首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Infection caused by noroviruses (NoVs) is one of the most important causes of acute gastroenteritis in humans worldwide. To gain insight into the epidemiology of and genetic variation in NoV strains, stool samples collected from 18 outbreaks of acute gastroenteritis in Huzhou, China, between January 2008 and December 2012 were analyzed. Samples were tested for NoVs by real-time RT-PCR. Partial sequences of the RNA- dependent RNA polymerase (RdRp) and capsid gene of the positive samples were amplified by RT-PCR, and the PCR products were sequenced and used for phylogenetic analysis. NoVs were found to be responsible of 88.8% of all nonbacterial acute gastroenteritis outbreaks in Huzhou over the last 5 years. Genogroup II outbreaks largely predominated and represented 93% of all outbreaks. A variety of genotypes were found among genogroups I and II, including GI.4, GI.8, GII.4, and GII.b. Moreover, phylogenetic analyses identified two recombinant genotypes (polymerase/capsid): GI.2/GI.6 and GII.e/GII.4 2012 Sydney. GII.4 was predominant and involved in 8/10 typed outbreaks. During the study period, GII.4 NoV variants 2006b, New Orleans 2009, and Sydney 2012 were identified. This is the first report of the detection of GII.4 New Orleans 2009 variant, GII.e/GII.4 Sydney 2012 recombinant in outbreaks of acute gastroenteritis in China.  相似文献   

2.
Noroviruses (NoVs) are the leading cause of acute gastroenteritis, both in sporadic cases and outbreaks. Since the 1990s, the emergence of several GII.4 variants has been reported worldwide. To investigate the epidemic status of NoV, 6,724 stool samples collected from outbreaks in Yokohama, Japan, from the 2006–2007 to 2013–2014 seasons were assessed for NoVs. We genotyped one specimen from each GII outbreak and conducted a sequence analysis of the VP1 gene for several GII.4 strains. Of the 947 NoV outbreaks during our study, GII was detected in 835, and GII.4 was the predominant genotype of GII. Five different GII.4 variants, Yerseke 2006a, Den Haag 2006b (2006b), Apeldoorn 2007, New Orleans 2009, and Sydney 2012, were detected. During this study period, the most prevalent variant of GII.4 was 2006b, and in each individual season, either 2006b or Sydney 2012 was the predominant variant. Out of the 16 detected 2006b strains, 12 had some amino acid substitutions in their blockade epitope, and these substitutions were concentrated in three residues. Two of the 2006b strains detected in the 2012–2013 season had a S368E substitution, which is consistent with the amino acid residues at same site of NSW0514 (Sydney 2012 prototype). Among the 16 detected strains of Sydney 2012, a phylogenetic analysis showed that all five strains detected in Yokohama during the 2011–2012 season clustered away from the other Sydney 2012 strains that were detected in the 2012–2013 and 2013–2014 seasons. These five strains and other Sydney 2012 strains in Yokohama had a few amino acid differences in the blockade epitopes compared with NSW0514. The amino acid substitutions observed in this study provide informative data about the evolution of a novel GII.4 variant.  相似文献   

3.
Noroviruses (NoVs) are important cause of gastroenteritis in humans worldwide. Genotype GII.4 is responsible for the majority of outbreaks reported to date. This study describes, for the first time in Brazil, the circulation of NoV GII.4 variant Sydney 2012 in faecal samples collected from children aged less than or equal to eight years in Rio Branco, state of Acre, northern Brazil, during July-September 2012.  相似文献   

4.
BackgroundNoroviruses (NoVs) are considered major causative pathogens associated with the morbidity and mortality of young children with acute gastroenteritis. However, few studies have examined NoVs causing acute diarrhea among outpatient children worldwide. This study was conducted to investigate the clinical features and molecular epidemiology of NoVs in outpatient children with acute gastroenteritis in Huzhou, China, between April 2013 and April 2014.MethodsStool specimens from 1346 outpatient children enrolled (under 5 years of age) with acute gastroenteritis were examined for NoVs by multiplex RT-PCR, and sequences of the partial capsids of NoVs were analyzed phylogenetically, while the relevant clinical data were analyzed statistically.ResultsOf 1346 specimens, 383 (28.5%, 383/1346) were positive for NoVs. The proportion of GII genotypes (26.9%) was significantly higher than that of GI genotypes (1.6%). The GII.4 genotype was the most prevalent of GII genotypes and was clustered into GII.4/Sydney (37.8%) and GII.4/2006b (62.2%), whereas GI strains were clustered into GI.1. Additionally, the younger children (12 to <24 months of age) were more susceptible to NoVs than children in other age groups, and the highest percentage of NoV infections occurred in April 2013. The diarrheal frequency (times/d) and WBC counts of the infected outpatient group with NoVs were significantly higher than were those of the uninfected outpatient group.ConclusionNoVs were confirmed to be the major viral agents responsible for acute gastroenteritis in outpatient children in Huzhou, China, and GII.4/Sydney and GII.4/2006b variants were identified as the predominant strains in this study.  相似文献   

5.
The present study demonstrates that multiple NoV genotypes belonging to genogroup II contributed to an acute gastroenteritis outbreak at a US military facility in Turkey that was associated with significant negative operational impact. Norovirus (NoV) is an important pathogen associated with acute gastroenteritis among military populations. We describe the genotypes of NoV outbreak occurred at a United States military facility in Turkey. Stool samples were collected from 37 out of 97 patients presenting to the clinic on base with acute gastroenteritis and evaluated for bacterial and viral pathogens. NoV genogroup II (GII) was identified by RT-PCR in 43% (16/37) stool samples. Phylogenetic analysis of a 260 base pair fragment of the NoV capsid gene from ten stool samples indicated the circulation of multiple and rare genotypes of GII NoV during the outbreak. We detected four GII.8 isolates, three GII.15, two GII.9 and a sole GII.10 NoV. Viral sequences could be grouped into four clusters, three of which have not been previously reported in Turkey. The fact that current NoV outbreak was caused by rare genotypes highlights the importance of norovirus strain typing. While NoV genogroup II is recognized as causative agent of outbreak, circulation of current genotypes has been rarely observed in large number of outbreaks.  相似文献   

6.
Norovirus (NoV) infections are a major cause of acute gastroenteritis outbreaks around the world. In Brazil, the surveillance system for acute diarrhoea does not include the diagnosis of NoV, precluding the ability to assess its impact on public health. The present study assessed the circulation of NoV genotypes in different Brazilian states by partial nucleotide sequencing analysis of the genomic region coding for the major capsid viral protein. NoV genogroup II genotype 4 (GII.4) was the prevalent (78%) followed by GII.6, GII.7, GII.12, GII.16 and GII.17, demonstrating the great diversity of NoV genotypes circulating in Brazil. Thus, this paper highlights the importance of a virological surveillance system to detect and characterize emerging strains of NoV and their spreading potential.  相似文献   

7.
Noroviruses are recognized as one of the leading causes of viral acute gastroenteritis, responsible for almost 50% of acute gastroenteritis outbreaks worldwide. The positive single-strand RNA genome of noroviruses presents a high mutation rate and these viruses are constantly evolving by nucleotide mutation and genome recombination. Norovirus recombinant strains have been detected as causing acute gastroenteritis outbreaks in several countries. However, in Brazil, only one report of a norovirus recombinant strain (GII.P7/GII.20) has been described in the northern region so far. For this study, 38 norovirus strains representative of outbreaks, 11 GII.4 and 27 non-GII.4, were randomly selected and amplified at the ORF1/ORF2 junction. Genetic recombination was identified by constructing phylogenetic trees of the polymerase and capsid genes, and further SimPlot and Bootscan analysis of the ORF1/ORF2 overlap. Sequence analysis revealed that 23 out of 27 (85%) non-GII.4 noroviruses were recombinant strains, characterized as: GII.P7/GII.6 (n = 9); GIIP.g/GII.12 (n = 4); GII.P16/GII.3 (n = 4); GII.Pe/GII.17 (n = 2); GII.P7/GII.14 (n = 1); GII.P13/GII.17 (n = 1); GII.P21/GII.3 (n = 1); and GII.P21/GII.13 (n = 1). On the other hand, among the GII.4 variants analyzed (Den Haag_2006b and New Orleans_2009) no recombination was observed. These data revealed the great diversity of norovirus recombinant strains associated with outbreaks, and describe for the first time these recombinant types circulating in Brazil. Our results obtained in southern Brazil corroborate the previous report for the northern region, demonstrating that norovirus recombinant strains are circulating more frequently than we expected. In addition, these results emphasize the relevance of including ORF1/ORF2-based analysis in surveillance studies as well as the importance of characterizing strains from other Brazilian regions to obtain epidemiological data for norovirus recombinant strains circulating in the country.  相似文献   

8.
Noroviruses (NoVs) cause epidemic acute gastroenteritis, in which histo-blood group antigens (HBGAs) may play an important role in the host susceptibility. To further explore this issue, two outbreaks of acute gastroenteritis caused by a GII.4 and a GII.3 NoV, respectively, in China in 2009 were studied. Stool and saliva samples from symptomatic patients and water samples from the outbreak facilities were collected. RT-PCR showed that 23 out of 33 (GII.4 outbreak) and 12 out of 13 (GII.3outbreak) stool samples were NoV positive. For the GII.4 outbreak the NoV sequences of stool and water samples were from an identical GII.4 strain, while the same GII.3 NoV sequences were found in five stool samples from the GII.3 outbreak. The HBGA phenotypes (A, B, Lea, Leb, Lex, and Ley) of all saliva samples were determined, which revealed both secretors and nonsecretors in the symptomatic groups of the two outbreaks. In the GII.3 outbreak, type O individuals appeared less susceptible, while the type A may be more at risk of infection. However, No preference of HBGAs was observed in the GII.4 outbreak. The observation that nonsecretors were infected in both outbreaks differed from the previous results that nonsecretors are resistant to these two GII NoVs.  相似文献   

9.
【背景】诺如病毒(Norovirus,NoV)是全球范围内引起急性胃肠炎暴发的主要病原体之一,其中GII.4型通过不断变异在人群中持续存在并占据诺如病毒感染的主导地位,尤其GII.4 Sydney2012[P31]变异株自2012年出现以来在全球各地持续流行至今。【目的】制备广州地区GII.4 Sydney2012[P31]型诺如病毒毒株GZ2013-L10的病毒样颗粒(virus like particle,VLP),并系统表征其功能及免疫原性特点。【方法】从毒株GZ2013-L10中扩增ORF2基因并克隆构建重组转座载 PFastBac1-L10-ORF2,进一步转化至大肠杆菌DH10Bac构建重组杆状病毒质粒,进而在昆虫细胞sf9中表达病毒样颗粒并通过超速离心纯化,最后经透射电镜、Western blotting和受体结合实验对病毒样颗粒进行表征。此外,将免疫小鼠获得的病毒抗血清通过间接酶联免疫吸附测定(enzyme-linked immunosorbent assay,ELISA)和受体结合阻断试验进行验证。【结果】成功构建了重组杆状病毒质粒Bacmid-L10-ORF2并获得病毒样颗粒,电镜结果表明病毒样颗粒直径约为30 nm,SDS-PAGE和Western blotting显示蛋白大小约为58 kDa。受体结合实验结果显示,病毒样颗粒能与A/B/O等分泌型唾液受体及猪胃黏膜蛋白结合,而与非分泌型唾液受体均不结合。免疫小鼠获得效价为1.3×105的抗血清,但ELISA结果显示其与不同基因型诺如病毒衣壳蛋白无交叉免疫活性。此外,抗血清对同型病毒样颗粒具有受体中和阻断作用,但对不同型别病毒样颗粒(包括GII.8、GII.17和GII.3)无中和效果。【结论】本研究制备并系统表征了广州地区GZ2013-L10毒株的病毒样颗粒及其抗血清,其研究结果可为解析其流行原因以及疫苗研发提供参考。  相似文献   

10.
11.
This 15-year study aimed to determine the role of the main viruses responsible for acute infantile gastroenteritis cases in a day care center in the city of Rio de Janeiro, Brazil. From 1994 to 2008, 539 fecal samples were obtained from 23 outbreaks as well as sporadic cases that occurred in this period. The detection of Rotavirus group A (RVA), norovirus (NoV) and astrovirus (AstV) was investigated both by classical and molecular methods of viral detection. RVA was detected by enzymatic immune assay and/or polyacrylamide gel electrophoresis and genotyped by using semi-nested multiplex PCR. NoV and AstV were subsequently tested by real time PCR in all RVA-negative samples and genotyped throughout genome sequencing. Three protocols for molecular characterization of NoV nucleotide sequencing were performed with the partial nucleotide sequencing of genomic regions known as region B (polymerase gen), C and D (capsid gen).Viruses were identified in 47.7% (257/539) of the cases, and the detection rates of RVA, NoV and AstV in16.1% (87/539), 33.4% (151/452), and 6.3% (19/301), respectively. Most gastroenteritis cases were reported in autumn and winter, although NoV presented a broader monthly distribution. Viruses' detection rates were significantly higher among children aged less than 24 months old, although NoV cases were detected in all age groups. RVA genotypes as G1P[8], G9P[8], G2P[4], G3P[8] and G1+G3P[8] and RVA was no longer detected after 2005. NoV characterization revealed genotypes variability circulating in the period as GI.2, GI.3, GI.8 GII.2, GII.3, GII.4, GII.4 variants 2001 and 2006b, GII.6, GII.7, GII.12 and GII.17. AstV genotypes 1, 2, 4 and 5 were also characterized. Those data demonstrate the impact of NoV infection in cases of infantile gastroenteritis, surpassing RVA infection responsible for high morbidity rate in children under five years old.  相似文献   

12.
The present study has determined the detection rate of norovirus (NoV) with acute gastroenteritis (AGE) in hospitalized children and describes the molecular epidemiology of NoV circulating in Seoul, Korea. Six hundred and eighty‐three (9.8%) of samples were positive for NoV. Of these, the NoV GII genogroup was the most commonly found, with a prevalence of 96.2% (683 of 710). Only 27 samples were positive for the NoV GI genogroup. Ten kinds of GI genotype (GI/1, GI/2, GI/3, GI/4, GI/5, GI/6, GI/7, GI/9, GI/12, and GI/13) and eight kinds of GII genotype (GII/2, GII/3, GII/4, GII/8, GII/14, GII/15, GII/16, and GII/17) were identified in children with AGE during the years 2008–2011.  相似文献   

13.
BackgroundThe epidemiology of cases of acute gastroenteritis (AGE) of viral etiology is a relevant public health issue. Due to underreporting, the study of outbreaks is an accepted approach to investigate their epidemiology. The objective of this study was to investigate the epidemiological characteristics of AGE outbreaks due to norovirus (NoV) and sapovirus (SV) in Catalonia.ResultsA total of 101 outbreaks were registered affecting a total of 2756 persons and 12 hospitalizations (hospitalization rate: 0.8x1,000,000 persons-year); 49.5% of outbreaks were foodborne, 45.5% person to person and 5% waterborne. The distribution of outbreaks according to the setting showed a predominance of catering services (39.6%), nursing homes and long term care facilities (26.8%) and schools (11.9%). The median number of cases per outbreak was 17 (range 2–191). The total Incidence rate (IR) was 18.3 per 100,000 persons-years (95%CI: 17.6–19.0). The highest IR was in persons aged ≥65 years (43.6x100,000 (95% CI: 41.0–46.2)) (p<0.001). A total of 1065 samples were analyzed with a positivity rate of 60.8%. 98% of positive samples were NoV (GII 56.3%; GI 4.2%; GII+GI 4.2%; non- typable 33.0%). SV was identified in two person-to-person transmission outbreaks in children.ConclusionsThese results confirm the relevance of viral AGE outbreaks, both foodborne and person-to-person, especially in institutionalized persons. SV should be taken into account when investigating viral AGE outbreaks.  相似文献   

14.
15.
Noroviruses (NoVs) are a leading cause of epidemic and sporadic cases of acute gastroenteritis worldwide. Oysters are well recognized as the main vectors of environmentally transmitted NoVs, and disease outbreaks linked to oyster consumption have been commonly observed. Here, to quantify the genetic diversity, temporal distribution, and circulation of oyster-related NoVs on a global scale, 1,077 oyster-related NoV sequences deposited from 1983 to 2014 were downloaded from both NCBI GenBank and the NoroNet outbreak database and were then screened for quality control. A total of 665 sequences with reliable information were obtained and were subsequently subjected to genotyping and phylogenetic analyses. The results indicated that the majority of oyster-related NoV sequences were obtained from coastal countries and regions and that the numbers of sequences in these regions were unevenly distributed. Moreover, >80% of human NoV genotypes were detected in oyster samples or oyster-related outbreaks. A higher proportion of genogroup I (GI) (34%) was observed for oyster-related sequences than for non-oyster-related outbreaks, where GII strains dominated with an overwhelming majority of >90%, indicating that the prevalences of GI and GII are different in humans and oysters. In addition, a related convergence of the circulation trend was found between oyster-related NoV sequences and human pandemic outbreaks. This suggests that oysters not only act as a vector of NoV through environmental transmission but also serve as an important reservoir of human NoVs. These results highlight the importance of oysters in the persistence and transmission of human NoVs in the environment and have important implications for the surveillance of human NoVs in oyster samples.  相似文献   

16.
The GII.4 noroviruses (NoVs) are a single genotype that is responsible for over 50% of NoV gastroenteritis epidemics worldwide. However, GII.4 NoVs have been found to undergo antigenic drifts, likely selected by host herd immunity, which raises an issue for vaccine strategies against NoVs. We previously characterized GII.4 NoV antigenic variations and found significant levels of antigenic relatedness among different GII.4 variants. Further characterization of the genetic and antigenic relatedness of recent GII.4 variants (2008b and 2010 cluster) was performed in this study. The amino acid sequences of the receptor binding interfaces were highly conserved among all GII.4 variants from the past two decades. Using serum samples from patients enrolled in a GII.4 virus challenge study, significant cross-reactivity between major GII.4 variants from 1998 to 2012 was observed using enzyme-linked immunosorbent assays and HBGA receptor blocking assays. The overall abilities of GII.4 NoVs to bind to the A/B/H HBGAs were maintained while their binding affinities to individual ABH antigens varied. These results highlight the importance of human HBGAs in NoV evolution and how conserved antigenic types impact vaccine development against GII.4 variants.  相似文献   

17.
18.
Norovirus (NoV) is recognised as a leading cause of gastroenteritis worldwide across all age groups. The prevalence and diversity of NoVs in many African countries is still unknown, although early sero-prevalence studies indicated widespread early infection. Reports on NoVs in Africa vary widely in terms of study duration, population groups and size, inclusion of asymptomatic controls, as well as genotyping information. This review provides an estimate of NoV prevalence and distribution of genotypes of NoVs in Africa. Inclusion criteria for the review were study duration of at least 6 months, population size of >50 and diagnosis by RT-PCR. As regions used for genotyping varied, or genotyping was not always performed, this was not considered as an inclusion criteria. A literature search containing the terms norovirus+Africa yielded 74 publications. Of these 19 studies from 14 out of the 54 countries in Africa met the inclusion criteria. Data from studies not meeting the inclusion criteria, based on sample size or short duration, were included as discussion points. The majority of studies published focused on children, under five years of age, hospitalised with acute gastroenteritis. The mean overall prevalence was 13.5% (range 0.8–25.5%) in children with gastroenteritis and 9.7% (range 7–31%) in asymptomatic controls, where tested. NoV GII.4 was the predominant genotype identified in most of the studies that presented genotyping data. Other prevalent genotypes detected included GII.3 and GII.6. In conclusion, NoV is a common pathogen in children with diarrhoea in Africa, with considerable carriage in asymptomatic children. There is however, a paucity of data on NoV infection in adults.  相似文献   

19.
JS Eden  KL Lim  PA White 《Journal of virology》2012,86(18):10251-10252
Norovirus is an important human pathogen that is now recognized as the leading cause of acute gastroenteritis globally. Six viral genogroups have been described, although only genogroups GI, GII, and GIV are known to infect humans, with the GII viruses most commonly identified in both outbreak and sporadic settings. In contrast, infections by GIV viruses are rarely reported, and their overall prevalence in the community is unknown. Here, we report the complete genome sequence of the human GIV.1 strain Lake Macquarie virus, which caused two linked outbreaks of acute gastroenteritis in aged-care facilities in the Hunter region of New South Wales, Australia. The Lake Macquarie virus genome was 7,527 nucleotides (nt) in length and shared highest identity (70%) with the recently completed feline GIV.2 virus genome.  相似文献   

20.
Noroviruses (NoVs) are considered to be a major cause of acute nonbacterial gastroenteritis in humans. The NoV genus is genetically diverse, and genotype GII.4 has been most commonly identified worldwide in recent years. In this study we analyzed the complete capsid gene of NoV strains belonging to the less prevalent genotype GII.2. We compared a total of 36 complete capsid sequences of GII.2 sequences obtained from the GenBank (n = 5) and from outbreaks or sporadic cases that occurred in The Netherlands (n = 10) and in Osaka City, Japan (n = 21), between 1976 and 2005. Alignment of all capsid sequences did not show fixation of amino acid substitutions over time as an indication for genetic drift. In contrast, when strains previously recognized as recombinants were excluded from the alignment, genetic drift was observed. Substitutions were found at five informative sites (two in the P1 subdomain and three in the P2 subdomain), segregating strains into five genetic groups (1994 to 1997, 1999 to 2000, 2001 to 2003, 2004, and 2005). Only one amino acid position changed consistently between each group (position 345). Homology modeling of the GII.2 capsid protein showed that the five amino acids were located on the surface of the capsid and close to each other at the interface of two monomers. The data suggest that these changes were induced by selective pressure, driving virus evolution. Remarkably, this was observed only for nonrecombinant genomes, suggesting differences in behavior with recombinant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号