首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Despite the great importance of Aureobasidium pullulans in biotechnology, the fungus had emerged as an opportunistic human pathogen, especially among immunocompromised patients. Clinical detection of this rare human fungal pathogen presently relies on morphology diagnosis which may be misleading. Thus, a sensitive and accurate quantitative molecular assay for A. pullulans remains lacking. In this study, we presented the microscopy observations of A. pullulans that reveals the phenotypic plasticity of the fungus. A. pullulans-specific primers and molecular beacon probes were designed based on the fungal 18S ribosomal RNA (rRNA) gene. Comparison of two probes with varied quencher chemistry, namely BHQ-1 and Tamra, revealed high amplification efficiency of 104% and 108%, respectively. The optimized quantitative real-time PCR (qPCR) assays could detect and quantify up to 1 pg concentration of A. pullulans DNA. Both assays displayed satisfactory performance parameters at fast thermal cycling mode. The molecular assay has great potential as a molecular diagnosis tool for early detection of fungal infection caused by A. pullulans, which merits future study in clinical diagnosis.  相似文献   

2.
Summary Five fuel-soluble biocides — a benzimidazole fungicide, an organoboron, a pyridinethione and two isothiazolone products — were evaluated for inhibition of a typical hydrocarbon fuel contaminant,Cladosporium resinae, in fuel/water systems. The biocides exhibited marked differences in anti-fungal activity with storage and in the presence of sludge. A methylchloro/methyl-isothiazolone mixture prevented growth of the fungus at a concentration of one part per million and, in contrast to other biocides tested, showed no tendency to be inactivated by storage or the presence of sludge.  相似文献   

3.
The bacterium Escherichia coli is commonly associated with the presence of faecal contamination in environmental samples, and is therefore subject to statutory surveillance. This is normally done using a culture-based methodology, which can be slow and laborious. Nucleic acid amplification for the detection of E. coli DNA sequences is a significantly more rapid approach, suited for applications in the field such as a point of sample analysis, and to provide an early warning of contamination. An existing, high integrity qPCR method to detect the E. coli ybbW gene, which requires almost an hour to detect low quantities of the target, was compared with a novel, isothermal RPA method, targeting the same sequence but achieving the result within a few minutes. The RPA technique demonstrated equivalent inclusivity and selectivity, and was able to detect DNA extracted from 100% of 99 E. coli strains, and exclude 100% of 30 non-target bacterial species. The limit of detection of the RPA assay was at least 100 target sequence copies. The high speed and simple, isothermal amplification chemistry may indicate that RPA is a more suitable methodology for on-site E. coli monitoring than an existing qPCR technique.  相似文献   

4.
A fungus was isolated from aviation fuel and identified as Monascus floridanus P.F. Cannon & E.L. Barnard (FR827895) according to its morphological and genetic properties. The isolate has some properties that are unusual for the type strain, including a prominent stripe on one of the sides of the ascospores and occurrence, along with the known Basipetospora-type thallic conidia, of the phialophora-like spore formation. The isolated strain Monascus floridanus, like the known kerosene fungus Hormoconis resinae (Lindau) Arx & G.A. de Vries, is capable of active growth in aviation fuel.  相似文献   

5.
Propidium monoazide is a DNA‐intercalating dye. PMA‐qPCR has been reported as a novel method to detect live bacteria in complex samples. In this study, this method was used to monitor the sterilization effects of UHP, ultrasound and high PEF on Escherichia coli O157:H7. Our results showed that all three sterilization techniques are successful to kill viable E. coli O157:H7 cells under their appropriate conditions. PMA‐qPCR can effectively monitor the amount of DNA released from viable E. coli O157:H7 cells, and the results from PMA‐qPCR were highly consistent with those from plate counting after treatment with UHP, ultrasound and high PEF. The maximal ΔCt between PMA‐qPCR and qPCR obtained in this study was 10·39 for UHP, 5·76 for ultrasound and 2·30 for high PEF. The maximal sterilization rates monitored by PMA‐qPCR were 99·92% for UHP, 99·99% for ultrasound and 100% for high PEF. Thus, PMA‐qPCR can be used to detect the sterilization effect on food and water supplies after treatment with UHP, ultrasound and high PEF.

Significance and Impact of the Study

The reliable detection of viable foodborne pathogenic bacteria in water and food is of great importance in our daily life. However, the traditional bacteria cultivation‐based methods are time‐consuming and difficult to monitor all viable bacteria because of the limitation of cultivation conditions. This study demonstrated that PMA‐qPCR technique is very effective to monitor viable E. coli O157:H7 after sterilization and will help to monitor the viable bacteria in food and water.  相似文献   

6.
7.
Summary The fungal floras of plant communities and mineral soils were determined at locations both close to and away from sites of human activity. Petroleum contaminated soils and discarded wood which occur near Stations were also studied, the former for bacterial as well as fungal colonization. The fungal floras of uncontaminated natural communities comprised relatively few species, Geomyces pannorum, Phoma herbarum and Thelebolus microsporus being the most common, together with Epicoccum nigrum at Mawson. P. herbarum dominated the fungal floras of mosses at Mossell Lake but E. nigrum was also common in Mawson mossbeds. G. pannorum was widespread and colonized a range of different habitats, particularly in the Vestfold Hills. T. microsporus was also widespread particularly at sites frequented by birds and seals. Phialophora fastigiata was common around the Stations, especially Davis Station, in soils including those contaminated with oil and in wood, and is thought to have been introduced with softwood packing crates. A greater range of taxa including Mortierella, Mucor, Penicillium and Cladosporium spp. was recorded from Mawson Station than from other sites, and this was attributed to the effects of human activity. Few fungi but a range of bacteria were isolated from the petroleum contaminated soils. A high percentage of these soils contained bacteria which could utilize hydrocarbons as a sole carbon source. Some of these bacteria showed a strong degradative potential, namely Flavobacterium spp., Corynebacterium spp., Bacillus spp. and an isolate from the family Enterobacteriaceae. One isolate of Corynebacterium and the Enterobacteriaceae isolate were active hydrocarbon degraders at 1°C. Hormoconis resinae, the imperfect state of Amorphotheca resinae was only isolated from oil spill soils and then only from sites of recent spills. Geomyces pannorum and Thelebolus microsporus were less common in oil contaminated soils than in uncontaminated soils.  相似文献   

8.
Aims: To demonstrate the application of a new quantitative polymerase chain reaction (qPCR) technique for the determination of Helicobacter pylori concentrations in water, and to use this method to investigate the occurrence of the bacteria in sewage. The other aim was to study the survival capacity and detectability of the bacteria in artificially contaminated groundwater at different temperatures of 4 and 15°C. Methods and Results: The detection of H. pylori in water was aided by PCR using specific primers designed for the amplification of a fragment within the major vacuolating cytotoxin gene. Conventional culture was compared with conventional PCR and the new real-time (RT) qPCR approach for the quantification of the bacterium. Helicobacter pylori remained culturable for 120 h at 4°C as opposed to only 24 h at 15°C. RT qPCR demonstrated a 100-fold greater sensitivity for the detection of H. pylori DNA in comparison with conventional PCR. Scanning electron microscopic (SEM) observation showed that the normal spiral form changed to a coccoid form after 24 and 72 h at 15 and 4°C, respectively. Helicobacter pylori was found at 2–28 cells ml−1 in sewage, of the 23 sewage samples – 84% were positive for H. pylori species-specific vacuolating cyctotoxin gene (vacA) by RT qPCR, but were negative by conventional PCR. Conclusions: The RT qPCR assay provided a specific, sensitive and rapid method for the quantitative detection of H. pylori in sewage. This molecular method would be valuable in studying the prevalence of H. pylori as required by the United States Environmental Protection Agency Contaminant Candidate List, particularly in nondisinfected ground waters, in sewage as a source of contamination, and for addressing the possible presence of viable but nonculturable of H. pylori. Significance and Impact of the Study: The quantitative detection of H. pylori by rapid and less-expensive methods than the TaqMan Assay using SYBR green could be an important tool to monitor infection in community by measuring the concentrations in sewage and to meet the new regulatory and risk-based frameworks for water supplies.  相似文献   

9.
Quantitative real‐time PCR (qPCR) techniques are being increasingly used to provide accurate and reliable methods to identify and quantify cryptic organisms in soil ecology. Entomopathogenic nematode (EPN) diversity in Florida is known to be extensive and our phylogenetic studies of the D2D3 and ITS regions showed the occurrence of an additional species‐complex in the Steinernema glaseri‐ group in widely separated locations of the peninsula. To address ecological studies, we developed and used qPCR assays to detect and quantify six species of EPN that are naturally distributed in Florida citrus orchards (Steinernema diaprepesi, Steinernema riobrave, Heterorhabditis indica, Heterorhabditis zealandica, Heterorhabditis floridensis and an undescribed species in the S. glaseri group) and an exotic species, S. glaseri. Species‐specific primers and TaqMan® probes were designed from the ITS rDNA region. No nonspecific amplification was observed in conventional or qPCR when the primers and probes were tested using several populations of each of the Florida species and other exotic EPN species. Standard curves were established using DNA from pure cultures. We optimised a protocol for extracting nematodes and DNA from soil samples that can detect one EPN added to nematode communities recovered by conventional extraction protocols. A survey of an 8‐ha orchard in April 2009 compared the EPN spatial patterns derived from qPCR to that obtained by baiting soil samples with Galleria mellonella larvae. The patterns were also compared to those derived from the same site in 2000–01 by repeatedly (12 sampling events) baiting soil in situ with caged larvae of the root weevil Diaprepes abbreviatus. The qPCR assay was more efficient than the Galleria baiting method for detecting the EPN species composition in population mixtures. Moreover, the spatial patterns of EPN in this orchard were remarkably stable over the course of nearly a decade. The pattern of H. zealandica detected at the site 8 years earlier was related to those derived by qPCR (P = 0.002) and from sample baiting (P = 0.02). The spatial pattern of H. indica derived from qPCR, but not that from sample baiting, was also related to the earlier pattern (P = 0.01). The qPCR assay developed here is a fast, affordable and accurate method to detect and quantify these EPN species in soil and offers great potential for studying the ecology of EPN.  相似文献   

10.
Biofilms containing single or mixed cultures of the fungus Hormoconis resinae and anaerobic sulphate-reducing bacteria (SRB) on stainless steel were incubated with an isothiazolone biocide (Kathon FP) at 28°C for 24 h. H. resinae within the biofilm was enumerated by immunofluorescence microscopy using specific antiserum, and SRB were assayed by culture. Fungal numbers in mixed biofilms were considerably reduced in comparison with those in pure biofilms. The biocide was shown to be effective against H. resinae in pure biofilms at 50 and 100 ppm, but in mixed biofilms only at the higher concentration. This concentration also reduced the sessile SRB numbers by 99%.P.S. Guiamet is with the Sección Biolectroquimica, INIFTA, Suc. 4, C.C. 16, 1900 La Plata, Argentina. C.C Gaylarde is with the Departamento de Solos, Fac. de Agronomia, UFRGS, Av. Bento Gonçalves, 7712, 91540-000 Porto Alegre, RS, Brazil  相似文献   

11.
The toxic dinoflagellate Alexandrium fundyense is widespread in the northeastern part of North America, including the Gulf of Maine, and is responsible for seasonal harmful algal blooms in these regions. Even at low cell densities, A. fundyense toxins can accumulate in shellfish and result in paralytic shellfish poisoning (PSP). PSP can be debilitating or lethal to humans and other shellfish consumers and is a public health concern. As a result, accurate measurements of A. fundyense distributions, particularly at low cell density, are critical to continued PSP monitoring and mitigation efforts. Towards this end we have developed a real-time quantitative PCR (qPCR) method to monitor A. fundyense. Laboratory validation indicates that the qPCR assay is sensitive enough to detect 10 cells per sample, and that it does not detect co-occurring dinoflagellates such as Alexandrium ostenfeldii. The qPCR methodology was used to quantify A. fundyense cell densities in samples collected during a spring 2003 transect in the Gulf of Maine, and the data were compared to those obtained in parallel from light microscope and DNA hybridization-based methods. Results show that A. fundyense cell density was low during this period relative to typical cell densities required for PSP contamination of local shellfish, and that qPCR values were comparable to numbers determined by independent methods.  相似文献   

12.
A combined approach based on quantitative and nested polymerase chain reaction (qPCR and nPCR, respectively) has been set up to detect and quantify the unculturable endobacterium Candidatus Glomeribacter gigasporarum inside the spores of its fungal host Gigaspora margarita. Four genes were targeted, two of bacterial origin (23S rRNA gene and rpoB) and two from the fungus (18S rRNA gene and EF1-alpha). The sensitivity of the qPCR protocol has proved to be comparable to that of nPCR, both for the fungal and the bacterial detection. It has been demonstrated that the last detected dilution in qPCR corresponded, in each case, to 10 copies of the target sequences, suggesting that the method is equally sensitive for the detection of both fungal and bacterial targets. As the two targeted bacterial genes are predicted to be in single copy, it can be concluded that the detection limit is of 10 bacterial genomes for each mixture. The protocol was then successfully applied to amplify fungal and bacterial DNA from auxiliary cells and extraradical and intraradical mycelium. For the first time qPCR has been applied to a complex biological system to detect and quantify fungal and bacterial components using single-copy genes, and to monitor the bacterial presence throughout the fungal life cycle.  相似文献   

13.
Commercially available kits were tested for their ability to detect bacterial and fungal contamination in hydrocarbon fuel systems. The handling ease of the kits was evaluated, and their sensitivity was compared with that of conventional methods. Most kits in both laboratory and field studies compared well with laboratory methods and were sufficiently sensitive to determine contamination in shipboard fuel tanks.  相似文献   

14.
Exposure to Aspergillus fumigatus is linked with respiratory diseases such as asthma, invasive aspergillosis, hypersensitivity pneumonitis, and allergic bronchopulmonary aspergillosis. Molecular methods using quantitative PCR (qPCR) offer advantages over culture and optical methods for estimating human exposures to microbiological agents such as fungi. We describe an assay that uses lyticase to digest A. fumigatus conidia followed by TaqMan™ qPCR to quantify released DNA. This method will allow analysis of airborne A. fumigatus samples collected over extended time periods and provide a more representative assessment of chronic exposure. The method was optimized for environmental samples and incorporates: single tube sample preparation to reduce sample loss, maintain simplicity, and avoid contamination; hot start amplification to reduce non-specific primer/probe annealing; and uracil-N-glycosylase to prevent carryover contamination. An A. fumigatus internal standard was developed and used to detect PCR inhibitors potentially found in air samples. The assay detected fewer than 10 A. fumigatus conidia per qPCR reaction and quantified conidia over a 4−log10 range with high linearity (R 2 > 0.99) and low variability among replicate standards (CV=2.0%) in less than 4 h. The sensitivity and linearity of qPCR for conidia deposited on filters was equivalent to conidia calibration standards. A. fumigatus DNA from 8 isolates was consistently quantified using this method, while non-specific DNA from 14 common environmental fungi, including 6 other Aspergillus species, was not detected. This method provides a means of analyzing long term air samples collected on filters which may enable investigators to correlate airborne environmental A. fumigatus conidia concentrations with adverse health effects.  相似文献   

15.
BackgroundA multicenter study was conducted. A panel containing DNA from Histoplasma capsulatum, as well as negative and cross-reaction controls, was sent to five different laboratories, members of the MICOMOL network from CYTED Program.AimsThe objective was to assess the accuracy of different PCR protocols to detect H. capsulatum DNA.MethodsSeven different PCR protocols were tested. They were based on PCR techniques and used unicopy and multicopy targets.ResultsMost of these protocols (4/7) were able to detect the smallest amounts of fungal DNA (102 fg/μl). Overall sensitivity was 86% and specificity was 100%. The protocol based on a unicopy target (SCAR220) presented lower sensitivity (43%) but 100% specificity. The real-time protocols tested were highly reproducible, sensitive, and specific. Neither false positives nor cross-reactions were detected in any protocol.ConclusionsAll laboratories were able to amplify H. capsulatum DNA, and real-time PCR seems to be a promising tool to efficiently detect this pathogen in clinical samples.  相似文献   

16.
A unique open reading frame (ORF) Z3276 was identified as a specific genetic marker for E. coli O157:H7. A qPCR assay was developed for detection of E. coli O157:H7 by targeting ORF Z3276. With this assay, we can detect as low as a few copies of the genome of DNA of E. coli O157:H7. The sensitivity and specificity of the assay were confirmed by intensive validation tests with a large number of E. coli O157:H7 strains (n = 369) and non-O157 strains (n = 112). Furthermore, we have combined propidium monoazide (PMA) procedure with the newly developed qPCR protocol for selective detection of live cells from dead cells. Amplification of DNA from PMA-treated dead cells was almost completely inhibited in contrast to virtually unaffected amplification of DNA from PMA-treated live cells. Additionally, the protocol has been modified and adapted to a 96-well plate format for an easy and consistent handling of a large number of samples. This method is expected to have an impact on accurate microbiological and epidemiological monitoring of food safety and environmental source.  相似文献   

17.
Aims: To develop a novel PCR‐based method able to detect potential cellulolytic filamentous fungi and to classify them exploiting the amplification of the cellobiohydrolase gene (cbh‐I) and its polymorphism. Methods and Results: A mixed approach including the combination of (i) fungal cultivation and isolation, (ii) classification of fungal isolates through the amplification of the cbh gene using a fluorescently labelled primer (f‐CBH‐PCR) and (iii) final fungal identification based on amplification and sequencing of the ITS1‐5.8S rDNA‐ITS2 region of the selected fungal strains was developed. By this approach, it was possible to screen 77 fungal strains belonging to 14 genera and 26 species. Conclusions: The f‐CBH‐PCR permitted the discrimination of fungal species, producing typical f‐CBH profiles. Significance and Impact of the Study: In this study, the cbh gene was used as a preliminary classification tool able to differentiate among themselves the fungal members isolated from indoor museum items and surrounding environment. Such mixed approach consented the fast identification of all isolated fungal strains. The f‐CBH‐PCR method demonstrated its discrimination power, and it can be considered as a new molecular system suitable for the classification of fungal strains isolated from different environments.  相似文献   

18.
Species-specific quantitative real-time PCR (qPCR) primers were developed for the detection of Porphyromonas gingivalis. These primers, Pg-F/Pg-R, were designed based on the nucleotide sequences of RNA polymerase β-subunit gene (rpoB). Species-specific amplicons were obtained from the tested P. gingivalis strains but not in any of the other strains (46 strains of 46 species). The qPCR primers could detect as little as 4 fg of P. gingivalis chromosomal DNA. These findings suggest that these qPCR primers are suitable for applications in epidemiological studies.  相似文献   

19.
Studies of predation can contribute greatly to understanding predator–prey relationships and can also provide integral knowledge concerning food webs and multi‐trophic level interactions. Both conventional polymerase chain reaction (cPCR) and quantitative PCR (qPCR) have been employed to detect predation in the field because of their sensitivity and reproducibility. However, to date, few studies have been used to comprehensively demonstrate which method is more sensitive and reproducible in studies of predation. We used a Drosophila melanogaster‐specific DNA fragment (99 bp) to construct a tenfold gradient dilution of standards. Additionally, we obtained DNA samples from Pardosa pseudoannulata individuals that fed on D. melanogaster at various time since feeding. Finally, we compared the sensitivity and reproducibility between cPCR and qPCR assays for detecting DNA samples from feeding trials and standards. The results showed that the cPCR and qPCR assays could detect as few as 1.62 × 103 and 1.62 × 101 copies of the target DNA fragment, respectively. The cPCR assay could detect as few as 48 hr post‐feeding of the target DNA fragment. But the qPCR assay showed that all spiders were positive after consuming prey at various time intervals (0, 24, 48, 72, and 96 hr). A smaller proportion of the technical replicates were positive using cPCR, and some bands on the agarose gel were absent or gray, while some were white and bright for the same DNA samples after amplification by cPCR. By contrast, a larger proportion of the technical replicates were positive using qPCR and the coefficients of variation of the Ct value for the three technical replicates of each DNA sample were less than 5%. These data showed that qPCR was more sensitive and highly reproducible in detecting such degraded DNA from predator's gut. The present study provides an example of the use of cPCR and qPCR to detect the target DNA fragment of prey remains in predator's gut.  相似文献   

20.

Background

Cultures of heterotrophic protists often require co-culturing with bacteria to act as a source of nutrition. Such cultures will contain varying levels of intrinsic bacterial contamination that can interfere with molecular research and cause problems with the collection of sufficient material for sequencing. Measuring the levels of bacterial contamination for the purposes of molecular biology research is non-trivial, and can be complicated by the presence of a diverse bacterial flora, or by differences in the relative nucleic acid yield per bacterial or eukaryotic cell.

Principal Findings

Here we describe a duplex PCR-based assay that can be used to measure the levels of contamination from marine bacteria in a culture of loricate choanoflagellates. By comparison to a standard culture of known target sequence content, the assay can be used to quantify the relative proportions of bacterial and choanoflagellate material in DNA or RNA samples extracted from a culture. We apply the assay to compare methods of purifying choanoflagellate cultures prior to DNA extraction, to determine their effectiveness in reducing bacterial contamination. Together with measurements of the total nucleic acid concentration, the assay can then be used as the basis for determining the absolute amounts of choanoflagellate DNA or RNA present in a sample.

Conclusions

The assay protocol we describe here is a simple and relatively inexpensive method of measuring contamination levels in nucleic acid samples. This provides a new way to establish quantification and purification protocols for molecular biology and genomics in novel heterotrophic protist species. Guidelines are provided to develop a similar protocol for use with any protistan culture. This assay method is recommended where qPCR equipment is unavailable, where qPCR is not viable because of the nature of the bacterial contamination or starting material, or where prior sequence information is insufficient to develop qPCR protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号