首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蛋白质-蛋白质对接中打分函数的研究   总被引:1,自引:0,他引:1  
通过分析蛋白质-蛋白质间的静电、疏水作用和熵效应与相对于晶体结构的蛋白质主链原子的均方根偏差(RMSD)的相关性,定量地考查了它们在蛋白质-蛋白质对接中作为打分函数评价近天然构象的能力。对7个蛋白质复合物体系的分析表明,就水化能而言,原子接触势模型(ACE)优于原子水化参数模型(ASP),且修正的ACE模型具有更好的评价近天然构象的能力;水化能与静电能结合对评价能力有进一步的提高。最后,我们将静电和修正的ACE水化能结合作为打分函数用于36个蛋白质复合物体系的对接研究,进一步证实了这两种能量项的组合能有效地将近天然结构从分子对接模式中区分出来。  相似文献   

2.
Gatchell DW  Dennis S  Vajda S 《Proteins》2000,41(4):518-534
Free energy potentials, combining molecular mechanics with empirical solvation and entropic terms, are used to discriminate native and near-native protein conformations from slightly misfolded decoys. Since the functional forms of these potentials vary within the field, it is of interest to determine the contributions of individual free energy terms and their combinations to the discriminative power of the potential. This is achieved in terms of quantitative measures of discrimination that include the correlation coefficient between RMSD and free energy, and a new measure labeled the minimum discriminatory slope (MDS). In terms of these criteria, the internal energy is shown to be a good discriminator on its own, which implies that even well-constructed decoys are substantially more strained than the native protein structure. The discrimination improves if, in addition to the internal energy, the free energy expression includes the electrostatic energy, calculated by assuming non-ionized side chains, and an empirical solvation term, with the classical atomic solvation parameter model providing slightly better discrimination than a structure-based atomic contact potential. Finally, the inclusion of a term representing the side chain entropy change, and calculated by an established empirical scale, is so inaccurate that it makes the discrimination worse. It is shown that both the correlation coefficient and the MDS value (or its dimensionless form) are needed for an objective assessment of a potential, and that together they provide much more information on the origins of discrimination than simple inspection of the RMSD-free energy plots.  相似文献   

3.
In order to infer the energetic determinants of thermophilic proteins, molecular mechanics calculations were applied to five proteins from thermophilic eubacteria and their mesophilic homologs. The energy function includes a hydration term as well as the electrostatic contribution from the solvent in addition to the usual conformational energy terms. We calculated energy values for three different states of each protein: the native, near-native, and unfolded structures. The energy difference and its components between pairs of these states were compared. The hypothetical near-native structures have almost the same backbone conformation as the native structure but with largely distorted side-chain packing, thus enabling us to extract the energy components important for stabilizing the native backbone topology itself, irrespective of structural details. It was found that the sum of the electrostatic and hydration energies, although of large positive values, were consistently lower for the thermophilic proteins than for their mesophilic counterparts. This trend was observed in the energy difference not only between the native and unfolded structures, but also between the near-native and unfolded structures. In contrast, the energy components regarding side-chain packing did not show any clear tendency. These results suggest that the thermophilic proteins are stabilized so that the precise packing of the native structure does not significantly affect the stability. Implications of this conclusion are also discussed.  相似文献   

4.
Several hydration models for peptides and proteins based on solvent accessible surface area have been proposed previously. We have evaluated some of these models as well as four new ones in the context of near-native conformations of a protein. In addition, we propose an empirical site-site distance-dependent correction that can be used in conjunction with any of these models. The set of near-native structures consisted of 39 conformations of bovine pancreatic trypsin inhibitor (BPTI) each of which was a local minimum of an empirical energy function (ECEPP) in the absence of solvent. Root-mean-square (rms) deviations from the crystallographically determined structure were in the following ranges: 1.06-1.94 A for all heavy atoms, 0.77-1.36 A for all backbone heavy atoms, 0.68-1.33 A for all alpha-carbon atoms, and 1.41-2.72 A for all side-chain heavy atoms. We have found that there is considerable variation among the solvent models when evaluated in terms of concordance between the solvation free energy and the rms deviations from the crystallographically determined conformation. The solvation model for which the best concordance (0.939) with the rms deviations of the C alpha atoms was found was derived from NMR coupling constants of peptides in water combined with an exponential site-site distance dependence of the potential of mean force. Our results indicate that solvation free energy parameters derived from nonpeptide free energies of hydration may not be transferrable to peptides. Parameters derived from peptide and protein data may be more applicable to conformational analysis of proteins. A general approach to derive parameters for free energy of hydration from ensemble-averaged properties of peptides in solution is described.  相似文献   

5.
Limitations in protein homology modeling often arise from the inability to adequately model loops. In this paper we focus on the selection of loop conformations. We present a complete computational treatment that allows the screening of loop conformations to identify those that best fit a molecular model. The stability of a loop in a protein is evaluated via computations of conformational free energies in solution, i.e., the free energy difference between the reference structure and the modeled one. A thermodynamic cycle is used for calculation of the conformational free energy, in which the total free energy of the reference state (i.e., gas phase) is the CHARMm potential energy. The electrostatic contribution of the solvation free energy is obtained from solving the finite-difference Poisson-Boltzmann equation. The nonpolar contribution is based on a surface area-based expression. We applied this computational scheme to a simple but well-characterized system, the antibody hypervariable loop (complementarity-determining region, CDR). Instead of creating loop conformations, we generated a database of loops extracted from high-resolution crystal structures of proteins, which display geometrical similarities with antibody CDRs. We inserted loops from our database into a framework of an antibody; then we calculated the conformational free energies of each loop. Results show that we successfully identified loops with a "reference-like" CDR geometry, with the lowest conformational free energy in gas phase only. Surprisingly, the solvation energy term plays a confusing role, sometimes discriminating "reference-like" CDR geometry and many times allowing "non-reference-like" conformations to have the lowest conformational free energies (for short loops). Most "reference-like" loop conformations are separated from others by a gap in the gas phase conformational free energy scale. Naturally, loops from antibody molecules are found to be the best models for long CDRs (> or = 6 residues), mainly because of a better packing of backbone atoms into the framework of the antibody model.  相似文献   

6.
Absolute binding free energy calculations and free energy decompositions are presented for the protein-protein complexes H-Ras/C-Raf1 and H-Ras/RalGDS. Ras is a central switch in the regulation of cell proliferation and differentiation. In our study, we investigate the capability of the molecular mechanics (MM)-generalized Born surface area (GBSA) approach to estimate absolute binding free energies for the protein-protein complexes. Averaging gas-phase energies, solvation free energies, and entropic contributions over snapshots extracted from trajectories of the unbound proteins and the complexes, calculated binding free energies (Ras-Raf: -15.0(+/-6.3)kcal mol(-1); Ras-RalGDS: -19.5(+/-5.9)kcal mol(-1)) are in fair agreement with experimentally determined values (-9.6 kcal mol(-1); -8.4 kcal mol(-1)), if appropriate ionic strength is taken into account. Structural determinants of the binding affinity of Ras-Raf and Ras-RalGDS are identified by means of free energy decomposition. For the first time, computationally inexpensive generalized Born (GB) calculations are applied in this context to partition solvation free energies along with gas-phase energies between residues of both binding partners. For selected residues, in addition, entropic contributions are estimated by classical statistical mechanics. Comparison of the decomposition results with experimentally determined binding free energy differences for alanine mutants of interface residues yielded correlations with r(2)=0.55 and 0.46 for Ras-Raf and Ras-RalGDS, respectively. Extension of the decomposition reveals residues as far apart as 25A from the binding epitope that can contribute significantly to binding free energy. These "hotspots" are found to show large atomic fluctuations in the unbound proteins, indicating that they reside in structurally less stable regions. Furthermore, hotspot residues experience a significantly larger-than-average decrease in local fluctuations upon complex formation. Finally, by calculating a pair-wise decomposition of interactions, interaction pathways originating in the binding epitope of Raf are found that protrude through the protein structure towards the loop L1. This explains the finding of a conformational change in this region upon complex formation with Ras, and it may trigger a larger structural change in Raf, which is considered to be necessary for activation of the effector by Ras.  相似文献   

7.
Empirical free energy calculation: comparison to calorimetric data.   总被引:4,自引:2,他引:2       下载免费PDF全文
An effective free energy potential, developed originally for binding free energy calculation, is compared to calorimetric data on protein unfolding, described by a linear combination of changes in polar and nonpolar surface areas. The potential consists of a molecular mechanics energy term calculated for a reference medium (vapor or nonpolar liquid), and empirical terms representing solvation and entropic effects. It is shown that, under suitable conditions, the free energy function agrees well with the calorimetric expression. An additional result of the comparison is an independent estimate of the side-chain entropy loss, which is shown to agree with a structure-based entropy scale. These findings confirm that simple functions can be used to estimate the free energy change in complex systems, and that a binding free energy evaluation model can describe the thermodynamics of protein unfolding correctly. Furthermore, it is shown that folding and binding leave the sum of solute-solute and solute-solvent van der Waals interactions nearly invariant and, due to this invariance, it may be advantageous to use a nonpolar liquid rather than vacuum as the reference medium.  相似文献   

8.
In this paper we discuss the problem of including solvation free energies in evaluating the relative stabilities of loops in proteins. A conformational search based on a gas-phase potential function is used to generate a large number of trial conformations. As has been found previously, the energy minimization step in this process tends to pack charged and polar side chains against the protein surface, resulting in conformations which are unstable in the aqueous phase. Various solvation models can easily identify such structures. In order to provide a more severe test of solvation models, gas phase conformations were generated in which side chains were kept extended so as to maximize their interaction with the solvent. The free energies of these conformations were compared to that calculated for the crystal structure in three loops of the protein E. coli RNase H, with lengths of 7, 8, and 9 residues. Free energies were evaluated with a finite difference Poisson-Boltzmann (FDPB) calculation for electrostatics and a surface area-based term for nonpolar contributions. These were added to a gas-phase potential function. A free energy function based on atomic solvation parameters was also tested. Both functions were quite successful in selecting, based on a free energy criterion, conformations quite close to the crystal structure for two of the three loops. For one loop, which is involved in crystal contacts, conformations that are quite different from the crystal structure were also selected. A method to avoid precision problems associated with using the FDPB method to evaluate conformational free energies in proteins is described. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Five models have been built by the ICM method for the Comparative Modeling section of the Meeting on the Critical Assessment of Techniques for Protein Structure Prediction. The targets have homologous proteins with known three-dimensional structure with sequence identity ranging from 25 to 77%. After alignment of the target sequence with the related three-dimensional structure, the modeling procedure consists of two subproblems: side-chain prediction and loop prediction. The ICM method approaches these problems with the following steps: (1) a starting model is created based on the homologous structure with the conserved portion fixed and the noncon-served portion having standard covalent geometry and free torsion angles; (2) the Biased Probability Monte Carlo (BPMC) procedure is applied to search the subspaces of either all the nonconservative side-chain torsion angles or torsion angles in a loop backbone and surrounding side chains. A special algorithm was designed to generate low-energy loop deformations. The BPMC procedure globally optimizes the energy function consisting of ECEPP/3 and solvation energy terms. Comparison of the predictions with the NMR or crystallographic solutions reveals a high proportion of correctly predicted side chains. The loops were not correctly predicted because imprinted distortions of the backbone increased the energy of the near-native conformation and thus made the solution unrecognizable. Interestingly, the energy terms were found to be reliable and the sampling of conformational space sufficient. The implications of this finding for the strategies of future comparative modeling are discussed. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Hu X  Kuhlman B 《Proteins》2006,62(3):739-748
Loss of side-chain conformational entropy is an important force opposing protein folding and the relative preferences of the amino acids for being buried or solvent exposed may be partially determined by which amino acids lose more side-chain entropy when placed in the core of a protein. To investigate these preferences, we have incorporated explicit modeling of side-chain entropy into the protein design algorithm, RosettaDesign. In the standard version of the program, the energy of a particular sequence for a fixed backbone depends only on the lowest energy side-chain conformations that can be identified for that sequence. In the new model, the free energy of a single amino acid sequence is calculated by evaluating the average energy and entropy of an ensemble of structures generated by Monte Carlo sampling of amino acid side-chain conformations. To evaluate the impact of including explicit side-chain entropy, sequences were designed for 110 native protein backbones with and without the entropy model. In general, the differences between the two sets of sequences are modest, with the largest changes being observed for the longer amino acids: methionine and arginine. Overall, the identity between the designed sequences and the native sequences does not increase with the addition of entropy, unlike what is observed when other key terms are added to the model (hydrogen bonding, Lennard-Jones energies, and solvation energies). These results suggest that side-chain conformational entropy has a relatively small role in determining the preferred amino acid at each residue position in a protein.  相似文献   

11.
Rigid-body methods, particularly Fourier correlation techniques, are very efficient for docking bound (co-crystallized) protein conformations using measures of surface complementarity as the target function. However, when docking unbound (separately crystallized) conformations, the method generally yields hundreds of false positive structures with good scores but high root mean square deviations (RMSDs). This paper describes a two-step scoring algorithm that can discriminate near-native conformations (with less than 5 A RMSD) from other structures. The first step includes two rigid-body filters that use the desolvation free energy and the electrostatic energy to select a manageable number of conformations for further processing, but are unable to eliminate all false positives. Complete discrimination is achieved in the second step that minimizes the molecular mechanics energy of the retained structures, and re-ranks them with a combined free-energy function which includes electrostatic, solvation, and van der Waals energy terms. After minimization, the improved fit in near-native complex conformations provides the free-energy gap required for discrimination. The algorithm has been developed and tested using docking decoys, i.e., docked conformations generated by Fourier correlation techniques. The decoy sets are available on the web for testing other discrimination procedures. Proteins 2000;40:525-537.  相似文献   

12.
Pitera JW  Kollman PA 《Proteins》2000,41(3):385-397
We have extended and applied a multicoordinate free energy method, chemical Monte Carlo/Molecular Dynamics (CMC/MD), to calculate the relative free energies of different amino acid side-chains. CMC/MD allows the calculation of the relative free energies for many chemical species from a single free energy calculation. We have previously shown its utility in host:guest chemistry (Pitera and Kollman, J Am Chem Soc 1998;120:7557-7567)1 and ligand design (Eriksson et al., J Med Chem 1999;42:868-881)2, and here demonstrate its utility in calculations of amino acid properties and protein stability. We first study the relative solvation free energies of N-methylated and acetylated alanine, valine, and serine amino acids. With careful inclusion of rotameric states, internal energies, and both the solution and vacuum states of the calculation, we calculate relative solvation free energies in good agreement with thermodynamic integration (TI) calculations. Interestingly, we find that a significant amount of the unfavorable solvation of valine seen in prior work (Sun et al., J Am Chem Soc 1992;114:6798-6801)3 is caused by restraining the backbone in an extended conformation. In contrast, the solvation free energy of serine is calculated to be less favorable than expected from experiment, due to the formation of a favorable intramolecular hydrogen bond in the vacuum state. These monomer calculations emphasize the need to accurately consider all significant conformations of flexible molecules in free energy calculations. This development of the CMC/MD method paves the way for computations of protein stability analogous to the biochemical technique of "exhaustive mutagenesis." We have carried out just such a calculation at position 133 of T4 lysozyme, where we use CMC/MD to calculate the relative stability of eight different side-chain mutants in a single free energy calculation. Our T4 calculations show good agreement with the prior free energy calculations of Veenstra et al. (Prot Eng 1997;10:789-807)4 and excellent agreement with the experiments of Mendel et al. (Science 1992;256:1798-1802).  相似文献   

13.
We apply continuum solvent models to investigate the relative stability of various conformational forms for two RNA sequences, GGAC(UUCG)GUCC and GGUG(UGAA)CACC. In the first part, we compare alternate hairpin conformations to explore the reliability of these models to discriminate between different local conformations. A second part looks at the hairpin-duplex conversion for the UUCG sequence, identifying major contributors to the thermodynamics of a much large scale transition. Structures were taken as snapshots from multi-nanosecond molecular dynamics simulations computed in a consistent fashion using explicit solvent and with long-range electrostatics accounted for using the Particle-Mesh Ewald procedure. The electrostatic contribution to solvation energies were computed using both a finite-difference Poisson-Boltzmann (PB) model and a pairwise Generalized Born model; non-electrostatic contributions were estimated with a surface-area dependent term. To these solvation free energies were added the mean solute internal energies (determined from a molecular mechanics potential) and estimates of the solute entropy (from a harmonic analysis). Consistent with experiment and with earlier solvated molecular dynamics simulations, the UUCG hairpin was found to prefer conformers close to a recent NMR structure determination in preference to those from an earlier NMR study. Similarly, results for the UGAA hairpin favored an NMR-derived structure over that to be expected for a generic GNRA hairpin loop. Experimental free energies are not known for the hairpin/duplex conversion, but must be close to zero since hairpins are seen in solution and duplexes in crystals; out calculations find a value near zero and illustrate the expected interplay of solvation, salt effects and entropy in affecting this equilibrium.  相似文献   

14.
A model for an antibody specific for the carcinoembryonic antigen (CEA) has been constructed using a method which combines the concept of canonical structures with conformational search. A conformational search technique is introduced which couples random generation of backbone loop conformations to a simulated annealing method for assigning side chain conformations. This technique was used both to verify conformations selected from the set of known canonical structures and to explore conformations available to the H3 loop in CEA ab initio. Canonical structures are not available for H3 due to its variability in length, sequence, and observed conformation in known antibody structures. Analysis of the results of conformational search resulted in three equally probable conformations for H3 loop in CEA. Force field energies, solvation free energies, exposure of charged residues and burial of hydrophobic residues, and packing of hydrophobic residues at the base of the loop were used as selection criteria. The existence of three equally plausible structures may reflect the high degree of flexibility expected for an exposed loop of this length. The nature of the combining site and features which could be important to interaction with antigen are discussed.  相似文献   

15.
Continuum solvation models that estimate free energies of solvation as a function of solvent accessible surface area are computationally simple enough to be useful for predicting protein conformation. The behavior of three such solvation models has been examined by applying them to the minimization of the conformational energy of bovine pancreatic trypsin inhibitor. The models differ only with regard to how the constants of proportionality between free energy and surface area were derived. Each model was derived by fitting to experimentally measured equilibrium solution properties. For two models, the solution property was free energy of hydration. For the third, the property was NMR coupling constants. The purpose of this study is to determine the effect of applying these solvation models to the nonequilibrium conformations of a protein arising in the course of global searches for conformational energy minima. Two approaches were used: (1) local energy minimization of an ensemble of conformations similar to the equilibrium conformation and (2) global search trajectories using Monte Carlo plus minimization starting from a single conformation similar to the equilibrium conformation. For the two models derived from free energy measurements, it was found that both the global searches and local minimizations yielded conformations more similar to the X-ray crystallographic structures than did searches or local minimizations carried out in the absence of a solvation component of the conformational energy. The model derived from NMR coupling constants behaved similarly to the other models in the context of a global search trajectory. For one of the models derived from measured free energies of hydration, it was found that minimization of an ensemble of near-equilibrium conformations yielded a new ensemble in which the conformation most similar to the X-ray determined structure PTI4 had the lowest total free energy. Despite the simplicity of the continuum solvation models, the final conformation generated in the trajectories for each of the models exhibited some of the characteristics that have been reported for conformations obtained from molecular dynamics simulations in the presence of a bath of explicit water molecules. They have smaller root mean square (rms) deviations from the experimentally determined conformation, fewer incorrect hydrogen bonds, and slightly larger radii of gyration than do conformations derived from search trajectories carried out in the absence of solvent.  相似文献   

16.
Nidhi Singh  Arieh Warshel 《Proteins》2010,78(7):1724-1735
One of the most important requirements in computer‐aided drug design is the ability to reliably evaluate the binding free energies. However, the process of ligand binding is very complex because of the intricacy of the interrelated processes that are difficult to predict and quantify. In fact, the deeper understanding of the origin of the observed binding free energies requires the ability to decompose these free energies to their contributions from different interactions. Furthermore, it is important to evaluate the relative entropic and enthalpic contributions to the overall free energy. Such an evaluation is useful for assessing temperature effects and exploring specialized options in enzyme design. Unfortunately, calculations of binding entropies have been much more challenging than calculations of binding free energies. This work is probably the first to present microscopic evaluation of all of the relevant components to the binding entropy, namely configurational, polar solvation, and hydrophobic entropies. All of these contributions are evaluated by the restraint release approach. The calculated results shed an interesting light on major compensation effects in both the solvation and hydrophobic effect and, despite some overestimate, can provide very useful insight. This study also helps in analyzing some problems with the widely used molecular mechanics/Poisson‐Boltzmann surface area approach. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Side-chain modeling with an optimized scoring function   总被引:1,自引:0,他引:1       下载免费PDF全文
Modeling side-chain conformations on a fixed protein backbone has a wide application in structure prediction and molecular design. Each effort in this field requires decisions about a rotamer set, scoring function, and search strategy. We have developed a new and simple scoring function, which operates on side-chain rotamers and consists of the following energy terms: contact surface, volume overlap, backbone dependency, electrostatic interactions, and desolvation energy. The weights of these energy terms were optimized to achieve the minimal average root mean square (rms) deviation between the lowest energy rotamer and real side-chain conformation on a training set of high-resolution protein structures. In the course of optimization, for every residue, its side chain was replaced by varying rotamers, whereas conformations for all other residues were kept as they appeared in the crystal structure. We obtained prediction accuracy of 90.4% for chi(1), 78.3% for chi(1 + 2), and 1.18 A overall rms deviation. Furthermore, the derived scoring function combined with a Monte Carlo search algorithm was used to place all side chains onto a protein backbone simultaneously. The average prediction accuracy was 87.9% for chi(1), 73.2% for chi(1 + 2), and 1.34 A rms deviation for 30 protein structures. Our approach was compared with available side-chain construction methods and showed improvement over the best among them: 4.4% for chi(1), 4.7% for chi(1 + 2), and 0.21 A for rms deviation. We hypothesize that the scoring function instead of the search strategy is the main obstacle in side-chain modeling. Additionally, we show that a more detailed rotamer library is expected to increase chi(1 + 2) prediction accuracy but may have little effect on chi(1) prediction accuracy.  相似文献   

18.
All-atom free-energy methods offer a promising alternative to kinetic molecular mechanics simulations of protein folding and association. Here we report an accurate, transferable all-atom biophysical force field (PFF02) that stabilizes the native conformation of a wide range of proteins as the global optimum of the free-energy landscape. For 32 proteins of the ROSETTA decoy set and six proteins that we have previously folded with PFF01, we find near-native conformations with an average backbone RMSD of 2.14 Å to the native conformation and an average Z-score of −3.46 to the corresponding decoy set. We used nonequilibrium sampling techniques starting from completely extended conformations to exhaustively sample the energy surface of three nonhomologous hairpin-peptides, a three-stranded β-sheet, the all-helical 40 amino-acid HIV accessory protein, and a zinc-finger ββα motif, and find near-native conformations for the minimal energy for each protein. Using a massively parallel evolutionary algorithm, we also obtain a near-native low-energy conformation for the 54 amino-acid engrailed homeodomain. Our force field thus stabilized near-native conformations for a total of 20 proteins of all structure classes with an average RMSD of only 3.06 Å to their respective experimental conformations.  相似文献   

19.
Recent NMR studies of the solution structure of the 14-amino acid antifreeze glycoprotein AFGP-8 have concluded that the molecule lacks long-range order. The implication that an apparently unstructured molecule can still have a very precise function as a freezing inhibitor seems startling at first consideration. To gain insight into the nature of conformations and motions in AFGP-8, we have undertaken molecular dynamics simulations augmented with free energy calculations using a continuum solvation model. Starting from 10 different NMR structures, 20 ns of dynamics of AFGP were explored. The dynamics show that AFGP structure is composed of four segments, joined by very flexible pivots positioned at alanine 5, 8, and 11. The dynamics also show that the presence of prolines in this small AFGP structure facilitates the adoption of the poly-proline II structure as its overall conformation, although AFGP does adopt other conformations during the course of dynamics as well. The free energies calculated using a continuum solvation model show that the lowest free energy conformations, while being energetically equal, are drastically different in conformations. In other words, this AFGP molecule has many structurally distinct and energetically equal minima in its energy landscape. In addition, conformational, energetic, and hydrogen bond analyses suggest that the intramolecular hydrogen bonds between the N-acetyl group and the protein backbone are an important integral part of the overall stability of the AFGP molecule. The relevance of these findings to the mechanism of freezing inhibition is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号