首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The organisation and expression of the rpl22, rps3, rpl16 and rpl14 genes, which belong to the S10- and spc-like operons of spinach chloroplasts, have been studied. Northern experiments and nuclease S1 mapping show that the two operon-like groups of genes are cotranscribed. It is demonstrated that the intron-containing rpl16 gene is spliced in vivo. Based on amino acid composition and protein sequence data, the products of the rpl22, rpl16 and rpl14 genes are identified respectively as the spinach chloroplast ribosomal proteins CS-L13, CS-L24 and CS-L29. The rpl22 gene product is a 5S rRNA binding protein and therefore is distinguishable from the homologous Escherichia coli L22 ribosomal protein.  相似文献   

2.
3.
The nucleotide sequence (25,320 base-pairs) of a part of the large single-copy region of chloroplast DNA from the liverwort Marchantia polymorpha was determined. This region encodes putative genes for four tRNAs, isoleucine tRNA(CAU), arginine tRNA(CCG), proline tRNA(UGG) and tryptophan tRNA(CCA); eight photosynthetic polypeptides, the large subunit of ribulose bisphosphate carboxylase/oxygenase (rbcL), 51,000 Mr photosystem II chlorophyll alpha apoprotein (psbB), apocytochrome b-559 polypeptides (psbE and psbF), 10,000 Mr phosphoprotein (psbH), cytochrome f preprotein (petA), cytochrome b6 polypeptide (petB), and cytochrome b6/f complex subunit 4 polypeptide (petD); 13 ribosomal proteins (L2, L14, L16, L20, L22, L23, L33, S3, S8, S11, S12, S18 and S19); initiation factor 1 (infA); ribosome-associating polypeptide (secX); and alpha subunit of RNA polymerase (rpoA). Functionally related genes were located in several clusters in this region of the genome. There were two ribosomal protein gene clusters: rpl23-rpl2-rps19-rpl22-rps3-rpl16-+ ++rpl14-rps8-infA-secX-rps11-rpoA, with a gene arrangement similar to that of the Escherichia coli S10-spc-alpha operons, and the rps12'-rpl20-rps18-rpl33 cluster. There were gene clusters encoding photosynthesis components such as the psbB-psbH-petB-petD and the psbE-psbF clusters. Thirteen open reading frames, ranging in length from 31 to 434 amino acid residues, remain to be identified.  相似文献   

4.
5.
An 11.4-kbp region of genomic DNA containing the complete S10-spc operon was constructed by an integrative mapping technique with eight plasmid vectors carrying ribosomal protein sequences from onion yellows phytoplasma. Southern hybridization analysis indicated that phytoplasmal S10-spc is a single-copy operon. This is the first complete S10-spc operon of a phytoplasma to be reported, although only a part of six serial genes of the S10 operon is reported previously. The operon has a context of 5'-rps10, rpl3, rpl4, rpl23, rpl2, rps19, rpl22, rps3, rpl16, rpl29, rps17, rpl14, rpl24, rpl5, rps14, rps8, rpl6, rpl18, rps5, rpl30, rpl15, SecY-3', and is composed of 21 ribosomal protein subunit genes and a SecY protein translocase subunit gene. Resembling Bacillus, this operon contains an rpl30 gene that other mollicutes (Mycoplasma genitalium, M. pneumoniae, and M. pulmonis) lack. A phylogenetic tree based on the rps3 sequence showed that phytoplasmas are phylogenetically closer to acholeplasmas and bacillus than to mycoplasmas. In the S10-spc operon, translation may start from either a GTG codon or an ATG codon, and stop at a TGA codon, as has been reported for acholeplasmas and bacillus. However, in mycoplasmas, GTG was found as a start codon, and TGA was found not as a stop codon, but instead as a tryptophan codon. These data derived from the gene organization, and the genetic code deviation support the hypothesis that phytoplasmal genes resemble those of acholeplasmas and Bacillus more than those of other mollicutes.  相似文献   

6.
7.
8.
Plastid genomes of higher plants contain a conserved set of ribosomal protein genes. Although plastid translational activity is essential for cell survival in tobacco (Nicotiana tabacum), individual plastid ribosomal proteins can be nonessential. Candidates for nonessential plastid ribosomal proteins are ribosomal proteins identified as nonessential in bacteria and those whose genes were lost from the highly reduced plastid genomes of nonphotosynthetic plastid-bearing lineages (parasitic plants, apicomplexan protozoa). Here we report the reverse genetic analysis of seven plastid-encoded ribosomal proteins that meet these criteria. We have introduced knockout alleles for the corresponding genes into the tobacco plastid genome. Five of the targeted genes (ribosomal protein of the large subunit22 [rpl22], rpl23, rpl32, ribosomal protein of the small subunit3 [rps3], and rps16) were shown to be essential even under heterotrophic conditions, despite their loss in at least some parasitic plastid-bearing lineages. This suggests that nonphotosynthetic plastids show elevated rates of gene transfer to the nuclear genome. Knockout of two ribosomal protein genes, rps15 and rpl36, yielded homoplasmic transplastomic mutants, thus indicating nonessentiality. Whereas Δrps15 plants showed only a mild phenotype, Δrpl36 plants were severely impaired in photosynthesis and growth and, moreover, displayed greatly altered leaf morphology. This finding provides strong genetic evidence that chloroplast translational activity influences leaf development, presumably via a retrograde signaling pathway.  相似文献   

9.
Based on DNA and amino acid comparisons with known genes and their products, a region of the Paramecium aurelia mitochondrial (mt) genome has been found to encode the following gene products: (1) photosystem II protein G (psbG); (2) a large open reading frame (ORF400) which is also found encoded in the chloroplast (cp) DNA of tobacco (as ORF393) and liverwort (as ORF392), and in the kinetoplast maxicircle DNA of Leishmania tarentolae (as ORFs 3 and 4); (3) ribosomal protein L2 (rpl2); (4) ribosomal protein S12 (rps12); (5) ribosomal protein S14 (rps14); and (6) NADH dehydrogenase subunit 2 (ndh2). All of these genes have been found in cp DNA, but the psbG gene has never been identified in a mt genome, and ribosomal protein genes have never been located in an animal or protozoan mitochondrion. The ndh2 gene has been found in both mitochondria and plastids. The Paramecium genes are among the most divergent of those sequenced to date. Two of the genes are encoded on the strand of DNA complementary to that encoding all other known Paramecium mt genes. No gene contains an identifiable intron. The rps12 and psbG genes are probably overlapping. It is not yet known whether these genes are transcribed or have functional gene products. The presence of these genes in the mt genome raises interesting questions concerning their evolutionary origin.  相似文献   

10.
11.
12.
Mitochondrial genomes of plants are much larger than those of mammals and often contain conserved open reading frames (ORFs) of unknown function. Here, we show that one of these conserved ORFs is actually the gene for ribosomal protein L10 (rpl10) in plant. No rpl10 gene has heretofore been reported in any mitochondrial genome other than the exceptionally gene-rich genome of the protist Reclinomonas americana. Conserved ORFs corresponding to rpl10 are present in a wide diversity of land plant and green algal mitochondrial genomes. The mitochondrial rpl10 genes are transcribed in all nine land plants examined, with five seed plant genes subject to RNA editing. In addition, mitochondrial-rpl10-like cDNAs were identified in EST libraries from numerous land plants. In three lineages of angiosperms, rpl10 is either lost from the mitochondrial genome or a pseudogene. In two of them (Brassicaceae and monocots), no nuclear copy of mitochondrial rpl10 is identifiably present, and instead a second copy of nuclear-encoded chloroplast rpl10 is present. Transient assays using green fluorescent protein indicate that this duplicate gene is dual targeted to mitochondria and chloroplasts. We infer that mitochondrial rpl10 has been functionally replaced by duplicated chloroplast counterparts in Brassicaceae and monocots.  相似文献   

13.
14.
15.
We detected 16 genes for ribosomal proteins in the complete sequence of the mitochondrial DNA from a liverwort, Marchantia polymorpha. The genes formed two major clusters, rps12-rps7 and rps10-rpl2-rps19-rps3-rpl16-rpl5- rps14-rps8- rpl6-rps13-rps11-rps1, very similar in organization to Escherichia coli ribosomal protein operons (str and S10-spc-alpha operons, respectively). In contrast, rps2 and rps4 genes were located separately in the liverwort mitochondrial genome (the latter was part of the alpha operon in E. coli). Furthermore, several ribosomal proteins encoded by the liverwort mitochondrial genome differed substantially in size from their counterparts in E. coli and liverwort chloroplast.  相似文献   

16.
We have extended to about 75 the number of genes mapped on the Chlamydomonas moewusii and Chlamydomonas reinhardtii chloroplast DNAs (cpDNAs) by partial sequencing of the very closely related C. eugametos and C. moewusii cpDNAs and by hybridizations with Chlamydomonas chloroplast gene-specific sequences. Only four of these genes (tscA and three reading frames) have not been identified in any other algal cpDNAs and thus may be specific to Chlamydomonas. Although the C. moewusii and C. reinhardtii cpDNAs differ by complex sequence rearrangements, 38 genes scattered throughout the genome define 12 conserved clusters of closely linked loci. Aside from the rRNA operon, four of these gene clusters share similarity to evolutionarily primitive operons found in other cpDNAs, representing in fact remnants of these operons. Our results thus indicate that most of the ancestral bacterial operons that characterize the chloroplast genome organization of land plants and early-diverging photosynthetic eukaryotes have been disrupted before the emergence of the polyphyletic genus Chlamydomonas. All gene rearrangements between the C. moewusii and C. reinhardtii cpDNAs, with the exception of those accounting for the relocations of atpA, psbI and rbcL, occurred within corresponding regions of the genome. One of these rearrangements seems to have led to disruption of the ancestral region containing rpl23, rpl2, rps19, rpl16, rpl14, rpl5, rps8 and the psaA exon 1. This gene cluster, which bears striking similarity to the Escherichia coli S10 and spc operons, spans a continuous DNA segment in C. reinhardtii, while it maps to two separate fragments in C. moewusii.  相似文献   

17.
This work describes the organization, at the nucleotide sequence level, of genes flanking the junctions of the large single copy regions and the inverted repeats of Spinacia oleracea (spinach) and Nicotiana debneyi chloroplast DNAs. In both genomes, trnH1, the gene for tRNA-His(GUG) is located at the extremity of the large single copy region 3' to psbA, the gene for the 35 kd Photosystem 2 protein. Both psbA and trnH1 are transcribed towards the inverted repeat. In spinach, the first 48 codons of rps19, the gene for the chloroplast ribosomal protein S19, lie in the inverted repeat and the last 44 codons lie in the large single copy region at the end opposite to that carrying trnH1. The gene for a protein homologous to the E. coli ribosomal protein L2, rp12, is in the inverted repeat immediately 5' to rps19 and, like rps19, is transcribed towards the large single copy region. In N. debneyi, but not in spinach, rp12 is interrupted by a 666 bp insertion. The gene for tRNA-lle(CAT), trnl1, is located in the inverted repeats of spinach and N. debneyi, 5' to rp12 and is transcribed in the same direction as rp12.  相似文献   

18.
为从鼠尾草属植物中鉴别丹参品种,采用基因测序方法,用核糖体核酸内转录间隔区基因(nrDNA ITS),编码核蛋白体大亚基多肽L16的基因(rpl16)及叶绿体DNA上包含trnL以及trnL和trnF间隔区的区域基因(trnL-trnF)的序列,检测六种鼠尾草属新鲜植物.由于nrDNA ITS和rpl16突变率较高,可以做为6种鼠尾草的基源鉴定标记,依此设计了两对特异引物,从6种鼠尾草中鉴定出丹参(Salvia miltiorrhiza)和云南鼠尾草(S.yunnanensis).但trnL-trnF突变率太低,未能用于鉴别.商品干燥中药材因加工和储藏的方式致使DNA降解严重,基因测序法难于应用.  相似文献   

19.
The distribution of chloroplast ribosomal protein genes between the organelle DNA and the nuclear DNA is highly conserved in land plants, but a notable exception is rpl21. This gene has been found in the completely sequenced chloroplast genome of a lower plant but not in that of two higher plants. We describe the purification and characterization of the spinach chloroplast ribosomal protein L21 and the isolation and nucleotide sequence of a cDNA clone that encodes its cytoplasmic precursor. The mature protein, identified by NH2-terminal sequencing, has 201 residues (Mr 22,766) and is thus substantially larger than either its Escherichia coli (103 residues) or the lower plant homologue (116 residues). The extra length is in peptide extensions at both amino and carboxyl termini. The COOH-terminal extension is unusual in that it comprises seven Ala-Glu repeats, a feature not found in any other ribosomal proteins described so far. The cDNA clone also encodes a 55-residue long transit peptide (with a high proportion of the polar residues, threonine and serine), to target the L21 protein into chloroplasts. The identification of rpl21 as a nuclear gene in a higher plant (spinach) and chloroplast gene in a lower plant (liverwort) suggests an organelle-to-nucleus gene relocation during the evolution of the former.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号