首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total mammalian tRNAs contain on the average less than one mole of ribothymidine per mole of tRNA. Mammalian tRNAs can be grouped into at least four classes, depending upon their ribothymidine content at position 23 from the 3′ terminus. Class A contains tRNA in which a nucleoside other than uridine replaces ribothymidine (tRNAiMet); Class B contains tRNA in which one mole of a modified uridine (rT, ψ, or 2′-O-methylribothymidine) is found per mole of tRNA (tRNASer, tRNATrp, and tRNALys, respectively). Class C contains tRNA in which there is a partial conversion of uridine to ribothymidine (tRNAPhe, tRNA1Gly, tRNA2Gly); Class D contains tRNA which totally lacks ribothymidine (tRNAVal). Only those tRNAs in Class C are acceptable substrates for E.coli uridine methylase, under the conditions used in these studies. These observations cannot be adequately explained solely on the basis of the presence or absence of a specific “universal” nucleoside other than U or rT at position 23 from the 3′ terminus. However, correlations can be made between the ribothymidine and 5-methylcytosine content of eucaryotic tRNA. We postulate that the presence of one or more 5-methylcytosines in and adjacent to loop III (minor loop) in individual tRNAs act to regulate the amount of ribothymidine formed by uridine methylase. Several experiments are proposed as tests for this hypothesis.  相似文献   

2.
It is shown that yeast tRNAPhe, chemically coupled by its oxidized 3′CpCpA end behaves exactly as free tRNAPhe in its ability to form a specific complex with E. coli tRNA2Glu having a complementary anticodon. The results support models of tRNA in which the 3′CpCpAOH end and the anticodon are not closely associated in the tertiary structure, and provide a convenient tool of general use to characterize others pairs of tRNA having complementary anticodons, as well as for highly selective purification of certain tRNA species.  相似文献   

3.
The nucleoside composition of tRNA from highly purified yeast mitochondria shows the presence of T, ψ, hU, m1G, m2G, m22G, I and t6A whereas neither m7G, m5C, m3C, m1A, i6A and Y nor O′-methylated nucleosides (which are common in yeast cytoplasmic tRNA) were found. The G+C content is very low (35%). The overall methylation content is 2.7% which is about half the content of yeast cytoplasmic tRNA but similar to that of E. coli tRNA. Some rare nucleosides however which are found in E. coli (s4U, acp3U, m2A, m6A, ms2i6A, Q) were not found in yeast mitochondrial tRNA.  相似文献   

4.
Escherichia coli encodes YadB, a protein displaying 34% identity with the catalytic core of glutamyl-tRNA synthetase but lacking the anticodon-binding domain. We show that YadB is a tRNA modifying enzyme that evidently glutamylates the queuosine residue, a modified nucleoside at the wobble position of the tRNAAsp QUC anticodon. This conclusion is supported by a variety of biochemical data and by the inability of the enzyme to glutamylate tRNAAsp isolated from an E.coli tRNA-guanosine transglycosylase minus strain deprived of the capacity to exchange guanosine 34 with queuosine. Structural mimicry between the tRNAAsp anticodon stem and the tRNAGlu amino acid acceptor stem in prokaryotes encoding YadB proteins indicates that the function of these tRNA modifying enzymes, which we rename glutamyl-Q tRNAAsp synthetases, is conserved among prokaryotes.  相似文献   

5.
NMR study of the modified base resonances of tRNA tyr- coli   总被引:1,自引:0,他引:1  
220MHz NMR spectra at 28° show several resolved resonances in the high field region for D2O solutions of tyrosine specific tRNA from E. coli. These resonances are tentatively identified as arising from protons of the modified nucleoside, 2-methylthio-N6-(Δ2-isopentenyl)-adenosine and from the modified guanosine of unknown structure in the “wobble position” of the anti codon loop. Assignment of resonances was aided by comparison with spectra of tRNAsu+IIItyr, Form II, whose sequence is closely homologous to tRNAcolityr, except for changes in some modified bases. Line widths of resolved resonances indicate that, at 28°, the methyl groups of modified nucleosides are not completely restricted in their motion relative to the overall motion of the macromolecule.  相似文献   

6.
Transfer RNA with methionine acceptor activity isolated from two distinct physiological stages of the developing posterior silkgland of the silkworm, Bombyx mori, was examined. The tRNA from both stages could be fractionated on benzoylated DEAE-cellulose colum into two iso-accepting species, tRNA1Met and tRNA2Met. The molar quantity per gland of tRNA1Met species, which was also formylatable with the E. coli enzymes, increased twelve-fold as the gland differentiates to produce a large amount of a single protein, silk-fibroin. Since methionine is not a part of silk-fibroin, the preferential increase in tRNA1Met content would reflect the increased biological activity and the rapid rate of protein synthesis during the terminal differentiation of posterior silkgland.  相似文献   

7.
The sequences of three transfer RNAs from mosquito cell mitochondria, tRNAUCGArg, tRNAGUCAsp, and tRNAGAUIle, determined using a combination of rapid ladder and fingerprinting procedures are reported. These were compared with hamster mitochondrial tRNAUCGArg and tRNAGUCAsp determined similarly, and a bovine mitochondrial tRNAGAUIle determined using a somewhat different approach. The primary sequences of the mosquito tRNAs were 35 to 65% homologous to the corresponding mammalian mitochondrial species, and bore little homology to “conventional” (bacterial or eucaryotic cytoplasmic) tRNA. The modification status of the mosquito mitochondrial tRNAs resembled that of mammalian mitochondrial tRNA. The results contribute to the generalization that metazoan mitochondrial tRNA constitutes a distinctive, albeit loosely structured, phylogenetic group.  相似文献   

8.
Transfer RNA 5; Asn , tRNA ; His , and tRNAAla were isolated from Drosophila melanogaster by means of Sepharose 4B chromatography and 2-dimensional polyacrylamide gel electrophoresis. The tRNAs were iodinated in vitro with Na125I and hybridized in situ to salivary gland chromosomes from Drosophila. Subsequent autoradiography allowed the localization of the genes for tRNA 5; Asn in the regions 42A, 59F, 60C, and 84F; for tRNAHis in the regions 48F and 56E; and for tRNAAla in the regions 63A and 90C. From these and our previous results it can be concluded that the genes for the Q-base containing tRNAs (tRNAAsn, tRNAAsp, and tRNAHis, are not clustered in the Drosophila melanogaster genome.  相似文献   

9.
Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm5U34), 5-methoxycarbonylmethyluridine (mcm5U34), and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNALys s2 UUU, tRNAGln s2 UUG, and tRNAGlu s2 UUC, which in a wild-type background contain the mcm5s2U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U34. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm5s2U nucleoside in tRNALys mcm5s2UUU, tRNAGln mcm5s2UUG, and tRNAGlu mcm5s2UUC. These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U34 are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants.  相似文献   

10.
Alterations in rat liver transfer RNA (tRNA) methyltransferase activities have been observed after liver damage by various chemicals or by partial hepatectomy. The qualitative and quantitative nature of these activity changes and the time course for their induction have been studied. Since homologous tRNAs are essentially fully modified in vivo, E. coli tRNAs were used as in vitro substrates for the rat liver enzymes in these studies. Each of the liver-damaging agents tested rapidly caused increases in activities of the enzyme(s) catalyzing methyl group transfer to tRNAs that have an unmodified guanine at position 26 from the 5′ end of the molecule. This group of tRNAs includes E. coli tRNANfmet, tRNAAla1, tRNALeu1, or Leu2, and tRNASer3 (Group 1). In each case N2-methylguanine and N2,N2-dimethylguanine represented 90% or more of the products of these in vitro methylations. The product and substrate specificity observed are characteristic of N2-guanine methyltransferase II (S-adenosyl-L-methionine:tRNA (guanine-2)-methyltransferase, EC 2.1.1.32). In crude and partially purified preparations derived from livers of both control and treated animals this enzyme activity was not diminished significantly by exposure to 50°C for 10 min. The same liver-damaging agents induced little or no change in the activities of enzymes that catalyze methyl group transfer to various other E. coli tRNAs that do not have guanine at position 26 (Group 2). The results of mixing experiments appear to rule out the likelihood that the observed enzyme activity changes are due to stimulatory or inhibitory materials present in the enzyme preperations from control or treated animals. Thus, our experiments indicate that liver damage by each of several different methods, including surgery or administration of chemicals that are strong carcinogens, hepatotoxins, or cancer-promoting substances, all produce changes in liver tRNA methyltransferase activity that represent a selective increase in activity of N2-guanine tRNA methyltransferase II. It is proposed that the specificity of this change is not fortuitous, but is the manifestation of an as yet unidentified regulatory process.  相似文献   

11.
A chloroplast tRNAmMet species from Scenedesmusobliquus is very poorly 5′-end [32P] labelled using [γ-32P]ATP and T4 polynucleotide kinase. In sequencing the tRNA using standard 5′-labelled methods a very minor contaminating tRNA is preferentially labelled. The partial tRNA sequence determined by this method has an anticodon (CUC) for tRNAGlu.  相似文献   

12.
Reversible modification of arginine residues with glyoxal   总被引:1,自引:0,他引:1  
Animal serum contains an activity, designated Q-factor, which effects an increase in nucleoside Q-containing tRNA in tissue culture. The appearance of Q-positive tRNAAsp in the L-M cell line cultivated serum-free has been used as an assay to partially characterize Q-factor from fetal bovine serum and to determine that bovine amniotic fluid contains 100 fold more Q-factor than does fetal bovine serum. Q-factor is dialyzable, 500 molecular weight or less, and binds tightly to activated charcoal and dextran. Using Q-factor, evidence is presented that the Q-negative tRNAAsp species are precursors of the Q-positive species.  相似文献   

13.
Previous studies had shown that two principle forms of tyrosine transfer RNA of Drosophila melanogaster were present in wild-type adult flies but that the second form was virtually absent in a suppressor mutant, su(s)2. Current results are at variance with the previous ones, in that the suppressor mutant has significant amounts of the second form of tRNATyr. A second chromatography system for separating these forms of tRNATyr is described, RPC-5, and is compared to the system used previously, RPC-2. Both systems indicate that wild-type flies contain the two forms of tRNATyr in a ratio of 4060, the suppressor mutant in a ratio of 6040. The difference between current and previous results can be attributed to the procedures used in the preparation of the enzyme that is used as a source of tyrosyl-tRNA ligase. The enzyme activity can be separated into two fractions on DEAE-cellulose chromatography. With suppressor tRNA as substrate, one enzyme fraction charges both forms of tRNATyr but the second enzyme fraction charges the first form preferentially or nearly exclusively in some cases, as was seen in the previous experiments. With wild-type tRNA as substrate both enzyme fractions charge both forms of tRNATyr. Storage results in the loss of the enzyme's ability to discriminate against the second form of tRNATyr from the suppressor mutant, while the enzymatic activity is retained. We postulate that the su(s)+ locus produces an enzyme that modifies the second isoacceptor of tRNATyr and that, when such modification fails to occur (as in the su(s)2 mutant), the tRNA is unable to accept tyrosine from one form of tyrosyl-tRNA ligase. How the discrimination against the second isoacceptor by the ligase may be important metabolically is not apparent.  相似文献   

14.
Treatment of E.coli formylmethionine tRNA with sodium bisulfite produces six C → U base changes in the tRNA structure. Four of these modifications have no effect on the ability of tRNAfMet to be aminoacylated or formylated. Prior to bisulfite treatment, Met-tRNAfMet is not able to form a ternary complex with bacterial T factor and GTP, as measured by Sephadex G-50 gel filtration. After bisulfite treatment, a large portion of the modified tRNA is bound as T-GTP-Met-tRNAfMet. Formylation of bisulfite-modified Met-tRNAfMet completely eliminates T factor binding. Unmodified tRNAfMet is unique among the tRNAs sequenced to date in having a non-hydrogen-bonded base at the 5′ terminus. Bisulfite-catalyzed conversion of this unpaired C1 to U1 results in formation of a normal U1-A73 base pair at the end of the acceptor stem. It is likely that this structural alteration is responsible for the recognition of bisulfite-modified Met-tRNAfMet by T factor.  相似文献   

15.
Three chromatographically distinct tRNAsfMet from E. coli K-12 MO were separated by reversed-phase chromatography and designated tRNAAfMet, tRNABfMet, and tRNA3fMet. The tRNAAfMet corresponds to the published sequence for tRNAfMet (E. coli). The tRNABfMet differs from tRNAAfMet in that the 4-thiouridine in nucleotide position 8 has interacted with cytidine in position 13 to form a cross-linked product. The tRNA3fMet differs from tRNAAfMet in that 7-methyl-guanosine (in position 47) has been replaced by adenosine.  相似文献   

16.
Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T-half molecules (nucleosides 40–72) with the corresponding unmodified D-half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T-half folding interactions with the D-half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT5455 = 11 ± 3 µM) significantly lower than that of the unmodified T-half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half-molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.  相似文献   

17.
18.
Transfer RNA from Escherichia coli C6, a Met, Cys, relA mutant, was previously shown to contain an altered tRNAIle which accumulates during cysteine starvation (Harris, C.L., Lui, L., Sakallah, S. and DeVore, R. (1983) J. Biol. Chem. 258, 7676–7683). We now report the purification of this altered tRNAIle and a comparison of its aminoacylation and chromatographic behavior and modified nucleoside content to that of tRNAIle purified from cells of the same strain grown in the presence of cysteine. Sulfur-deficient tRNAIle (from cysteine-starved cells) was found to have a 5-fold increased Vmax in aminoacylation compared to the normal isoacceptor. However, rates or extents of transfer of isoleucine from the [isoleucyl ∼ AMP · Ile-tRNA synthetase] complex were identical with these two tRNAs. Nitrocellulose binding studies suggested that the sulfur-deficient tRNAIle bound more efficiently to its synthetase compared to normal tRNAIle. Modified nucleoside analysis showed that these tRNAs contained identical amounts of all modified bases except for dihydrouridine and 4-thiouridine. Normal tRNAIle contains 1 mol 4-thiouridine and dihydrouridine per mol tRNA, while cysteine-starved tRNAIle contains 2 mol dihydrouridine per mol tRNA and is devoid of 4-thiouridine. Several lines of evidence are presented which show that 4-thiouridine can be removed or lost from normal tRNAIle without a change in aminoacylation properties. Further, tRNA isolated from E. coli C6 grown with glutathione instead of cysteine has a normal content of 4-thiouridine, but its tRNAIle has an increased rate of aminoacylation. We conclude that the low content of dihydrouridine in tRNAIle from E. coli cells grown in cysteine-containing medium is most likely responsible for the slow aminoacylation kinetics observed with this tRNA. The possibility that specific dihydrouridine residues in this tRNA might be necessary in establishing the correct conformation of tRNAIle for aminoacylation is discussed.  相似文献   

19.
Binding of Mn2+ to the whole molecule, fragments and complementary fragment recombinations of yeast tRNAPhe, and to synthetic polynucleotides was studied by equilibrium dialysis. The comparison of the binding patterns of the fragments, fragment recombinations and synthetic polynucleotides with that of intact tRNAPhe permits reasonable conclusions concerning the nature and location of the various classes of sites on tRNAPhe. Binding of Mn2+ to intact tRNAPhe consists of a co-operative and a non-co-operative phase. There are about 17 “strong” sites and several “weak” ones. Five of the 17 strong sites are associated with the co-operative phase. This phase is completely lacking in the binding of Mn2+ to tRNAPhe fragments (5′-12, 3′-12, 5′-35, 3′-25), poly-(A):poly(U) and poly(I):poly(C) helices, and single stranded poly(A) and poly(U). This argues that the co-operative sites arise from the tRNA tertiary structure. This conclusion is further strengthened by the observation that cooperativity is present in a tRNAPhe molecule which has been split in the anticodon loop, but it is absent in one which has been split in the extra loop. It is in the vicinity of the latter loop, but not the former, that tertiary interactions are seen in the crystal structure. The remaining 12 strong sites are “independent” and appear to be associated with cloverleaf helical sections.  相似文献   

20.
Nucleotide sequence comparison of tRNAs aminoacylated by yeast phenylalanyl tRNA synthetase (PRS) have lead to the proposal that the specific nucleotides of the dihydrouridine (diHU) stem region and adenosine at the fourth position from the 3′ end are involved in the PRS recognition site. Kinetic analysis and enzymatic methylation have shown that the size of the diHU loop and the methylation of guanine at position 10 from the 5′ end both directly affect the PRS aminoacylation kinetics. E. coli tRNA1A1a, which is aminoacylated by PRS, should therefore have 1- the specific nucleotides of the diHU stem region and, 2- adenosine at position 4 from the 3′ end. The PRS aminoacylation kinetics of this tRNA indicates that this molecule 3- has a diHU loop of 8 nucleotides and 4- has an unmethylated guanine at position 10 from the 5′ end. We report here the complete sequence of E. coli tRNA1A1a and confirmation of each of these four predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号