首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
The growth, lipid content, and fatty acid composition of Aurantiochytrium sp. strain mh0186 at different temperatures were investigated. Strain mh0186 grew well at 15–30°C, but weakly at 10°C. The biomass at 15–30°C was significantly higher than at 10 and 35°C, and the total lipid at 15–35°C was significantly higher than that at 10°C. The amount of DHA in the total fatty acid was highest at 10°C and decreased in response to temperature increase. The content of DHA (mg/g-dry cell weight) at 15–30°C were significantly higher than those at 35°C and those at 15–25°C were significantly higher than those at 10 and 35°C. The DHA yield at 15–35°C was significantly higher than those at 10 and 35°C. Unsaturation of fatty acid was regulated by temperature and was enhanced in response to temperature decrease. The ratio of DHA to DPA varied at different temperatures.  相似文献   

2.
OPUTE  F. I. 《Annals of botany》1974,38(4):889-902
Fat accumulation in Nitzschia palea Kütz. starts perceptiblyat the end of the exponential phase of growth and reaches amaximum during the stationary phase of growth when the wholecell is filled with fat. Filtrates from old cultures enhancedfat synthesis probably by the production of an autotoxin whichinhibits cell growth but at the same time favours fat synthesis.The presence of an inhibitory autotoxin has not been provedbut indirect evidence suggests its presence. The nitrogen content of the culture medium also influences theamount of fat formed, more fat being accumulated in nitrogen-deficientmedia than in media provided with adequate nitrate supply. Theoptimum temperature for the growth of N. palea was found tobe about 30 °C while that for fat synthesis was around 35°C. Below 15 °C and above 40 °C, fat synthesis wasdrastically reduced. Blue and red light independently favoured fat synthesis whereasa combination of both did not. This is probably due to the selectiveinfluence of these wavelengths on the production of fat precursorsor intermediates.  相似文献   

3.
The allocation of energy to growth and reproduction, in relation to temperature and food availability, was investigated in laboratory experiments with the mosquitofish,Gambusia affinis. At constant temperature of 20, 25 and 30°C and ad libitum feeding, specific growth rates increased with increasing temperature at 1.7, 3.1 and 3.4% dry mass day−1, respectively. Growth rates in a cycling temperature regime (20–30°C, ) were faster than in a 25°C constant temperature. As temperature increased from 20 to 30°C, mean age at first reproduction decreased from 191 to 56 days and brood size and mass of offspring increased significantly. Interbrood interval was also temperature dependent; estimates at 25 and 30°C for females >1000 mg were 22.6 and 18.6 days, respectively. Interbrood interval could not be calculated at 20°C. Although fitness was highest at 30°C, females at 25°C invested a greater proportion of surplus energy (growth and reproduction) to reproduction (38%) than at 20 (17%) or 30°C (36%) during the 32-week study. Fish at cooler temperatures began reproduction at a smaller size. Where rations were controlled at low, medium, and ad libitum levels, somatic and gonadal growth increased with increasing temperatures and food availability. The proportion of energy invested in reproduction was highest at 25°C for each comparable ration level. Calculated energy budgets indicated that over the 10-week study, 17–22% of the food energy was invested in growth, 0–7% in reproduction, and 75–83% in respiration and excretory losses, depending on feeding and temperature conditions.  相似文献   

4.
We studied the effects of high temperatures and elevated hydrostatic pressures on the physiological behavior and viability of the extremely thermophilic deep-sea archaeon Thermococcus peptonophilus. Maximal growth rates were observed at 30 and 45 MPa although no significant increases in cell yields were detected. Growth at 60 MPa was slower. The optimal growth temperature shifted from 85° C at 30 MPa to 90–95° C at 45 MPa. Cell viability during the stationary phase was also enhanced under high pressure. A trend towards barophily at pressures greater than those encountered in situ at the sea floor was demonstrated at increasing growth temperatures. The viability of cells during starvation, at high temperature (90, 95° C), and at low temperature (10° C) was enhanced at 30 and 45 MPa as compared to atmospheric pressure. These results show that the extremely thermophilic archaeon T. peptonophilus is a barophile. Received: 21 October 1996 / Accepted: 5 February 1997  相似文献   

5.
Blue-green algal blooms formed by Microcystis and Oscillatoria often occur in shallow eutrophic lakes, such as Lake Taihu (China) and Lake Kasumigaura (Japan). Growth characteristics and competitions between Microcystis aeruginosa and Oscillatoria mougeotii were investigated using lake simulator systems (microcosms) at various temperatures. Oscillatoria was the superior competitor, which suppressed Microcystis, when temperature was <20°C, whereas the opposite phenomenon occurred at 30°C. Oscillatoria had a long exponential phase (20 day) and a low growth rate of 0.22 day−1 and 0.20 day−1 at 15°C and 20°C, respectively, whereas Microcystis had a shorter exponential phase (2–3 days) at 30°C and a higher growth rate (0.86 day−1). Interactions between the algae were stronger and more complex in the lake simulator system than flask systems. Algal growth in the lake simulator system was susceptible to light attenuation and pH change, and algae biomasses were lower than those in flasks. The outcome of competition between Microcystis and Oscillatoria at different temperatures agrees with field observations of algal communities in Lake Taihu, indicating that temperature is a significant factor affecting competition between Microcystis and Oscillatoria in shallow, eutrophic lakes.  相似文献   

6.
The study was focused on fatty acid (FA) composition of lipids from the seedlings and roots of crops having different cold resistance and grown at 27°C or 4°C. Biosynthesis of FA in the lipids of seedlings and roots of cold-susceptible maize (Zea mays L.) at both growth temperatures was controlled by chloroplast ω6 desaturase and microsomal ω6 desaturase, respectively. The content of linoleic acid was 56.2% and 43.3% in the coleoptiles of maize seedlings grown at 4 and 27°C, respectively, and in the roots it was 52.2% and 38.5%, respectively. The content of α-linolenoic acid in the coleoptiles was 6.7–6.8% at both temperatures, while in the root lipids it was higher at low temperature (3.15% at 27°C vs. 4.7% at 4°C). FA biosynthesis in the seedling coleoptiles of wheat (Triticum aestivum L.) and Siberian wild rye (Elymus sibiricus L.) grown at low temperature was controlled by the chloroplast ω3 desaturase. A minor increase in the content of α-linolenoic acid was observed at low temperature: 29.7% to 30.2% in wheat and 22.8% to 25.8% in wild rye. In the root tissues of these species, the biosynthesis of α-linolenoic acid was controlled by the microsomal ω3 desaturase. The content of α-linolenoic acid was higher at low temperature: in wheat it was 6.1% at 27°C and 17.1%, and 4°C, while in Siberian wild rye, 7.1% and 12.0% at 4 and 27°C, respectively.  相似文献   

7.
Mukherjee PK  Raghu K 《Mycopathologia》1997,139(3):151-155
Sclerotium rolfsii is a destructive soil-borne and postharvest plant pathogen. Use of the antagonistic fungus Trichoderma sp. has been earlier reported by us to successfully control this pathogen under postharvest conditions. In the present paper we report on the effects of temperature on the growth and biocontrol potential of Trichoderma sp. on S. rolfsii. Experimental results indicated that S. rolfsii and Trichoderma sp. have different temperature optima for growth: 30–35 °C for the pathogen and 25–30 °C for the antagonist. In dual culture, Trichoderma overgrew S. rolfsii at 25 °C and 30 °C, but at 35 °C and 37 °C, S. rolfsii overgrew the colony of Trichoderma. Trichoderma produced higher concentration of fungitoxic metabolites in broth culture at higher temperatures. In bioassays using ginger slices and whole rhizomes, it has been demonstrated that Trichoderma is not very effective in suppressing S. rolfsii at temperatures above 30 °C. In light of these results, possible mechanisms of biocontrol of S. rolfsii as a postharvest pathogen has been discussed. Storage temperature has been suggested as a critical factor in biocontrol of S. rolfsii. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Growth and esterase production (activity on p-nitrophenyl caprylate) by the newly isolated Bacillus circulans MAS2 bacterial strain were studied. The growth rate at 50°C was high (0.9 h-1) on LB medium with glucose added. Esterase production followed growth with the majority of activity being intracellular during exponential growth phase. During stationary phase, the esterase activity was released in the culture medium. The strain was able to grow at 35– 55°C with maximum growth rate at 50°C, showing a pattern typical of a moderate thermophile. Growth occurred at pH 6–9 with a maximum at 8, with a similar pattern for the esterase production. Addition of glucose, fructose, sucrose or sodium acetate greatly promoted both growth and esterase production while starch, inulin, tributyrin or glycerol showed no effect. Complex nitrogen sources such as tryptone or yeast extract increased growth and esterase production while mineral sources (ammonium chloride or sulfate), glycine or glutamate showed no effect. An increase of tryptone plus yeast extract and glucose concentrations stimulated growth and esterase production which reached 160 U L−1. Received 17 March 1999/ Accepted in revised form 25 June 1999  相似文献   

9.
The development of the marine benthic diatom Attheya ussurensis (Bacillariophyta) isolated from Ussuriisky Bay (Sea of Japan) was examined in laboratory culture. It was found that the development of A. ussurensis was characterized by a short lag phase or its absence and high growth rates (about 1.7 divisions per day) during the exponential phase. Resting cells were formed during the stationary growth phase. Morphological and ultrastructural changes in the cells of A. ussurensis during its life cycle are described based on light and electron microscopic observations. Resting cells retained their photosynthetic activity when stored in the dark for a long period of time (up to 1 year) at a temperature of 4–6°C. After 30, 60, 90, 120, 150, and 180 days of storage under such conditions, the culture of A. ussurensis was capable of regeneration due to the existence of the resting cell stage in the life cycle of the microalga.  相似文献   

10.
The diatom Odontella aurita has now been industrially cultured and commercialized as a dietary supplement rich in omega-3 fatty acids for several years. In this study, we investigated the effect of three temperatures (8, 16, and 24 °C) on the growth and fatty acid composition of cells harvested during the exponential and stationary growth phases. These temperatures were selected on the basis of photosynthesis responses previously obtained at different temperatures using a modulated fluorometer. Our results confirm that both growth and lipid composition were sensitive to culture temperature. Growth was reduced when O. aurita was cultured at low temperature (8 °C) compared to when it was cultured at high temperatures (16 and 24 °C), but the proportion of polyunsaturated fatty acids (PUFAs, 20:5 n-3 and 22:6 n-3) increased while the level of saturated fatty acids (SFAs, 14:0 and 16:0) decreased in the cells harvested during both the exponential and stationary growth phases. On the other hand, the cells grown at 24 °C displayed a marked decrease in PUFA and an increase in SFA levels. Harvesting time is also a critical parameter in achieving optimum n-3 PUFA productivity during batch cultivation. Indeed, changes in fatty acid composition with growth phase seem to be dependent on the culture temperature, with the most marked effects being observed at 24 °C. PUFA levels (i.e., levels of 20:5 n-3 and 22:6 n-3) increased during the stationary growth phase, while the proportion of SFAs and monounsaturated fatty acids (MUFAs) fell with time. As this species is currently grown in outdoor ponds with seasonal temperature variations (minimal and maximal average temperatures in winter and summer, from 3 to 9 °C and from 13 to 26 °C, respectively), this factor can be expected to have a strong influence on the fatty acid content and composition of the algal biomass harvested and commercialized.  相似文献   

11.
The effects of process conditions and growth kinetics on the production of the bacteriocin sakacin P by Lactobacillus sakei CCUG 42687 have been studied in pH-controlled fermentations. The fermentations could be divided into phases based on the growth kinetics, phase one being a short period of exponential growth, and three subsequent ones being phases of with decreasing specific growth rate. Sakacin P production was maximal at 20 °C. At higher temperatures (25–30 °C) the production ceased at lower cell masses, when less glucose was consumed, resulting in much lower sakacin P concentrations. With similar media and pH, the maximum sakacin P concentration at 20 °C was seven times higher than that at 30 °C. The growth rate increased with increasing concentrations of yeast extract, and the maximum concentration and specific production rate of sakacin P increased concomitantly. Increasing tryptone concentrations also had a positive influence upon sakacin P production, though the effect was significantly lower than that of yeast extract. The maximum sakacin P concentration obtained in this study was 20.5 mg l−1. On the basis of the growth and production kinetics, possible metabolic regulation of bacteriocin synthesis is discussed, e.g. the effects of availability of essential amino acids, other nutrients, and energy. Received: 7 June 1999 / Received revision: 15 September 1999 / Accepted: 17 September 1999  相似文献   

12.
The influence of growth temperature, media composition and cell age on the chemical composition of Bacillus stearothermophilus strain AN 002 has been determined. The total cellular protein decreased and the free amino acid content increased with growth temperature, in both exponential and stationary growth phase. The protein and free amino acid contents of cells were higher in the stationary phase than in the exponential phase, irrespective of growth temperature and media composition. The RNA content was only reduced in cells grown at 55° C. No significant variations were observed in the DNA and carbohydrate contents with respect to growth temperature and cell age. The total lipid and fatty acid compositions on the other hand varied as a function of growth temperature, cell age and media composition. Differences in the relative concentrations of even, odd and branched chain fatty acids were noticed. Novariation was observed in the antiiso and unsaturated fatty acids with respect to growth temperature. The unique variations in the fatty acid composition and total lipids at the growth temperature of 50° C and their variations in the stationary growth phase seem to be characteristic for B. stearothermophilus AN 002.  相似文献   

13.
Xanthomonas campestris MB245, a specific pathogen of the weedy grass Poa annua (annual bluegrass), is being developed as a bioherbicide to control this pest in turf. Nutritional and environmental factors were evaluated based on their ability to support rapid submerged culture growth and high cell yield. Temperature optima for the growth of X. campestris cells in submerged culture were between 27 and 30°C. At 30°C, optimal nutritional conditions for X. campestris growth supported generation times of 150–175 min and cell yields after 24 h growth of 1–2 × 1010 cells ml−1. Media containing sucrose or glucose as the carbon source and various organic nitrogen sources supported optimal X. campestris growth and cell yield. The addition of vitamin mixtures to complex and defined media had no significant effect on growth or cell yield. The age of X. campestris cultures had a significant impact on cell survival after freeze drying. Following freeze drying, log phase cell survival (44%) was significantly lower than early and late stationary phase cell survival, 62% and 68%, respectively. Cells harvested in stationary phase, freeze dried and stored under vacuum at 4°C, showed no significant loss in viability after 6 months. Thus, high cell concentrations of the bioherbicide X. campestris can be rapidly produced in submerged culture and stabilized as freeze-dried preparations. Received 14 August 1998/ Accepted in revised form 8 October 1998  相似文献   

14.
 Effects of fluctuating and constant temperatures on budburst time, and respiration in winter buds were studied in Betula pubescens Ehrh. Dormant seedlings were chilled at 0°C for 4 months and then allowed to sprout in long days (LD, 24 h) at constant temperatures of 6, 9, 12, 15, 18 and 21°C, and at diurnally fluctuating temperatures (12/12 h, LD 24 h) with means of 9, 12, 15 and 18°C. No difference in thermal time requirements for budburst was found between plants receiving constant and fluctuating temperatures. The base temperature for thermal time accumulation was estimated to 1°C. Respiration in post-dormant (dormancy fully released) excised winter buds from an adult tree increased exponentially with temperature and was 20 times as high at 30°C than at 0°C. However, respiration in buds without scales was 30% higher at 0°C, and it was 2.7 times higher at 24°C than in intact buds. Thus, the tight bud scales probably constrain respiration and growth and are likely to delay budburst in spring. Arrhenius plots of the respiration data were biphasic with breaks at 13–15°C. However, this phase transition is unlikely to be associated with chilling sensitivity since the present species is hardy and adapted to a boreal climate. Received: 10 January 1997 / Accepted: 23 June 1997  相似文献   

15.
The effect of the acclimation temperature on the temperature tolerance ofPorphyra leucosticta, and on the temperature requirements for growth and survival ofEnteromorpha linza was determined under laboratory conditions. Thalli ofP. leucosticta (blade or Conchocelis phases), acclimated to twenty-five degrees, survived up to 30°C, i.e. 2°C more than those acclimated to 15°C which survived up to 28°C. Lower temperature tolerance of bothPorphyra phases that were acclimated to 15°C was −1°C after an 8-week exposure time at the experimental temperatures. The upper temperature tolerance ofE. linza also increased by 2°C, i.e. from 31 to 33°C, when it was acclimated to 30°C instead of 15°C. The lower temperature tolerance increased from 1 to −1°C, when it was acclimated to 5°C instead of 15°C.E. linza thalli acclimated for 4 weeks to 5 or 10°C reached their maximum growth at 15°C, i.e. at a 5°C lower temperature than those acclimated to 15 or 30°C. These thalli achieved higher growth rates in percent of maximal growth at low temperatures than those acclimated to 15 or 30°C. Thalli acclimated for 1 week to 5°C reached their maximum growth rate at 20°C and achieved growth rates at low temperatures similar to those recorded for thalli acclimated to 15°C. Thalli ofE. linza acclimated for 4 weeks to 5°C lost this acclimation after being post-cultivated for the same period at 15°C. That was not the case with thalli acclimated for 8 weeks to 5°C and post-acclimated for 4 weeks to 15°C. These thalli displayed similar growth patterns at 10–25°C, while a decline of growth rate was observed at 5 or 30°C. The significance of the acclimation potential ofE. linza with regard to its seasonality in the Gulf of Thessaloniki, and its distribution in the N Atlantic, is also discussed.  相似文献   

16.
We analysed the effects of temperature and photon fluence rate on meiospore germination, growth and fertility of gametophytes, and growth of young sporophytes of Laminaria ochroleuca. Maximum percentages of germination (91–98%) were obtained at 15°C and 18°C, independent of photon fluence rate. Optimal development of female gametophyte and maximum fecundity and reproductive success of gametophytes occurred at 15°C and 18°C and at 20 and 40 μmol m–2 s–1. Maximum relative growth rate of young sporophytes after 2 weeks of culture was achieved under the same conditions. L. ochroleuca gametophytes cannot reproduce and growth of its sporophytes is not competitive at temperatures close to 10°C. Received in revised form: 31 August 2001 Electronic Publication  相似文献   

17.
Bacillus subtilis 115 grew in a medium with amino acids and glucose with the maximum specific growth rates μ of 1.20-1.10/h in the temperature range of 45–48°C. Activity of the extracellular neutral proteinase excreted by 1.3 mg/mL dry mass during 8 h of the postexponential and stationary growth phases decreased from its maximum value of 0.23 TU/mL at 40°C to 0.13 and 0.06 TU/mL at 45 and 48°C, respectively. Formation of the extracellular serine proteinase decreased even more—from 0.18 TU/mL at 40°C to 0.06 and 0.03 TU/mL at 45 at 48°C, respectively. Sporulation, expressed as the portion of sporangia rith refractile spores at the 6th h of the stationary phase decreased from 46% at 40°C to 17 and 3% at 45 and 48°C, respectively.  相似文献   

18.
The dose–response curves for IAA-induced growth in maize coleoptile segments were studied as a function of time and temperature. In addition, the kinetics of growth rate responses at some auxin concentrations and temperatures was also compared. It was found that the dose–response curves for IAA-induced elongation growth were, independently of time and temperature, bell-shaped with an optimal concentration at 10−5 M IAA. The kinetics of IAA-induced growth rate responses depended on IAA concentration and temperature, and could be separated into two phases (biphasic reaction). The first phase (very rapid) was followed by a long lasting one (second phase), which began about 30 min after auxin addition. For coleoptile segments incubated at 30°C, the amplitudes of the first and second phase were significantly higher, when compared with 25°C, at all IAA concentrations studied. However, when coleoptile segments were incubated at 20°C, the elongation growth of coleoptile segments treated with suboptimal IAA concentrations was diminished, mainly as a result of both phases reduction. In conclusion, we propose that the shape of the dose–response curves for IAA-induced growth in maize coleoptile segments is connected with biphasic kinetic of growth rate response.  相似文献   

19.
We investigated the effect of culture temperature on the maximum specific growth rate and the cellular sugar accumulation, and the effect of a temperature shift on the sugar accumulation of Chlorella pyrenoidosa cells in a batch culture system. Increase in temperature below 30?°C appeared to correlate with increase in the maximum specific growth rate, on the contrary the cellular sugar content showed a reverse tendency against temperature. We attempted to utilize this tendency for improving sugar productivity in Chlorella. First, we cultured Chlorella at 28?°C during the logarithmic growth phase to obtain a high specific growth rate. The culture temperature was then shifted from 28?°C to 22?°C at the late logarithmic growth phase in order to reduce the specific growth rate and enhance the cellular sugar accumulation. As a result, we obtained a 15% increase in sugar production over that obtained by cultivation at 28?°C throughout the culture. We also investigated the effect of light-dark time cycle on the sugar productivity and found that this operating variable did not affect the cellular sugar content but influenced the final cell concentration. Among the examined light-dark time cycles, maximum sugar productivity was obtained in the case of 12?h light and 12?h dark period.  相似文献   

20.
We studied the effects of weak permanent homogenous hirizontal magnetic field (PMF) (400 A/m) on the composition and content of lipids and composition of their fatty acids (FAs) in radish (Raphanus sativus L. var. radicula D.C., cv. Rosovo-krashyi s belym konchikom) seedlings at temperatures of 20 and 10°C. We compared lipid composition and content in seedlings at the phase of developed cotyledons (20°C, 5-day-old, and 10°C, 8-day-old seedlings) under low light and in darkness with the lipid composition and content in dry seeds. The seedlings grown in geomagnetic field (GMF) served as a control. In dry seeds, about 99% of total lipids comprised neutral lipids (NL) and only 1% were polar lipids (PL). Triacylglycerols predominated among NL comprising 93% of total seed lipids. During seed germination, NLs were consumed and PL were produced: the amount of glycolipids increased in control by 3.5–5 times and the amount of phospholipis, by 1.5–2 times.In the light at 20°C, PMF suppressed the formation of PL (by 18%), whereas in darkness, it stimulated it approximately by 80% as compared with control. In the light at 10°C, PMF slightly stimulated PL formation; in darkness, it did not almost affect their synthesis. In all treatments, PMF increased the ratio of phospholipids to sterols by 30–100%. Among FA, PMF exerted the strongest effect on the content of erucic acid: it increased in the light and in darkness at 20°C approximately by 25% and decreased at 10°C in the light by 13%. PMF behaved as a correction factor affecting lipid metabolism on the background of light and temperature action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号