首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small antimicrobial β2,2-amino acid derivatives (Mw < 500 Da) are reported to display high antibacterial activity against suspended Gram-positive strains combined with low hemolytic activity. In the present study, the anti-biofilm activity of six β2,2-amino acid derivatives (A1A6) against Staphylococcus aureus (ATCC 25923) was investigated. The derivatives displayed IC50 values between 5.4 and 42.8 μM for inhibition of biofilm formation, and concentrations between 22.4 and 38.4 μM had substantial effects on preformed biofilms. The lead derivative A2 showed high killing capacity (log R), and it caused distinct ultrastructural changes in the biofilms as shown by electron and atomic force microscopy. The anti-biofilm properties of A2 was preserved under high salinity conditions. Extended screening showed also high activity of A2 against Escherichia coli (XL1 Blue) biofilms. These advantageous features together with high activity against preformed biofilms make β2,2-amino acid derivatives a promising class of compounds for further development of anti-biofilm agents.  相似文献   

2.
Exomethylene acycloguanine nucleosides 4, 6 and its monophosphate derivatives 5, 7, and 8 have been synthesized. Mitsunobu-type coupling of 2-N-acetyl-6-O-diphenylcarbamoylguanine (11) with primary alcohols proceeded regioselectively to furnish the desired N9-substituted products in moderate yield. Evaluation of 4-8 for anti-HBV activity in HepG2 cells revealed that the phosphonate derivative 8 was found to exhibit moderated activity (EC50 value of 0.29 μM), but cytotoxicity (CC50 value of 39 μM) against the host cells was also observed.  相似文献   

3.
We compared the cytotoxic activities of dietary epoxylignans and their stereoisomers and found (?)-verrucosin, which is (7S,7′R,8R,8′R)-7,7′-epoxylignan, to be the most cytotoxic epoxylignan against HeLa cells (IC50 = 6.6 μM). On the other hand, the activity was about a factor of 10 less against HL-60. In this research on the relationship between the structure and cytotoxic activity of (?)-verrucosin 13, the 7-(4-methoxyphenyl)-7′-(3,4-dimethoxyphenyl) derivative 60, for which the activity (IC50 = 2.4 μM) is three times greater than (?)-verrucosin 13, was discovered. The induction of apoptosis by caspase 3/7 was observed upon treatment with the (?)-verrucosin derivative.  相似文献   

4.
5.
Chemical investigation of Indonesian marine sponges Agelas linnaei and A. nakamurai afforded 24 alkaloid derivatives representing either bromopyrrole or diterpene alkaloids. A. linnaei yielded 16 bromopyrrole alkaloids including 11 new natural products with the latter exhibiting unusual functionalities. The new compounds include the first iodinated tyramine-unit bearing pyrrole alkaloids, agelanesins A–D. These compounds exhibited cytotoxic activity against L5178Y mouse lymphoma cells with IC50 values between 9.25 and 16.76 μM. Further new compounds include taurine acid substituted bromopyrrole alkaloids and a new dibromophakellin derivative. A. nakamurai yielded eight alkaloids among them are three new natural products. The latter include the diterpene alkaloids (?)-agelasine D and its oxime derivative and the new bromopyrrole alkaloid longamide C. (?)-Agelasine D and its oxime derivative exhibited cytotoxicity against L5178Y mouse lymphoma cells (IC50 4.03 and 12.5 μM, respectively). Furthermore, both agelasine derivatives inhibited settling of larvae of Balanus improvisus in an anti-fouling bioassay and proved to be toxic to the larvae. (?)-Agelasine D inhibited the growth of planktonic forms of biofilm forming bacteria S. epidermidis (MIC < 0.0877 μM) but did not inhibit biofilm formation whereas the oxime derivative showed the opposite activity profile and inhibited only biofilm formation but not bacterial growth. The structures of the isolated secondary metabolites were elucidated based on extensive spectroscopic analysis involving one- and two-dimensional NMR as well as mass spectrometry and comparison with literature data.  相似文献   

6.
The inhibition of marine biofouling by the bromotyrosine derivative ianthelline, isolated from the Arctic marine sponge Stryphnus fortis, is described. All major stages of the fouling process are investigated. The effect of ianthelline on adhesion and growth of marine bacteria and microalgae is tested to investigate its influence on the initial microfouling process comparing with the known marine antifoulant barettin as a reference. Macrofouling is studied via barnacle (Balanus improvisus) settlement assays and blue mussel (Mytilus edulis) phenoloxidase inhibition. Ianthelline is shown to inhibit both marine micro- and macrofoulers with a pronounced effect on marine bacteria (minimum inhibitory concentration (MIC) values 0.1–10 μg/mL) and barnacle larval settlement (IC50?=?3.0 μg/mL). Moderate effects are recorded on M. edulis (IC50?=?45.2 μg/mL) and microalgae, where growth is more affected than surface adhesion. The effect of ianthelline is also investigated against human pathogenic bacteria. Ianthelline displayed low micromolar MIC values against several bacterial strains, both Gram positive and Gram negative, down to 2.5 μg/mL. In summary, the effect of ianthelline on 20 different representative marine antifouling organisms and seven human pathogenic bacterial strains is presented.  相似文献   

7.
8.
In the search of efficient anticancer agents, here, new 5-(4-alkylbenzyledene)thiazolidine-2,4-dione derivatives (5a–g) have been successfully synthesized and characterized and are evaluated for anticancer and antimicrobial activities using DNA cleavage studies. In vitro studies on anticancer activity of compound 5d (NSC: 768619/1) was done against the full panel of 60 human tumor cell lines. The five-level dose activity results revealed that, the compound 5d was active against all the cell lines, it has shown potential activity against leukemia SR (GI50: 2.04 μM), non-small cell lung cancer NCI-H522 (GI50: 1.36 μM), colon cancer COLO 205 (GI50: 1.64 μM), CNS cancer SF-539 (GI50: 1.87 μM), melanoma SK-MEL-2 (GI50: 1.64 μM), ovarian cancer OVCAR-3 (GI50: 1.87 μM), renal cancer RXF 393 (GI50: 1.15 μM), prostate cancer PC-3 (GI50: 1.90 μM), and breast cancer MDA-MB-468(GI50: 1.11 μM). DNA cleavage studies revealed that at 50 μg/mL concentration, partial DNA digestion was observed and when the concentration is increasing to threefold (150 μg/mL), complete linear DNA digestion and partial supercoiled DNA digestion was observed. Further antimicrobial studies indicate that all the synthesized compounds except compound 5a possess prominent activity against all the screened microbial species. This study throws a ray of light in the field of anticancer drugs.  相似文献   

9.
The xanthone glucoside mangiferin (1) was converted by γ-irradiation into three new compounds, mangiferdiol (2), mangiferinol (3), and isomangiferinol (4). The new compound 2 containing two hydroxymethyl groups instead of a ketone moiety exhibited significantly improved inhibitory activity against nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells with IC50 value 47.1 ± 1.7 μM, compared to the mother mangiferin.  相似文献   

10.
Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N′-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a–f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a–f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b–d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50?=?9.99?±?0.18 µM); which is comparable to quercetin (IC50?=?9.93?±?0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50?>?200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.  相似文献   

11.
Abstract

The egg masses of the marine muricid gastropod molluscs Chicoreus virgineus, Chicoreus ramosus and Rapana rapiformis were studied for antifouling activities. The minimum inhibitory concentrations of crude extracts for the inhibition of byssal production and attachment of the brown mussel Perna indica were 650 μg ml?1, 1150 μg ml?1 and 925 μg ml?1 from the three muricid gastropods, respectively. Higher LC50 values than EC50 values and 100% recovery of the mussels in the toxicity assay indicated the non-toxic nature of the extracts. The gradient partitioning of the egg mass extracts and subsequent antimicrofouling screening against 40 biofilm bacteria showed wide-spectrum antibacterial activity of the medium polar fraction from C. virgineus; the non-polar fraction from R. rapiformis and both non-polar and medium polar fractions from C. ramosus. The antimicrofouling activity from extracts of the three egg masses was found to be more prominent than antimacrofouling activity. This may be attributed to the targeting of a defence strategy against microbes in order to protect the developing mollusc embryos.  相似文献   

12.
The antifouling (AF) activity of 2-hydroxy-4-(3-hydroxy-5-methylphenoxy)- 6-methylbenozoic acid methyl ester (1), 3,5-dibromo-2-(2′,4′-dibromophenoxy)phenol (2); 3,4,5-tribromo-2-(2′,4′-dibromophenoxy)phenol (3), 3,4,5-tribromo-2-(2′-bromophenoxy)phenol (4), 3,5-dibromo-2(2′,4′-dibromophenoxy)phenol (5), 3,4,5,6-tetrabromo-2-(2′-bromophenoxy)phenol (6); 4-phenoxyphenol (7), 4-phenoxyaniline (9), 1-chloro-4-phenoxybenzene (10); 1-bromo-4-phenoxybenzene (13) was investigated against marine bacteria, a diatom, barnacle larvae and mussel juveniles. The naturally occurring compound 2 showed the strongest AF activity in all bioassays but lacked toxicity. It inhibited the growth of all tested bacterial strains (MIC = 0.02 – 1.52 μM) and its 50% effective concentrations (EC50) were 0.24 μM (diatom test), 0.66 μM (mussel test) and 1.26 μM (barnacle test). Among the commercially available derivates, compound 7 was the most active in bacterial and diatom bioassays but its activity was lower than that of compound 2. Overall, the naturally occurring compounds showed stronger activity than the commercially available analogues and could be possible future non-toxic AF candidates.  相似文献   

13.
Treating staphylococcal biofilm-associated infections is challenging. Based on the findings that compound 2 targeting the HK domain of Staphylococcus epidermidis YycG has bactericidal and antibiofilm activities against staphylococci, six newly synthesized derivatives were evaluated for their antibacterial activities. The six derivatives of compound 2 inhibited autophosphorylation of recombinant YycG′ and the IC50 values ranged from 24.2 to 71.2 μM. The derivatives displayed bactericidal activity against planktonic S. epidermidis or Staphylococcus aureus strains in the MIC range of 1.5–3.1 μM. All the derivatives had antibiofilm activities against the 6- and 24-h biofilms of S. epidermidis. Compared to the prototype compound 2, they had less cytotoxicity for Vero cells and less hemolytic activity for human erythrocytes. The derivatives showed antibacterial activities against clinical methicillin-resistant staphylococcal isolates. The structural modification of YycG inhibitors will assist the discovery of novel agents to eliminate biofilm infections and multidrug-resistant staphylococcal infections.  相似文献   

14.
Streptococcus mutans (S. mutans) is the main etiological agent of dental caries, and adheres to the tooth surface through the sortase A (SrtA)-mediated cell wall-anchored protein Pac. Inhibition of SrtA activity results in a marked reduction in the adhesion potential of S. mutans, and the frequency of dental caries. Morin is a natural plant extract that was previously reported to inhibit Staphylococcus aureus SrtA activity. Here, we demonstrate that morin has an inhibitory effect against S. mutans UA159 SrtA, with an IC50 of 27.2 ± 2.6 μM. Western blotting demonstrated that 30 μM morin induced the partial release of the Pac protein into the supernatant. The biofilm mass of S. mutans was reduced in the presence of 30 μM morin, which was not caused by a decrease in S. mutans viability. These results indicate that morin might be important as a new agent to prevent caries.  相似文献   

15.
The Mycobacterium tuberculosis protein kinase B (PknB) is critical for growth and survival of M. tuberculosis within the host. The series of aminopyrimidine derivatives show impressive activity against PknB (IC50 < .5 μM). However, most of them show weak or no cellular activity against M. tuberculosis (MIC > 63 μM). Consequently, the key structural features related to activity against of both PknB and M. tuberculosis need to be investigated. Here, two- and three-dimensional quantitative structure–activity relationship (2D and 3D QSAR) analyses combined with molecular dynamics (MD) simulations were employed with the aim to evaluate these key structural features of aminopyrimidine derivatives. Hologram quantitative structure–activity relationship (HQSAR) and CoMSIA models constructed from IC50 and MIC values of aminopyrimidine compounds could establish the structural requirements for better activity against of both PknB and M. tuberculosis. The NH linker and the R1 substituent of the template compound are not only crucial for the biological activity against PknB but also for the biological activity against M. tuberculosis. Moreover, the results obtained from MD simulations show that these moieties are the key fragments for binding of aminopyrimidine compounds in PknB. The combination of QSAR analysis and MD simulations helps us to provide a structural concept that could guide future design of PknB inhibitors with improved potency against both the purified enzyme and whole M. tuberculosis cells.  相似文献   

16.
The aim of this study was to examine the effect of treating of chromium(III) and iron(III) and their combinations on Herpes Simplex Virus type 1 (HSV-1) and Bovine Viral Diarrhoea virus (BVDV) replication. The antiviral efficacies of chromium(III) and iron(III) on HSV-1 and BVDV were evaluated using Real Time PCR method. Moreover, the cytotoxicity of these microelements was examined using the MTT reduction assay. The IC50 (50% inhibiotory concentration) for the chromium chloride was 1100 μM for Hep-2 cells and 1400 μM for BT cells. The IC50 for the iron chloride was 1200 μM for Hep-2 cells and more than1400 μM for BT cells. The concentration-dependent antiviral activity of chromium chloride and iron chloride against HSV-1 and BVDV viruses was observed. In cultures simultaneously treated with (1) 200 μM of CrCl3 and 1000 μM of FeCl3, (2) 1000 μM of CrCl3 and 200 μM of FeCl3, (3) 400 μM of CrCl3 and 800 μM of FeCl3, (4) 800 μM of CrCl3 and 400 μM of FeCl3 a decrease in number of DNA or RNA copies was observed compared with control cells and cells incubated with chromium(III) and iron(III) used separately. The synergistic antiviral effects were observed for chromium(III) and iron(III) against HSV-1 and BVDV.  相似文献   

17.
Tyramine derivatives 3–27 were synthesized by using conventional and environmental friendly ultrasonic techniques. These derivatives were then evaluated for the first time for their α-glucosidase (Sources: Saccharomyces cerevisiae and mammalian rat-intestinal acetone powder) inhibitory activity by using in vitro mechanism-based biochemical assays. Compounds 7, 14, 20, 21 and 26 were found to be more active (IC50?=?49.7?±?0.4, 318.8?±?3.7, 23.5?±?0.9, 302.0?±?7.3 and 230.7?±?4.0?μM, respectively) than the standard drug, acarbose (IC50?=?840.0?±?1.73?μM (observed) and 780?±?0.028?μM (reported)) against α-glucosidase obtained from Saccharomyces cerevisiae. Kinetic studies were carried out on the most active members of the series in order to determine their mode of inhibition and dissociation constants. Compounds 7, 20 and 26 were found to be the competitive inhibitors of α-glucosidase. These compounds were also screened for their protein antiglycation, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Only compounds 20, 22 and 27 showed weak antiglycation activity with IC50 values 505.27?±?5.95, 581.87?±?5.50 and 440.58?±?2.74?μM, respectively. All the compounds were found to be inactive against DDP-IV enzyme. Inhibition of α-glucosidase, DPP-IV enzymes and glycation of proteins are valid targets for the discovery of antidiabetic drugs. Cytotoxicity of compounds 327 was also evaluated by using mouse fibroblast 3T3 cell lines. All the compounds were found to be noncytotoxic. The current study describes the synthesis α-glucosidase inhibitory activity of derivatives, based on a natural product tyramine template. The compounds reported here may serve as the starting point for the design and development of novel α-glucosidase inhibitors as antidiabetic agents.  相似文献   

18.
A series of benzamide and picolinamide derivatives containing dimethylamine side chain (4a4c and 7a7i) were synthesised and evaluated for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity in vitro. Structure–activity relationship investigation revealed that the substituted position of dimethylamine side chain markedly influenced the inhibitory activity and selectivity against AChE and BChE. In addition, it seemed that the bioactivity of picolinamide amide derivatives was stronger than that of benzamide derivatives. Among them, compound 7a revealed the most potent AChE inhibitory activity (IC50: 2.49?±?0.19?μM) and the highest selectivity against AChE over BChE (Ratio: 99.40). Enzyme kinetic study indicated that compound 7a show a mixed-type inhibition against AChE. The molecular docking study revealed that this compound can bind with both the catalytic site and the peripheral site of AChE.  相似文献   

19.
The title family of mixed-ligand oxidovanadium(V) hydrazone complexes are [VVO(HL1)(hq)] (1) and [VVO(HL2)(hq)] (2), where (HL1)2? and (HL2)2? are the dinegative form of 2-hydroxybenzoylhydrazone of acetylacetone (H3L1) and benzoylacetone (H3L2), respectively, and hq? is the mononegative form of 8-hydroxyquinoline (Hhq). Complexes were used to determine their binding constant with CT DNA using various spectroscopic techniques namely, electronic absorption, fluorescence and circular dichroism spectroscopy. The binding constant values suggest the intercalative mode of binding with the CT DNA and follow the order: 2 > 1. The bulky size as well as electron withdrawing property of the phenyl group (which is present in the β-diketone part of the hydrazone moiety in complex 2 in place of a CH3 group in complex 1) is responsible for the higher activity of 2 than 1. Complexes were screened for cytotoxic activity on cervical cancer cells and were found to be potentially active (IC50 value for 1 and 2 is 33 and 29 μM, respectively), even better than the widely used cis-platin (IC50 = 63.5 μM) and carboplatin (IC50 = > 200 μM) which is evident from the respective IC50 value. Nuclear staining experiment suggests that these complexes kill the SiHa cancer cells through apoptotic mode. The molecular docking study also suggested the intercalative mode of binding of these complexes with CT DNA and HPV 18 DNA.  相似文献   

20.
In an endeavor to develop efficacious antiprotozoal agents 4-(7-chloroquinolin-4-yl) piperazin-1-yl)pyrrolidin-2-yl)methanone derivatives (514) were synthesized, characterized and biologically evaluated for antiprotozoal activity. The compounds were screened in vitro against the HM1: IMSS strain of Entamoeba histolytica and NF54 chloroquine-sensitive strain of Plasmodium falciparum. Among the synthesized compounds six exhibited promising antiamoebic activity with IC50 values (0.14–1.26 μM) lower than the standard drug metronidazole (IC50 1.80 μM). All nine compounds exhibited antimalarial activity (IC50 range: 1.42–19.62 μM), while maintaining a favorable safety profile to host red blood cells. All the compounds were less effective as an antimalarial and more toxic (IC50 range: 14.67–81.24 μM) than quinine (IC50: 275.6 ± 16.46 μM) against the human kidney epithelial cells. None of the compounds exhibited any inhibitory effect on the viability of Anopheles arabiensis mosquito larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号