首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
At mucosal barriers, the virulence of microbial communities reflects the outcome of both dysbiotic and eubiotic interactions with the host, with commensal species mitigating or potentiating the action of pathogens. We examined epithelial responses to the oral pathogen Porphyromonas gingivalis as a monoinfection and in association with a community partner, Streptococcus gordonii. RNA-Seq of oral epithelial cells showed that the Notch signaling pathway, including the downstream effector olfactomedin 4 (OLFM4), was differentially regulated by P. gingivalis alone; however, regulation was overridden by S. gordonii. OLFM4 was required for epithelial cell migratory, proliferative and inflammatory responses to P. gingivalis. Activation of Notch signaling was induced through increased expression of the Notch1 receptor and the Jagged1 (Jag1) agonist. In addition, Jag1 was released in response to P. gingivalis, leading to paracrine activation. Following Jag1-Notch1 engagement, the Notch1 extracellular domain was cleaved by P. gingivalis gingipain proteases. Antagonism by S. gordonii involved inhibition of gingipain activity by secreted hydrogen peroxide. The results establish a novel mechanism by which P. gingivalis modulates epithelial cell function which is dependent on community context. These interrelationships have relevance for innate inflammatory responses and epithelial cell fate decisions in oral health and disease.Subject terms: Microbial ecology, Microbial ecology  相似文献   

4.
Interleukin (IL)‐31 is important for innate immunity in mucosal tissues and skin, and increased IL‐31 expression participates in the pathogenesis of chronic inflammatory diseases affecting the skin, airways, lungs, and intestines. We investigated the contribution of mast cells to the induction of IL‐31 production following infection with the periodontal pathogen, Porphyromonas gingivalis. We found that oral infection with P. gingivalis increased IL‐31 expression in the gingival tissues of wild‐type mice but not in those of mast cell‐deficient mice. The P. gingivalis‐induced IL‐31 production by human mast cells occurred through the activation of the JNK and NF‐κB signalling pathways and was dependent on the P. gingivalis lysine‐specific protease gingipain‐K. P. gingivalis infection induced IL‐31 receptor α and oncostatin M receptor β expression in human gingival epithelial cells. Notably, the P. gingivalis‐induced IL‐31 production by mast cells led to the downregulation of claudin‐1, a tight junction molecule, in gingival epithelial cells, resulting in an IL‐31‐dependent increase in the paracellular permeability of the gingival epithelial barrier. These findings suggest that IL‐31 produced by mast cells in response to P. gingivalis infection causes gingival epithelial barrier dysfunction, which may contribute to the chronic inflammation observed in periodontitis.  相似文献   

5.

Objective

Increased risk for atherosclerosis is associated with infectious diseases including periodontitis. Natural IgM antibodies recognize pathogen-associated molecular patterns on bacteria, and oxidized lipid and protein epitopes on low-density lipoprotein (LDL) and apoptotic cells. We aimed to identify epitopes on periodontal pathogen Porphyromonas gingivalis recognized by natural IgM binding to malondialdehyde (MDA) modified LDL.

Methods and Results

Mouse monoclonal IgM (MDmAb) specific for MDA-LDL recognized epitopes on P. gingivalis on flow cytometry and chemiluminescence immunoassays. Immunization of C57BL/6 mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and apoptotic cells. Immunization of LDLR−/− mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and diminished aortic lipid deposition. On Western blot MDmAb bound to P. gingivalis fragments identified as arginine-specific gingipain (Rgp) by mass spectrometry. Recombinant domains of Rgp produced in E. coli were devoid of phosphocholine epitopes but contained epitopes recognized by MDmAb and human serum IgM. Serum IgM levels to P. gingivalis were associated with anti-MDA-LDL levels in humans.

Conclusion

Gingipain of P. gingivalis is recognized by natural IgM and shares molecular identity with epitopes on MDA-LDL. These findings suggest a role for natural antibodies in the pathogenesis of two related inflammatory diseases, atherosclerosis and periodontitis.  相似文献   

6.
Glutaraldehyde (GLUT) was evaluated for control of single and dual species biofilms of Bacillus cereus and Pseudomonas fluorescens on stainless steel surfaces using a chemostat system. The biofilms were characterized in terms of mass, cell density, total and matrix proteins and polysaccharides. The control action of GLUT was assessed in terms of inactivation and removal of biofilm. Post-biocide action was characterized 3, 7, 12, 24, 48 and 72 h after treatment. Tests with planktonic cells were also performed for comparison. The results demonstrated that in dual species biofilms the metabolic activity, cell density and the content of matrix proteins were higher than those of either single species. Planktonic B. cereus was more susceptible to GLUT than P. fluorescens. The biocide susceptibility of dual species planktonic cultures was an average of each single species. Planktonic cells were more susceptible to GLUT than their biofilm counterparts. Biofilm inactivation was similar for both of the single biofilms while dual biofilms were more resistant than single species biofilms. GLUT at 200 mg l?1 caused low biofilm removal (<10%). Analysis of the post-biocide treatment data revealed the ability of biofilms to recover their activity over time. However, 12 h after biocide application, sloughing events were detected for both single and dual species biofilms, but were more marked for those formed by P. fluorescens (removal >40% of the total biofilm). The overall results suggest that GLUT exerts significant antimicrobial activity against planktonic bacteria and a partial and reversible activity against B. cereus and P. fluorescens single and dual species biofilms. The biocide had low antifouling effects when analysed immediately after treatment. However, GLUT had significant long-term effects on biofilm removal, inducing significant sloughing events (recovery in terms of mass 72 h after treatment for single biofilms and 42 h later for dual biofilms). In general, dual species biofilms demonstrated higher resistance and resilience to GLUT exposure than either of the single species biofilms. P. fluorescens biofilms were more susceptible to the biocide than B. cereus biofilms.  相似文献   

7.

Background  

Porphyromonas gingivalis, a periodontal pathogen, expresses a number of virulence factors, including long (FimA) and short (Mfa) fimbriae as well as gingipains comprised of arginine-specific (Rgp) and lysine-specific (Kgp) cysteine proteinases. The aim of this study was to examine the roles of these components in homotypic biofilm development by P. gingivalis, as well as in accumulation of exopolysaccharide in biofilms.  相似文献   

8.
Abstract

This study investigated how the physiological states of Aggregatibacter actinomycetemcomitans (Aa) and Streptococcus mitis affect their intracellular invasion capabilities and the resulting host cell responses. The physiological states included two forms of planktonic states, floating or sedimented (by centrifugation) and the biofilm state (with centrifugation). Confluent epithelial Ca9-22 cells were challenged with floating or sedimented planktonic cultures, or with 24-h biofilms for 3?h. The results show that intracellular invasion efficiencies were clearly affected by the bacterial physiological states. For both bacterial species, the sedimented-cells displayed 2–10 times higher invasion efficiency than the floating-cells (p?<?0.05). The invasion efficiency of Aa biofilms was three fold lower than sedimented cells, whereas those of S. mitis biofilms were similar to sedimented cells. Unlike invasion, the metabolic activities of Ca9-22 were unaffected by different bacterial physiological states. However, Aa biofilms induced higher IL-1β expression than planktonic cultures. In conclusion, different bacterial physiological states can affect the outcomes of (in vitro) host–microbe interaction in different ways.  相似文献   

9.
10.
Porphyromonas gingivalis utilizes its major proteases, Arg gingipains (RgpA and RgpB) and Lys gingipain (Kgp), for dysregulation of host immune systems. The aim of this study was to investigate the roles of gingipains in caspase‐1 activation and its sequelae in P. gingivalis‐infected macrophages. Infection with P. gingivalis at low multiplicity of infections (MOIs), but not at high MOIs, resulted in low levels of interleukin‐1β and lactate dehydrogenase without detectable active caspase‐1 in the culture supernatants. The proteins released from caspase‐1‐activated cells were rapidly degraded by gingipains. However, P. gingivalis with gingipains induced higher intracellular caspase‐1 activity in the infected cells than the gingipain‐null mutant, which was associated with ATP release from the infected cells. In addition, growing the gingipain‐null mutant with gingipains enhanced caspase‐1 activation by the mutant. In contrast, inhibition of the protease activity of Kgp or Rgps increased the caspase‐1‐activating potential of wild‐type P. gingivalis, indicating an inhibitory effect of the collaborative action of Kgp and Rgps. These results illuminate the contradictory roles of gingipains in the manipulation of host defence systems by P. gingivalis, as they act by both stimulating and inhibiting innate immune responses.  相似文献   

11.
Chronic periodontitis has a polymicrobial biofilm aetiology and interactions between key bacterial species are strongly implicated as contributing to disease progression. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia have all been implicated as playing roles in disease progression. P. gingivalis cell-surface-located protease/adhesins, the gingipains, have been suggested to be involved in its interactions with several other bacterial species. The aims of this study were to determine polymicrobial biofilm formation by P. gingivalis, T. denticola and T. forsythia, as well as the role of P. gingivalis gingipains in biofilm formation by using a gingipain null triple mutant. To determine homotypic and polymicrobial biofilm formation a flow cell system was employed and the biofilms imaged and quantified by fluorescent in situ hybridization using DNA species-specific probes and confocal scanning laser microscopy imaging. Of the three species, only P. gingivalis and T. denticola formed mature, homotypic biofilms, and a strong synergy was observed between P. gingivalis and T. denticola in polymicrobial biofilm formation. This synergy was demonstrated by significant increases in biovolume, average biofilm thickness and maximum biofilm thickness of both species. In addition there was a morphological change of T. denticola in polymicrobial biofilms when compared with homotypic biofilms, suggesting reduced motility in homotypic biofilms. P. gingivalis gingipains were shown to play an essential role in synergistic polymicrobial biofilm formation with T. denticola.  相似文献   

12.
Porphyromonas gingivalis is a major etiological agent of periodontal diseases and the outer membrane vesicles (OMVs) contain virulence factors such as LPS and gingipains. In this study, we investigated the potential role of the OMVs in host immune response and tissue destruction during P. gingivalis infection. Firstly, we found that sera from periodontitis patients had significantly stronger reactivity against an OMV-producing wild type strain than the isogenic OMV-depleted strain. OMVs were found to be highly antigenic, as absorption of patient sera with OMVs greatly reduced reactivity with whole cells of P. gingivalis. LC-MS/MS analysis of OMVs revealed multiple forms of gingipains and several gingipain-related proteins. Western blots of OMVs using patient sera revealed a conserved immunoreactive antigen profile resembling the profile of OMV antigens that were recognized by gingipain antiserum, suggesting a potential role of OMV-associated gingipains in triggering antibody-mediated immune responses to P. gingivalis infection. When OMVs were added to a monolayer of an oral squamous epithelial cell line, OMVs caused cell detachment, which was inhibited by preincubating OMVs with anti-gingipain antiserum. These data suggest that gingipain-laden OMVs may contribute to tissue destruction in periodontal diseases by serving as a vehicle for the antigens and active proteases.  相似文献   

13.
Recent epidemiological studies have revealed a significant association between periodontitis and oral squamous cell carcinoma (OSCC). Furthermore, matrix metalloproteinase 9 (MMP9) is implicated in the invasion and metastasis of tumour cells. We examined the involvement of Porphyromonas gingivalis, a periodontal pathogen, in OSCC invasion through induced expression of proMMP and its activation. proMMP9 was continuously secreted from carcinoma SAS cells, while P. gingivalis infection increased proenzyme expression and subsequently processed it to active MMP9 in culture supernatant, which enhanced cellular invasion. In contrast, Fusobacterium nucleatum, another periodontal organism, failed to demonstrate such activities. The effects of P. gingivalis were observed with highly invasive cells, but not with the low invasivetype. P. gingivalis also stimulated proteinase‐activated receptor 2 (PAR2) and enhanced proMMP9 expression, which promoted cellular invasion. P. gingivalis mutants deficient in gingipain proteases failed to activate MMP9. Infected SAS cells exhibited activation of ERK1/2, p38, and NF‐kB, and their inhibitors diminished both proMMP9‐overexpression and cellular invasion. Together, our results show that P. gingivalis activates the ERK1/2‐Ets1, p38/HSP27, and PAR2/NF‐kB pathways to induce proMMP9 expression, after which the proenzyme is activated by gingipains to promote cellular invasion of OSCC cell lines. These findings suggest a novel mechanism of progression and metastasis of OSCC associated with periodontitis.  相似文献   

14.
Porphyromonas gingivalis is one of the major periodontitis-causing pathogens. P. gingivalis secretes a group of proteases termed gingipains, and in this study we have used the RgpB gingipain as a biomarker for P. gingivalis. We constructed a naive camel nanobody library and used phage display to select one nanobody toward RgpB with picomolar affinity. The nanobody was used in an inhibition assay for detection of RgpB in buffer as well as in saliva. The nanobody was highly specific for RgpB given that it did not bind to the homologous gingipain HRgpA. This indicated the presence of a binding epitope within the immunoglobulin-like domain of RgpB. A subtractive inhibition assay was used to demonstrate that the nanobody could bind native RgpB in the context of intact cells. The nanobody bound exclusively to the P. gingivalis membrane-bound RgpB isoform (mt-RgpB) and to secreted soluble RgpB. Further cross-reactivity studies with P. gingivalis gingipain deletion mutants showed that the nanobody could discriminate between native RgpB and native Kgp and RgpA in complex bacterial samples. This study demonstrates that RgpB can be used as a specific biomarker for P. gingivalis detection and that the presented nanobody-based assay could supplement existing methods for P. gingivalis detection.  相似文献   

15.
Planktonic-Cell Yield of a Pseudomonad Biofilm   总被引:1,自引:1,他引:0  
Biofilm cells differ phenotypically from their free-floating counterparts. Differential growth rates in biofilms are often referred to, particularly in response to limited diffusion of oxygen and nutrients. We observed growth rates of attached Pseudomonas sp. strain CT07 cells that were notably higher than the maximum specific growth rate measured in batch culture. Despite dilution rates in continuous flow cells that exceeded the maximum planktonic specific growth rate by 58 times, sampling of the effluent revealed >109 cells ml−1, suggesting that biofilms function as a source of planktonic cells through high cell yield and detachment. Further investigation demonstrated considerable planktonic cell yield from biofilms as young as 6 h, indicating that detachment is not limited to established biofilms. These biofilm-detached cells were more sensitive to a commercial biocide than associated biofilm- and chemostat-cultivated populations, implying that detached biofilm cells exhibit a character that is distinct from that of attached and planktonic cell populations.  相似文献   

16.
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.  相似文献   

17.
In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or ‘suspended biofilms’, by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10–400 µm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.  相似文献   

18.
Previous work with Pseudomonas aeruginosa showed that catalase activity in biofilms was significantly reduced relative to that in planktonic cells. To better understand biofilm physiology, we examined possible explanations for the differential expression of catalase in cells cultured in these two different conditions. For maximal catalase activity, biofilm cells required significantly more iron (25 μM as FeCl3) in the medium, whereas planktonic cultures required no addition of iron. However, iron-stimulated catalase activity in biofilms was still only about one-third that in planktonic cells. Oxygen effects on catalase activity were also investigated. Nitrate-respiring planktonic cultures produced approximately twice as much catalase activity as aerobic cultures grown in the presence of nitrate; the nitrate stimulation effect could also be demonstrated in biofilms. Cultures fermenting arginine had reduced catalase levels; however, catalase repression was also observed in aerobic cultures grown in the presence of arginine. It was concluded that iron availability, but not oxygen availability, is a major factor affecting catalase expression in biofilms.  相似文献   

19.
The oral pathogen Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Gingipains, the principle virulence factors of P. gingivalis are multidomain, cell‐surface proteins containing a cysteine protease domain. The lysine specific gingipain, Kgp, is a critical virulence factor of P. gingivalis. We have determined the X‐ray crystal structure of the lysine‐specific protease domain of Kgp to 1.6 Å resolution. The structure provides insights into the mechanism of substrate specificity and catalysis.  相似文献   

20.
Abstract

This study evaluated the antibacterial properties of carvacrol and terpinen-4-ol against Porphyromonas gingivalis and Fusobacterium nucleatum and its cytotoxic effects on fibroblast cells. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were examined. The minimum biofilm inhibition concentration (MBIC) was evaluated by XTT assay. Biofilm decontamination on titanium surfaces was quantified (CFU ml?1), evaluated by confocal laser scanning microscopy (CLSM) and cytotoxic activity by MTT. The MIC and MBC for carvacrol were 0.007% and 0.002% for P. gingivalis and F. nucleatum, and 0.06% for terpinen-4-ol for both microorganisms. The MBIC for carvacrol was 0.03% and 0.06% for P. gingivalis and F. nucleatum, and for terpinen-4-ol was 0.06% and 0.24%. The results indicated anti-biofilm activity using carvacrol (0.26%, 0.06%) and terpinen-4-ol (0.95%, 0.24%) and showed cytotoxic activity similar to chlorohexidine (CHX). However, terpinen-4-ol (0.24%) showed higher cell viability than other treatments. Carvacrol and terpinen-4-ol showed antibacterial activity in respect of reducing biofilms. Moreover, CHX-like cytotoxicity was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号