首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Arabinonucleic acid, the 2'-stereoisomer of RNA, was tested for its ability to recognize double-helical DNA, double-helical RNA and RNA-DNA hybrids. A pyrimidine oligoarabinonucleotide (ANA) was shown to form triple-helical complexes only with duplex DNA and hybrid DNA (Pu):RNA (Py) with an affinity that was slightly lower relative to the corresponding pyrimidine oligodeoxynucleotide (DNA) third strand. Neither the ANA nor DNA third strands were able to bind to duplex RNA or hybrid RNA (Pu):DNA (Py). In contrast, an RNA third strand recognized all four possible duplexes (DD, DR, RD and RR), as previously demonstrated. Such an understanding can be applied to the design of sequence-selective oligonucleotides which interact with double-stranded nucleic acids and emphasizes the role of the 2'-OH group as a general recognition and binding determinant of RNA.  相似文献   

2.
Different helical conformations of DNA (D), RNA (R), and DNA.RNA (DR) hybrid double and triple helices have been detected using affinity cleavage analysis. Synthetic methods were developed to attach EDTA.Fe to a single nucleotide on RNA as well as DNA oligonucleotides. Cleavage patterns generated by a localized diffusible oxidant in the major groove on the pyrimidine strand of four purine.pyrimidine double helices consisting of all DNA, all RNA, and the corresponding hybrids reveal that the relative cleavage intensity shifts to the 5' end of the purine strand increasingly in the order: DD < DR < RD < RR. These results are consistent with models derived from structural studies. In six pyrimidine.purine.pyrimidine triple helices, the altered cleavage patterns of the Watson-Crick pyrimidine strands reveal at least two conformational families: (i) D + DD, R + DD, D + DR, and R + DR and (ii) R + RD and R + RR.  相似文献   

3.
To gain insight into the origins of the large binding affinity of RNA toward target duplexes, 2'-deoxy-2'-fluororibonucleic acid (2'F-RNA) and 2'-deoxy-2'-fluoroarabinonucleic acid (2'F-ANA) were tested for their ability to recognize duplex DNA, duplex RNA, and RNA-DNA hybrids. 2'F-RNA, 2'F-ANA, and the corresponding control single-stranded (ss) DNA strands were shown to form triple-helical complexes only with duplex DNA and hybrid DNA (Pu)-RNA (Py), but not with duplex RNA and hybrid RNA (Pu)-DNA (Py). In contrast, an RNA third strand recognized all four possible duplexes (DD, DR, RD, and RR) as previously demonstrated by Roberts and Crothers [(1992) Science 258, 1463-1466]. The 2'F-RNA (C3'-endo) strand exhibited significantly reduced affinity for duplexes compared to an unmodified RNA (C3'-endo) strand. These findings are consistent with the intermolecular 2'-OH-phosphate contact mechanism proposed by Escudé et al. [(1993) Nucleic Acids Res. 24, 5547-5553], as a ribo 2'-F atom should not interact with a negatively charged phosphate. In addition, they emphasize the role of the 2'-OH ribose as a general recognition and binding determinant of RNA. The 2'-F arabino modification (2'F-ANA, C2'-endo) led to a considerable increase in the binding affinity for duplex DNA, as compared to those of DNA and 2'F-RNA third strands. This is likely to be the result of a greater population of C2'-endo pucker of the 2'F-ANA compared to DNA. The enhancement observed for 2'F-ANA strands toward duplex DNA is comparable to that observed with 2'-OMe RNA. Since 2'F-ANA has been shown to be more resistant to nuclease degradation than DNA, these results are likely to stimulate experimental work on arabinose derivatives in laboratories concerned with targeting DNA sequences in vivo ("antigene" strategy).  相似文献   

4.
Triplex forming oligonucleotides (TFOs) are potentially useful in targeting RNA for antisense therapeutic applications. To determine the feasibility of targeting polypurine RNA with nuclease-resistant oligonucleotides, TFOs containing 2'-deoxy or 2'-O-methyl (2'-OMe) backbones, designed to form pyrimidine motif triplexes with RNA, were synthesized. TFOs were made which can form trimolecular triplexes, or bimolecular, 'clamp' triplexes with polypurine RNA and DNA. It was found that the relative stabilities of the triplexes formed followed the order: M.DM(clamp)>D.DD approximately M.DD>M. RM>D.DM>M.RD approximately M.DM, where M is a 2'-OMe, D is a DNA and R is an RNA backbone. The third strand is listed first, separated by a dot from the purine strand of the Watson-Crick duplex, followed by the pyrimidine strand of the duplex. The results described here provide insight into the feasibility of using TFOs containing a 2'-OMe backbone as antisense agents.  相似文献   

5.
Abstract

We studied the influence of different 2′-OMe-RNA and DNA strand combinations on single strand targeted foldback triplex formation in the Py.Pu:Py motif using ultraviolet (UV) and circular dichroism (CD) spectroscopy, and molecular modeling. The study of eight combinations of triplexes (D D:D, R* D:D, D D:R*, R* D:R*, D R:D, R* R:D, DR:R*, and R*-R:R*; where the first, middle, and last letters stand for the Hoogsteen Pyrimidine, Watson-Crick [WC] purine and WC pyrimidine strands, respectively, and D, R and R* stand for DNA, RNA and 2′-OMe-RNA strands, respectively) indicate more stable foldback triplex formation with a DNA purine strand than with an RNA purine strand. Of the four possible WC duplexes with RNA/DNA combinations, the duplex with a DNA purine strand and a 2′-O-Me-RNA pyrimidine strand forms the most thermally stable triplex, although its thermal stability is the lowest of all four duplexes. Irrespective of the duplex combination, a 2′-OMe-RNA Hoogsteen pyrimidine strand forms a stable foldback triplex over a DNA Hoogsteen pyrimidine strand confirming the earlier reports with conventional and circular triplexes. The CD studies suggest a B-type conformation for an all DNA homo-foldback triplex (D.D.D), while hetero-foldback triplex spectra suggest intermediate conformation to both Atype and B-type structures. A novel molecular modeling study has been carried out to understand the stereochemical feasibility of all the combinations of foldback triplexes using a geometric approach. The new approach allows use of different combinations of chain geometries depending on the nature of the chain (RNA vs. DNA).  相似文献   

6.
We report the first investigation of oligoribonucleotides containing a few 1-(2-deoxy-2-alpha-C-hydroxymethyl-beta-D-ribofuranosyl)thymine units (or 2'-hm-dT, abbreviated in this work as 'H'). Both the 2'-CH2O-phosphoramidite and 3'-O-phosphoramidite derivatives of H were synthesized and incorporated into both 2',5'-RNA and RNA chains. The hybridization properties of the modified oligonucleotides have been studied via thermal denaturation and circular dichroism studies. While 3',5'-linked H was shown previously to significantly destabilize DNA:RNA hybrids and DNA:DNA duplexes (modification in the DNA strand; DeltaT(m) approximately -3 degrees C/insert), we find that 2',5'-linked H have a smaller effect on 2',5'-RNA:RNA and RNA:RNA duplexes (DeltaT(m) = -0.3 degrees C and -1.2 degrees C, respectively). The incorporation of 3',5'-linked H into 2',5'-RNA:RNA and RNA:RNA duplexes was found to be more destabilizing (-0.7 degrees C and -3.6 degrees C, respectively). Significantly, however, the 2',5'-linked H units confer marked stability to RNA hairpins when they are incorporated into a 2',5'-linked tetraloop structure (DeltaT(m) = +1.5 degrees C/insert). These results are rationalized in terms of the compact and extended conformations of nucleotides.  相似文献   

7.
Exclusion of RNA strands from a purine motif triple helix.   总被引:5,自引:5,他引:0       下载免费PDF全文
Research concerning oligonucleotide-directed triple helix formation has mainly focused on the binding of DNA oligonucleotides to duplex DNA. The participation of RNA strands in triple helices is also of interest. For the pyrimidine motif (pyrimidine.purine.pyrimidine triplets), systematic substitution of RNA for DNA in one, two, or all three triplex strands has previously been reported. For the purine motif (purine.purine.pyrimidine triplets), studies have shown only that RNA cannot bind to duplex DNA. To extend this result, we created a DNA triple helix in the purine motif and systematically replaced one, two, or all three strands with RNA. In dramatic contrast to the general accommodation of RNA strands in the pyrimidine triple helix motif, a stable triplex forms in the purine motif only when all three of the substituent strands are DNA. The lack of triplex formation among any of the other seven possible strand combinations involving RNA suggests that: (i) duplex structures containing RNA cannot be targeted by DNA oligonucleotides in the purine motif; (ii) RNA strands cannot be employed to recognize duplex DNA in the purine motif; and (iii) RNA tertiary structures are likely to contain only isolated base triplets in the purine motif.  相似文献   

8.
Sen A  Nielsen PE 《Biophysical journal》2006,90(4):1329-1337
PNA.DNA duplexes are significantly stabilized by purine nucleobases in the PNA strand. To elucidate and understand the effect of switching the backbone in a nucleic acid duplex, we now report a thermodynamics study along with a solution conformations study of two purine/pyrimidine strand asymmetric duplexes and a strand symmetrical control by comparing the behavior of all four possible PNA/DNA combinations. In essence, we are comparing an identical basepair stack connected by either an aminoethyl glycine PNA or a deoxyribose DNA backbone. We show that the PNA.DNA duplexes containing purine-rich PNA strands are stabilized with regard to the thermal melting temperature and free energy as well as enthalpy (and concomitantly relatively less entropically disfavored). Based on our data, we find it unlikely that differences in counterion binding (identical ionic-strength dependence was observed), hydration (identical and insignificant water release was observed), or single-strand conformation can be responsible for the difference in duplex stability. The only consistent difference observed between the purine-rich PNA versus the pyrimidine-rich PNA in isosequential PNA.DNA duplexes is the significant increase in both binding enthalpy and entropy for the PNA.DNA duplexes containing pyrimidine-rich PNA in organic solvent, which would indicate that these duplexes are relatively enthalpically disfavored in water. Although our results so far do not allow us to identify the origin of the different stabilities of homopurine/homopyrimidine PNA.DNA duplexes, the evidence does point to a significant structural component, which involves enthalpic contributions both within the duplex structure and also from bound water molecules.  相似文献   

9.
A 27-mer sequence was synthesised as DNA duplex (DD), RNA duplex (RR), and RNA-DNA (RD) hybrid in order to characterise their structural and dynamic features. The hydrodynamic radius (Rh) and the rise (b) values of the three samples were consistent with the conformations predicted by CD analysis. The value of the torsional constant (alpha) of the samples containing RNA was approximately twice that of the DD sample and followed the order: DD < RD < RR. The same order was observed in the thermodynamic stability and in the reduction of the electrophoretic mobility. gamma-Ray footprinting analysis was carried out to resolve the individual strand conformation in the hybrid. The RNA strand preserved its conformation, while the DNA strand showed local deformations mainly at TA and TG steps.  相似文献   

10.
Rhee S  Han Zj  Liu K  Miles HT  Davies DR 《Biochemistry》1999,38(51):16810-16815
Extended purine sequences on a DNA strand can lead to the formation of triplex DNA in which the third strand runs parallel to the purine strand. Triplex DNA structures have been proposed to play a role in gene expression and recombination and also have potential application as antisense inhibitors of gene expression. Triplex structures have been studied in solution by NMR, but have hitherto resisted attempts at crystallization. Here, we report a novel design of DNA sequences, which allows the first crystallographic study of DNA segment containing triplexes and its junction with a duplex. In the 1.8 A resolution structure, the sugar-phosphate backbone of the third strand is parallel to the purine-rich strand. The bases of the third strand associate with the Watson and Crick duplex via Hoogsteen-type interactions, resulting in three consecutive C(+).GC, BU.ABU (BU = 5-bromouracil), and C(+).GC triplets. The overall conformation of the DNA triplex has some similarity to the B-form, but is distinct from both A- and B-forms. There are large changes in the phosphate backbone torsion angles (particularly gamma) of the purine strand, probably due to the electrostatic interactions between the phosphate groups and the protonated cytosine. These changes narrow the minor groove width of the purine-Hoogsteen strands and may represent sequence-specific structural variations of the DNA triplex.  相似文献   

11.
G M Hashem  J D Wen  Q Do    D M Gray 《Nucleic acids research》1999,27(16):3371-3379
The pyr*pur.pyr type of nucleic acid triplex has a purine strand that is Hoogsteen-paired with a parallel pyrimidine strand (pyr*pur pair) and that is Watson-Crick-paired with an antiparallel pyrimidine strand (pur.pyr pair). In most cases, the Watson-Crick pair is more stable than the Hoogsteen pair, although stable formation of DNA Hoogsteen-paired duplexes has been reported. Using oligomer triplexes of repeating d(AG)12 and d(CT)12 or r(CU)12 sequences that were 24 nt long, we found that hybrid RNA*DNA as well as DNA*DNA Hoogsteen-paired strands of triplexes can be more stable than the Watson-Crick-paired strands at low pH. The structures and relative stabilities of these duplexes and triplexes were evaluated by circular dichroism (CD) spectroscopy and UV absorption melting studies of triplexes as a function of pH. The CD contributions of Hoogsteen-paired RNA*DNA and DNA*DNA duplexes were found to dominate the CD spectra of the corresponding pyr*pur.pyr triplexes.  相似文献   

12.
The crystal structure of the duplex formed by oligo(2',3'-dideoxy-beta-d-glucopyranosyl)nucleotides (homo-DNA) revealed strongly inclined backbone and base-pair axes [Egli,M., Pallan,P.S., Pattanayek,R., Wilds,C.J., Lubini,P., Minasov,G., Dobler,M., Leumann,C.J. and Eschenmoser,A. (2006) Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. J. Am. Chem. Soc., 128, 10847-10856]. This inclination is easily perceived because homo-DNA exhibits only a modest helical twist. Conversely, the tight coiling of strands conceals that the backbone-base inclinations for A- (DNA and RNA) and B-form (DNA) duplexes differ considerably. We have defined a parameter eta(B) that corresponds to the local inclination between sugar-phosphate backbone and base plane in nucleic acid strands. Here, we show its biological significance as a predictive measure for the relative strand polarities (antiparallel, aps, or parallel, ps) in duplexes of DNA, RNA and artificial nucleic acid pairing systems. The potential of formation of ps duplexes between complementary 16-mers with eight A and U(T) residues each was investigated with DNA, RNA, 2'-O-methylated RNA, homo-DNA and p-RNA, the ribopyranosyl isomer of RNA. The thermodynamic stabilities of the corresponding aps duplexes were also measured. As shown previously, DNA is capable of forming both ps and aps duplexes. However, all other tested systems are unable to form stable ps duplexes with reverse Watson-Crick (rWC) base pairs. This observation illustrates the handicap encountered by nucleic acid systems with inclinations eta(B) that differ significantly from 0 degrees to form a ps rWC paired duplex. Accordingly, RNA with a backbone-base inclination of -30 degrees , pairs strictly in an aps fashion. On the other hand, the more or less perpendicular orientation of backbone and bases in DNA allows it to adopt a ps rWC paired duplex. In addition to providing a rationalization of relative strand polarity with nucleic acids, the backbone-base inclination parameter is also a determinant of cross-pairing. Thus, systems with strongly deviating eta(B) angles will not pair with each other. Nucleic acid pairing systems with significant backbone-base inclinations can also be expected to display different stabilities depending on which terminus carries unpaired nucleotides. The negative inclination of RNA is consistent with the higher stability of duplexes with 3'- compared to those with 5'-dangling ends.  相似文献   

13.
We have designed and synthesized mixed backbone oligonucleotides (MBOs) containing 2'-5'-ribo- and 3'-5'-deoxyribonucleotide segments. Thermal melting studies of the phosphodiester MBOs (three 2'-5'linkages at each end) with the complementary 3'-5'-DNA and -RNA target strands suggest that 2'-5'-ribonucleoside incorporation into 3'-5'-oligodeoxyribonucleotides reduces binding to the target strands compared with an all 3'-5'-oligodeoxyribonucleotide of the same sequence and length. Increasing the number of 2'-5'linkages (from six to nine) further reduces binding to the DNA target strand more than the RNA target strand [Kandimalla,E.R. and Agrawal,S. (1996)Nucleic Acids Symp. Ser., 35, 125-126]. Phosphorothioate (PS) analogs of MBOs destabilize the duplex with the DNA target strand more than the duplex with the RNA target strand. Circular dichroism studies indicate that the duplexes of MBOs with the DNA and RNA target strands have spectral characteristics of both A- and B-type conformations. Compared with the control oligonucleotide, MBOs exhibit moderately higher stability against snake venom phosphodiesterase, S1 nuclease and in fetal calf serum. Although 2'-5'modification does not evoke RNase H activity, this modification does not effect the RNase H activation property of the 3'-5'-deoxyribonucleotide segment adjacent to the modification. In vitro studies with MBOs suggest that they have lesser effects on cell proliferation, clotting prolongation and hemolytic complement lysis than do control PS oligodeoxyribonucleotides. PS analogs of MBOs show HIV-1 inhibition comparable with that of a control PS oligodeoxyribonucleotide with all 3'-5'linkages. The current results suggest that a limited number of 2'-5'linkages could be used in conjunction with PS oligonucleotides to further modulate the properties of antisense oligonucleotides as therapeutic agents.  相似文献   

14.
Homopurine deoxyribonucleoside phosphorothioates possessing all internucleotide linkages of R(P) configuration form a duplex with an RNA or 2'-OMe-RNA strand with Hoogsteen complementarity. The duplexes formed with RNA templates are thermally stable at pH 5.3, while those formed with a 2'-OMe-RNA are stable at neutrality. Melting temperature and fluorescence quenching experiments indicate that the strands are parallel. Remarkably, these duplexes are thermally more stable than parallel Hoogsteen duplexes and antiparallel Watson-Crick duplexes formed by unmodified homopurine DNA molecules of the same sequence with corresponding RNA templates.  相似文献   

15.
A unique characteristic of ionizing radiation and radiomimetic anticancer drugs is the induction of clustered damage: two or more DNA lesions (oxidized bases, abasic sites, or strand breaks) occurring in the same or different strands of the DNA molecule within a single turn of the helix. In spite of arising at a lower frequency than single lesions, clustered DNA damage represents an exotic challenge to the repair systems present in the cells and, in some cases, these lesions may escape detection and/or processing. To understand the structural properties of clustered DNA lesions we have prepared two oligodeoxynucleotide duplexes containing adjacent tetrahydrofuran residues (abasic site analogues), positioned one in each strand of the duplex in a 5' or 3' orientation, and determined their solution structure by NMR spectroscopy and molecular dynamics simulations. The NMR data indicate that both duplex structures are right-handed helices of high similarity outside the clustered damage site. The thermal stability of the duplexes is severely reduced by the presence of the abasic residues, especially in a 5' orientation where the melting temperature is 5 degrees C lower. The structures show remarkable differences at the lesion site where the extrahelical location of the tetrahydrofuran residues in the (AP)(2)-5'-staggered duplex contrasts with their smooth alignment along the sugar-phosphate backbone in the (AP)(2)-3'-staggered duplex.  相似文献   

16.
We prepared hairpins that differ in the connectivity of phosphodiester linkages in the loop (RNA vs 2', 5'-RNA). We find that the stability of the extra stable RNA hairpin 5'-rGGAC(UUCG)GUCC-3' is the same as that observed for the hairpin containing a 2',5'RNA loop, i.e. 5'-rGGAC(UUCG)GUCC-3' (where UUCG = U2'p5'U2'p5' C2'p5'G2'p5'). Also significant is the finding that when the stem is duplex DNA, duplex 2',5'-RNA, or DNA:2',5'-RNA, hairpins with the UUCG loop are more stable than those with UUCG loop.  相似文献   

17.
The distribution of breaks produced in both strands of a DNA duplex by the decay of 125I carried by a triplex-forming DNA oligonucleotide was studied at single nucleotide resolution. The 125I atom was located in the C5 position of a single cytosine residue of an oligonucleotide designed to form a triple helix with the target sequence duplex. The majority of the breaks (90%) are located within 10 bp around the decay site. The addition of the free radical scavenger DMSO produces an insignificant effect on the yield and distribution of the breaks. These results suggest that the majority of these breaks are produced by the direct action of radiation and are not mediated by diffusible free radicals. The frequency of breaks in the purine strand was two times higher that in the pyrimidine strand. This asymmetry in the yield of breaks correlates with the geometry of this type of triplex; the C5 of the cytosine in the third strand is closer to the sugar-phosphate backbone of the purine strand. Moreover, study of molecular models shows that the yield of breaks at individual bases correlates with distance from the 125I decay site. We suggest the possible use of 125I decay as a probe for the structure of nucleic acids and nucleoprotein complexes.  相似文献   

18.
Two-dimensional 1H n.m.r. spectroscopy has been used to study the 31-base DNA oligonucleotide 5'-dAGAGAGAACCCCTTCTCTCTTTTTCTCTCTT-3', which folds to form a stable intramolecular triplex in solution at acidic pH. This structure is considerably more difficult to assign than short B-DNA duplexes and requires new assignment methods. The assignment strategy and assignments of almost all of the exchangeable and nonexchangeable resonances are presented. Seven base triplets and one Watson-Crick base-pair form the core of the structure and are connected by a four C and four T loop at either end. The second pyrimidine "strand" (bases 24 to 31) in this intramolecular pyrimidine-purine-pyrimidine triplex binds via Hoogsteen base-pairs in the major groove and is parallel to the purine "strand" (bases 1 to 8). Analysis of the sugar puckers reveals that, contrary to widely accepted belief, the triplex sugars are not predominantly in the N-type (close to C3'-endo) conformation. Except for some of the C nucleotides, all sugars are predominantly S-type (close to C2'-endo). Thus, the duplex DNA does not assume N-type sugar conformations to accommodate a third strand in the major groove. A preliminary model of the triplex structure is presented.  相似文献   

19.
Differential scanning calorimetric (DSC), circular dichroism (CD) and molecular mechanics studies have been performed on two triple helices of DNA. The target duplex consists of 16 base pairs in alternate sequence of the type 5′-(purine)m(pyrimidine)m-3′. In both the triplexes, the third oligopyrimidine strand crosses the major groove at the purine–pyrimidine junction, with a simultaneous binding of the adjacent purine tracts on alternate strands of the Watson–Crick duplex. The switch is ensured by a non-nucleotide linker, the 1,2,3 propanetriol residue, that joins two 3′–3′ phosphodiester ends. The third strands differ from each other for a nucleotide in the junction region. The resulting triple helices were termed 14-mer-PXP and 15-mer-PXP (where P=phosphate and X=1,2,3-propanetriol residue) according to the number of nucleotides that compose the third strand. DSC data show two independent processes: the first corresponding to the dissociation of the third strand from the target duplex, the second to the dissociation of the double helix in two single strands. The two triple helices show the same stability at pH 6.6. At pH 6.0, the 15-mer-PXP triplex is thermodynamically more stable than the 14-mer-PXP triplex. Thermodynamic data are discussed in relation to structural models. The results are useful when considering the design of oligonucleotides that can bind in an antigene approach to the DNA for therapeutic purposes.  相似文献   

20.
Vaccinia virus RNA helicase (NPH-II) catalyzes nucleoside triphosphate-dependent unwinding of duplex RNAs containing a single-stranded 3' RNA tail. In this study, we examine the structural features of the nucleic acid substrate that are important for helicase activity. Strand displacement was affected by the length of the 3' tail. Whereas NPH-II efficiently unwound double-stranded RNA substrates with 19- or 11-nucleotide (nt) 3' tails, shortening the 3' tail to 4 nt reduced unwinding by an order of magnitude. Processivity of the helicase was inferred from its ability to unwind a tailed RNA substrate containing a 96-bp duplex region. NPH-II exhibited profound asymmetry in displacing hybrid duplexes composed of DNA and RNA strands. A 34-bp RNA-DNA hybrid with a 19-nt 3' RNA tail was unwound catalytically, whereas a 34-bp DNA-RNA hybrid containing a 19-nt 3' DNA tail was 2 orders of magnitude less effective as a helicase substrate. NPH-II was incapable of displacing a 34-bp double-stranded DNA substrate of identical sequence. 3'-Tailed DNA molecules with 24- or 19-bp duplex regions were also inert as helicase substrates. On the basis of current models for RNA-DNA hybrid structures, we suggest the following explanation for these findings. (i) Unwinding of duplex nucleic acids by NPH-II is optimal when the polynucleotide strand of the duplex along which the enzyme translocates has adopted an A-form secondary structure, and (ii) a B-form secondary structure impedes protein translocation through DNA duplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号