity. Oxidized low density lipoprotein (oxLDL) is inflammatory and signals through PPARs. We showed, by phospholipase A(1) digestion, that PPARgamma agonists in oxLDL arise from the small pool of alkyl phosphatidylcholines in LDL. We identified an abundant oxidatively fragmented alkyl phospholipid in oxLDL, hexadecyl azelaoyl phosphatidylcholine (azPC), as a high affinity ligand and agonist for PPARgamma. [(3)H]azPC bound recombinant PPARgamma with an affinity (K(d)((app)) approximately 40 nm) that was equivalent to rosiglitazone (BRL49653), and competition with rosiglitazone showed that binding occurred in the ligand-binding pocket. azPC induced PPRE reporter gene expression, as did rosiglitazone, with a half-maximal effect at 100 nm. Overexpression of PPARalpha or PPARgamma revealed that azPC was a specific PPARgamma agonist. The scavenger receptor CD36 is encoded by a PPRE-responsive gene, and azPC enhanced expression of CD36 in primary human monocytes. We found that anti-CD36 inhibited azPC uptake, and it inhibited PPRE reporter induction. Results with a small molecule phospholipid flippase mimetic suggest azPC acts intracellularly and that cellular azPC accumulation was efficient. Thus, certain alkyl phospholipid oxidation products in oxLDL are specific, high affinity extracellular ligands and agonists for PPARgamma that induce PPAR-responsive genes.  相似文献   

3.
We describe the expression and purification of the C-terminally His-tagged ligand-binding domain of the peroxisome proliferator-activated receptor alpha (PPARα-LBD). Using a modified expression and purification strategy a five times higher protein yield was achieved compared to existing protocols. In summary, a modified Escherichia coli strain was used, which allows rare codons to be expressed more efficiently, and moreover, conditions for cell growth and cell lysis were improved. Protein purification was achieved in a two-step approach using nickel affinity chromatography followed by anion exchange chromatography. The identity of PPARα-LBD was confirmed by online-nano-high performance liquid chromatography/matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (nano-HPLC/MALDI-TOF/TOF-MS).  相似文献   

4.
5.
6.
This study tests the hypothesis that islet peroxisome proliferator-activated receptor alpha (PPARalpha) influences insulin secretion. Freshly isolated islets of normoglycemic PPARalpha-null mice display no major alteration of glucose-stimulated insulin release. However, after 24 h of culture in high glucose, PPARalpha-null islets exhibit elevated basal insulin secretion and fail to increase insulin mRNA. 24-h culture with palmitate replicates this phenotype in wild-type islets. The data suggest that PPARalpha is needed to ensure appropriate insulin secretory response in situation of short-term hyperglycemia, likely by maintaining islet lipid homeostasis. As such, islet PPARalpha could contribute to delay the progression of type 2 diabetes.  相似文献   

7.
8.
Peroxisomes are organelles that function in the beta-oxidation of long- and very long-chain acyl-CoAs, bile acid-CoA intermediates, prostaglandins, leukotrienes, thromboxanes, dicarboxylic fatty acids, pristanic acid, and xenobiotic carboxylic acids. The very long- and long-chain acyl-CoAs are mainly chain-shortened and then transported to mitochondria for further metabolism. We have now identified and characterized two peroxisomal acyl-CoA thioesterases, named PTE-Ia and PTE-Ic, that hydrolyze acyl-CoAs to the free fatty acid and coenzyme A. PTE-Ia and PTE-Ic show 82% sequence identity at the amino acid level, and a putative peroxisomal type 1 targeting signal of -AKL was identified at the carboxyl-terminal end of both proteins. Localization experiments using green fluorescent fusion protein showed PTE-Ia and PTE-Ic to be localized in peroxisomes. Despite their high level of sequence identity, we show that PTE-Ia is mainly active on long-chain acyl-CoAs, whereas PTE-Ic is mainly active on medium-chain acyl-CoAs. Lack of regulation of enzyme activity by free CoASH suggests that PTE-Ia and PTE-Ic regulate intraperoxisomal levels of acyl-CoA, and they may have a function in termination of beta-oxidation of fatty acids of different chain lengths. Tissue expression studies revealed that PTE-Ia is highly expressed in kidney, whereas PTE-Ic is most highly expressed in spleen, brain, testis, and proximal and distal intestine. Both PTE-Ia and PTE-Ic were highly up-regulated in mouse liver by treatment with the peroxisome proliferator WY-14,643 and by fasting in a peroxisome proliferator-activated receptor alpha-dependent manner. These data show that PTE-Ia and PTE-Ic have different functions based on different substrate specificities and tissue expression.  相似文献   

9.
10.
11.
The pathophysiology of diabetes is characterized not only by elevated glucose but also elevated long chain fatty acid levels. We show for the first time that the peroxisome proliferator-activated receptor-alpha (PPARalpha) binds glucose and glucose metabolites with high affinity, resulting in significantly altered PPARalpha secondary structure. Glucose decreased PPARalpha interaction with fatty acid metabolites and steroid receptor coactivator-1 while increasing PPARalpha interaction with DNA. Concomitantly, glucose increased PPARalpha interaction with steroid receptor coactivator-1, DNA binding, and transactivation of beta-oxidation pathways in the presence of activating ligands. Heterodimerization of PPARalpha to the retinoid X receptor-alpha resulted in even larger increases in transactivation with the addition of glucose. These data suggest that PPARalpha is responsible for maintaining energy homeostasis through a concentration-dependent regulation of both lipids and sugars and that hyperglycemic injury mediated by PPARalpha occurs not only indirectly through elevated long chain fatty acid levels but also through direct action of glucose on PPARalpha.  相似文献   

12.
Cytochromes P450 of the CYP2C and CYP4A gene subfamilies metabolize arachidonic acid to 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) and to 19- and 20-hydroxyeicosatetraenoic acids (HETEs), respectively. Abundant functional studies indicate that EETs and HETEs display powerful and often opposing biological activities as mediators of ion channel activity and regulators of vascular tone and systemic blood pressures. Incubation of 8,9-, 11,12-, and 14,15-EETs with microsomal and purified forms of rat CYP4A isoforms led to rapid NADPH-dependent metabolism to the corresponding 19- and 20-hydroxylated EETs. Comparisons of reaction rates and catalytic efficiency with those of arachidonic and lauric acids showed that EETs are one of the best endogenous substrates so far described for rat CYP4A isoforms. CYP4A1 exhibited a preference for 8,9-EET, whereas CYP4A2, CYP4A3, and CYP4A8 preferred 11,12-EET. In general, the closer the oxido ring is to the carboxylic acid functionality, the higher the rate of EET metabolism and the lower the regiospecificity for the EET omega-carbon. Analysis of cis-parinaric acid displacement from the ligand-binding domain of the human peroxisome proliferator-activated receptor-alpha showed that omega-hydroxylated 14,15-EET bound to this receptor with high affinity (K(i) = 3 +/- 1 nm). Moreover, at 1 microm, the omega-alcohol of 14,15-EET or a 1:4 mixture of the omega-alcohols of 8,9- and 11,12-EETs activated human and mouse peroxisome proliferator-activated receptor-alpha in transient transfection assays, suggesting a role for them as endogenous ligands for these orphan nuclear receptors.  相似文献   

13.
Fatty acids bind to and regulate the activity of peroxisome proliferator-activated (PPAR) and liver X receptors (LXR). However, the role lipid metabolism plays in the control of intracellular fatty acid ligands is poorly understood. We have identified two strains of HEK293 cells that display differences in fatty acid regulation of nuclear receptors. Using full-length and Gal4-LBD chimeric receptors in functional assays, 20:4,n6 induced PPARalpha activity approximately 2.2-fold and suppressed LXRalpha activity by 80% (ED50 approximately 25-50 microm) in HEK293-E (early passage) cells but had no effect on PPARalpha or LXRalpha receptor activity in HEK293-L (late passage) cells. LXRbeta was insensitive to fatty acid regulation in both HEK293 strains. Metabolic labeling studies using [14C]20:4,n6 (at 100 microm) indicated that the uptake of 20:4,n6 and its assimilation into triacylglycerol, diacylglycerol, and polar lipids revealed no difference between the two strains. Such treatment increased total cellular 20:4,n6 ( approximately 11-fold) and its elongation product, 22:4,n6 ( approximately 3.6-fold), within 6 h. Non-esterified 20:4,n6 and 22:4,n6 represented 相似文献   

14.
15.
Phytanic acid and pristanic acid are branched-chain fatty acids, present at micromolar concentrations in the plasma of healthy individuals. Here we show that both phytanic acid and pristanic acid activate the peroxisome proliferator-activated receptor alpha (PPARalpha) in a concentration-dependent manner. Activation is observed via the ligand-binding domain of PPARalpha as well as via a PPAR response element (PPRE). Via the PPRE significant induction is found with both phytanic acid and pristanic acid at concentrations of 3 and 1 microM, respectively. The trans-activation of PPARdelta and PPARgamma by these two ligands is negligible. Besides PPARalpha, phytanic acid also trans-activates all three retinoic X receptor subtypes in a concentration-dependent manner. In primary human fibroblasts, deficient in phytanic acid alpha-oxidation, trans-activation through PPARalpha by phytanic acid is observed. This clearly demonstrates that phytanic acid itself, and not only its metabolite, pristanic acid, is a true physiological ligand for PPARalpha. Because induction of PPARalpha occurs at ligand concentrations comparable to the levels found for phytanic acid and pristanic acid in human plasma, these fatty acids should be seen as naturally occurring ligands for PPARalpha.These results demonstrate that both pristanic acid and phytanic acid are naturally occurring ligands for PPARalpha, which are present at physiological concentrations.  相似文献   

16.
The hypoglycemia seen in the fasting PPARalpha null mouse is thought to be due to impaired liver fatty acid beta-oxidation. The etiology of hypoglycemia in the PPARalpha null mouse was determined via stable isotope studies. Glucose, lactate, and glycerol flux was assessed in the fasted and fed states in 4-month-old PPARalpha null mice and in C57BL/6 WT maintained on standard chow using a new protocol for flux assessment in the fasted and fed states. Hepatic glucose production (HGP) and glucose carbon recycling were estimated using [U-(13)C(6)]glucose, and HGP, lactate, and glycerol turnover was estimated utilizing either [U-(13)C(3)]lactate or [2-(13)C]glycerol infused subcutaneously via Alza miniosmotic pumps. At the end of a 17-h fast, HGP was higher in the PPARalpha null mice than in WT by 37% (p < 0.01). However, recycling of glucose carbon from lactate back to glucose was lower in the PPARalpha null than in WT (39% versus 51%, p < 0.02). The lack of conversion of lactate to glucose was confirmed using an [U-(13)C(3)]lactate infusion. In the fasted state, HGP from lactate and lactate production were decreased by 65 and 55%, respectively (p < 0.05) in PPARalpha null mice. In contrast, when [2-(13)C]glycerol was infused, glycerol production and HGP from glycerol increased by 80 and 250%, respectively (p < 0.01), in the fasted state of PPARalpha null mice. The increased HGP from glycerol was not suppressed in the fed state. While little change was evident for phosphoenolpyruvate carboxykinase (PEPCK) expression, pyruvate kinase expression was decreased 16-fold in fasted PPARalpha null mice as compared with the wild-type control. The fasted and fed insulin levels were comparable, but blood glucose levels were lower in the PPARalpha null mice than in controls. In conclusion, PPARalpha receptor function creates a setpoint for a metabolic network that regulates the rate and route of HGP in the fasted and fed states, in part, by controlling the flux of glycerol and lactate between the triose-phosphate and pyruvate/lactate pools.  相似文献   

17.
18.
Amides of fatty acids with ethanolamine (FAE) are biologically active lipids that participate in a variety of biological functions, including the regulation of feeding. The polyunsaturated FAE anandamide (arachidonoylethanolamide) increases food intake by activating G protein-coupled cannabinoid receptors. On the other hand, the monounsaturated FAE oleoylethanolamide (OEA) reduces feeding and body weight gain by activating the nuclear receptor PPAR-alpha (peroxisome proliferator-activated receptor alpha). In the present report, we examined whether OEA can also influence energy utilization. OEA (1-20 microm) stimulated glycerol and fatty acid release from freshly dissociated rat adipocytes in a concentration-dependent and structurally selective manner. Under the same conditions, OEA had no effect on glucose uptake or oxidation. OEA enhanced fatty acid oxidation in skeletal muscle strips, dissociated hepatocytes, and primary cardiomyocyte cultures. Administration of OEA in vivo (5 mg kg(-1), intraperitoneally) produced lipolysis in both rats and wild-type mice, but not in mice in which PPAR-alpha had been deleted by homologous recombination (PPAR-alpha(-/-)). Likewise, OEA was unable to enhance lipolysis in adipocytes or stimulate fatty acid oxidation in skeletal muscle strips isolated from PPAR-alpha mice. The synthetic PPAR-alpha agonist Wy-14643 produced similar effects, which also were dependent on the presence of PPAR-alpha. Subchronic treatment with OEA reduced body weight gain and triacylglycerol content in liver and adipose tissue of diet-induced obese rats and wild-type mice, but not in obese PPAR-alpha(-/-) mice. The results suggest that OEA stimulates fat utilization through activation of PPAR-alpha and that this effect may contribute to its anti-obesity actions.  相似文献   

19.
A new series of 1,3-dioxane-2-carboxylic acid derivatives was synthesized and evaluated for agonist activity at human peroxisome proliferator-activated receptor (PPAR) subtypes. Structure-activity relationship studies led to the identification of 2-methyl-c-5-[4-(5-methyl-2-phenyl-1,3-oxazol-4-yl)butyl]-1,3-dioxane-r-2-carboxylic acid 4b as a potent PPARalpha agonist with high subtype selectivity at human receptor subtypes. This compound exhibited a substantial hypolipidemic effect in type 2 diabetic KK-A(y) mice.  相似文献   

20.
Effect of peroxisome proliferator-activated receptor alpha (PPARalpha) agonists, WY-14,643 (WY) and/or clofibrate, on the leucine-induced phosphorylation of translational targets in C2C12 myoblasts was studied. C2C12 cells were treated with WY or clofibrate for 24 h prior to stimulation with leucine. Western blot analyses revealed that the leucine-induced phosphorylation of p70 S6 kinase (p70S6K), a key regulator of translation initiation, was significantly higher in WY-treated cells than in control and clofibrate-treated cells. Phosphorylation of extracellular-regulated kinase (ERK1/2) was higher in WY-treated cells. WY treatment also increased the leucine-induced phosphorylation of ribosomal protein S6 and eukaryotic initiation factor 4B. In contrast, eukaryotic elongation factor 2, a marker for peptide chain elongation process, was significantly activated (dephosphorylated) only in leucine-stimulated control cells. Pre-treatment of the cells with PD98059 (ERK1/2 kinase inhibitor) prevented the phosphorylation of ERK1/2 and decreased the leucine-induced phosphorylation of p70S6K. It is concluded that WY increased the leucine-induced phosphorylation of target proteins involving in translation initiation via ERK/p70S6K pathway, but impaired the signaling for elongation process, suggesting that p70S6K phosphorylation may be essential, but not sufficient for the activation of entire targets for protein translation in WY-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号