首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The N-terminal region of a 32 kDa cell-surface-binding protein, encoded by the D8L gene of vaccinia virus, shows sequence homology to CAs (carbonic anhydrases; EC 4.2.1.1). The active CAs catalyse the reversible hydration of CO2 to bicarbonate participating in many physiological processes. The CA-like domain of vaccinia protein [vaccCA (vaccinia virus CA-like protein)] contains one of the three conserved histidine residues required for co-ordination to the catalytic zinc ion and for enzyme activity. In the present study, we report the engineering of catalytically active vaccCA mutants by introduction of the missing histidine residues into the wild-type protein. The wild-type vaccCA was inactive as a catalyst and does not bind sulfonamide CA inhibitors. Its position on a phylogram with other hCAs (human CAs) shows a relationship with the acatalytic isoforms CA X and XI, suggesting that the corresponding viral gene was acquired from the human genome by horizontal gene transfer. The single mutants (vaccCA N92H/Y69H) showed low enzyme activity and low affinity for acetazolamide, a classical sulfonamide CA inhibitor. The activity of the double mutant, vaccCA N92H/Y69H, was much higher, of the same order of magnitude as that of some human isoforms, namely CA VA and CA XII. Moreover, its affinity for acetazolamide was high, comparable with that of the most efficient human isoenzyme, CA II (in the low nanomolar range). Multiplication of vaccinia virus in HeLa cells transfected with the vaccCA N92H/Y69H double mutant was approx. 2-fold more efficient than in wild-type vaccCA transfectants, suggesting that the reconstitution of the enzyme activity improved the virus life cycle.  相似文献   

3.
4.
The genome of the protozoan parasite Plasmodium falciparum, the causative agent of the most lethal type of human malaria, contains a single gene annotated as encoding a carbonic anhydrase (CAs, EC 4.2.1.1) thought to belong to the α-class, PfCA. Here we demonstrate the kinetic properties of PfCA for the CO2 hydration reaction, as well as an inhibition study of this enzyme with inorganic and complex anions and other molecules known to interact with zinc proteins, including sulfamide, sulfamic acid, and phenylboronic/arsonic acids, detecting several low micromolar inhibitors. A closer examination of the sequence of this and the CAs from other Plasmodium spp., as well as a phylogenetic analysis, revealed that these protozoa encode for a yet undisclosed, new genetic family of CAs termed the η-CA class. The main features of the η-CAs are described in this report.  相似文献   

5.
Since the cell assembly (CA) was hypothesised, it has gained substantial support and is believed to be the neural basis of psychological concepts. A CA is a relatively small set of connected neurons, that through neural firing can sustain activation without stimulus from outside the CA, and is formed by learning. Extensive evidence from multiple single unit recording and other techniques provides support for the existence of CAs that have these properties, and that their neurons also spike with some degree of synchrony. Since the evidence is so broad and deep, the review concludes that CAs are all but certain. A model of CAs is introduced that is informal, but is broad enough to include, e.g. synfire chains, without including, e.g. holographic reduced representation. CAs are found in most cortical areas and in some sub-cortical areas, they are involved in psychological tasks including categorisation, short-term memory and long-term memory, and are central to other tasks including working memory. There is currently insufficient evidence to conclude that CAs are the neural basis of all concepts. A range of models have been used to simulate CA behaviour including associative memory and more process- oriented tasks such as natural language parsing. Questions involving CAs, e.g. memory persistence, CAs’ complex interactions with brain waves and learning, remain unanswered. CA research involves a wide range of disciplines including biology and psychology, and this paper reviews literature directly related to the CA, providing a basis of discussion for this interdisciplinary community on this important topic. Hopefully, this discussion will lead to more formal and accurate models of CAs that are better linked to neuropsychological data.  相似文献   

6.
H.F. Bundy  S. Coté 《Phytochemistry》1980,19(12):2531-2534
Carbonic anhydrase (CA) was purified from the unicellular green alga Chlamydomonas reinhardii, and the purity of the preparation was established by gradient gel electrophoresis. The purified enzyme exhibited a MW of 165 000 and contained 6 atoms of Zn. The subunit MW, as determined by dodecyl sulfate electrophoresis, was 27 000. These results are consistent with a quarternary structure which is hexameric, each monomer containing 1 g atom of Zn. Like spinach CA, and in contrast to other oligomeric plant CAs, a sulfhydryl reducing agent is not needed to stabilize the enzyme. CO2-hydrase activity was inhibited by both acetazolamide (I50 = 7.8 × 10?9M) and sulfanilamide (I50 = 1.3 × 10?5M), as well as by certain inorganic anions. The purified enzyme showed relatively weak esterase activity with p-nitrophenyl acetate but was an extremely effective esterase with 2-hydroxy-5-nitro-α-toluenesulfonic acid sultone as the substrate. Both esterase activities could be completely inhibited by adding acetazolamide. In its gross structural characteristics, the C. reinhardii enzyme resembles the CAs from higher plants. However, in its esterase activity and the inhibition by sulfonamides it is markedly different from plant CAs and bears more resemblance to erythrocyte CAs.  相似文献   

7.
The carbonic anhydrases (CAs) constitute a family of almost ubiquitous enzymes of significant importance for many physiological and pathological processes. CAs reversely catalyse the conversion of CO2 + H2O to HCO3 and H+, thereby contributing to the regulation of intracellular pH. Above all, CAs are of key importance for cells that perform glycolysis that inevitably leads to the intracellular accumulation of lactate. CA XII is a plasma membrane-associated isoform of the enzyme, which is induced by hypoxia and oestrogen and, consequently, expressed at high levels on various types of cancer and, intriguingly, on cancer stem cells. The enzyme is directly involved in tumour progression, and its inhibition has an anti-tumour effect. Apart from its role in carcinogenesis, the enzyme contributes to various other diseases like glaucoma and arteriosclerotic plaques, among others. CA XII is therefore regarded as promising target for specific therapies. We have now generated the first monoclonal antibody (6A10) that binds to the catalytic domain of CA XII on vital tumour cells and inhibits CA XII enzyme activity at nanomolar concentrations and thus much more effective than acetazolamide. In vitro results demonstrate that inhibition of CA XII by 6A10 inhibits the growth of tumour cells in 3-dimensional structures. In conclusion, we generated the first specific and efficient biological inhibitor of tumour-associated CA XII. This antibody may serve as a valuable tool for in vivo diagnosis and adjuvant treatment of different types of cancer.  相似文献   

8.
Cross-reactions among carbonic anhydrases (CAs) I, II, and III were studied using a variety of antisera: (1) a rabbit antiserum to bovine CA III, (2) mouse antisera to human CA I, CA II, and CA III; and (3) five monoclonal antibodies prepared by the hybridoma technique using splenocytes from a mouse immunized with human CAs I and II and bovine CA III. Cross-reactions between CAs were readily found by binding assays using these antisera. Human CA I, but not human CA II, inhibited the reaction of the rabbit anti-CA III with its homologous antigen. Mouse antisera to CA I or CA II bound the homologous I or II with nearly as great efficiency as the autologous isozyme and sometimes weakly bound CA III. Mouse antisera to CA III frequently bound CA I or II. These cross-reactions were confirmed by the first use of hybridoma-prepared, monoclonal antibodies to CAs. The mouse monoclonal antibodies to CA isozymes varied in the amount of cross-reactivity among I, II, and III: at one extreme, one monoclonal was highly specific for the autologous CA III; at the other extreme, one monoclonal weakly reacted with some examples of CAs I, II, and III.This work was supported by NIH Grant GM-24681 and a grant from the National Foundation-March of Dimes.  相似文献   

9.
10.
Autocatalytic proteolytic cleavage is a frequently observed post-translational modification in proteins. Cephalosporin acylase (CA) is a recently identified member of the N-terminal hydrolase family that is activated from an inactive precursor by autoproteolytic processing, generating a new N-terminal residue, which is either a Ser or a Thr. The N-terminal Ser or Thr becomes a nucleophilic catalytic center for intramolecular and intermolecular amide cleavages. The gene structure of the open reading frame of CAs generally consists of a signal peptide followed by the alpha-subunit, a spacer sequence, and the beta-subunit, which are all translated into a single polypeptide chain, the CA precursor. The precursor is post-translationally modified into an active heterodimeric enzyme with alpha- and beta-subunits, first by intramolecular cleavage and second by intermolecular cleavage. We solved the first CA precursor structure (code 1KEH) from a class I CA from Pseudomonas diminuta at a 2.5-A resolution that provides insight into the mechanism of intramolecular cleavage. A conserved water molecule, stabilized by four hydrogen bonds in unusual pseudotetrahedral geometry, plays a key role to assist the OG atom of Ser(1beta) to generate a strong nucleophile. In addition, the site of the secondary intermolecular cleavage of CA is proposed to be the carbonyl carbon of Gly(158alpha) (Kim, S., and Kim, Y., (2001) J. Biol. Chem., 276, 48376-48381), which is different from the situation in two other class I CAs.  相似文献   

11.
The potential for enzymatic acceleration of carbon dioxide capture from combustion products of fossil fuels has been demonstrated. Carbonic anhydrase (CA) accelerates post combustion CO(2) capture, but available CAs are woefully inadequate for the harsh conditions employed in most of these processes. In this review, we summarize recent approaches to improve CA, and processes employing this enzyme, to maximize the benefit from this extremely fast biocatalyst. Approaches to overcoming limitations include sourcing CAs from thermophilic organisms, using protein engineering to evolve thermo-tolerant enzymes, immobilizing the enzyme for stabilization and confinement to cooler regions and process modifications that minimize the (thermo-, solvent) stress on the enzyme.  相似文献   

12.
The wild-type (WT) amylomaltase gene was directly isolated from soil DNA and cloned into a pET19b vector to express in E. coli BL21(DE3). The ORF of this gene consisted of 1,572 bp, encoding an enzyme of 523 amino acids. Though showing 99% sequence identity to amylomaltse from Thermus thermophilus ATCC 33923, this enzyme is unique in its alkaline optimum pH. In order to alter amylomaltase with less coupling or hydrolytic activity to enhance cycloamylose (CA) formation through cyclization reaction, site-directed mutagenesis of the second glucan binding site involving in CA production was performed at Tyr-101. The result revealed that the mutated Y101S enzyme showed a small increase in cyclization activity while significantly decreased disproportionation, coupling and hydrolytic activities. Mutation also resulted in the change in substrate specificity for disproportionation reaction. The WT enzyme preferred maltotriose, while the activity of mutated enzyme was the highest with maltopentaose substrate. Product analysis by HPAEC-PAD demonstrated that the main CAs of the WT amylomaltase were CA29-CA37. Y101S mutation did not change the product pattern, however, the amount of CAs formed by the mutated enzyme tended to increase especially at long incubation time. The article is published in the original.  相似文献   

13.
In a previous report, we describe the existence of an effect of ovarian steroids on the adrenal medulla activities of the enzymes involved in catecholamine (CA) catabolism. To complete that study, we have now examined the adrenal medulla activity of tyrosine hydroxylase (TH), the rate limiting enzyme of the CA synthesis, as well as the in vitro release of CAs from incubated adrenal medullas. The study has been performed with adrenal medullas from female rats with physiological (estrous cycle) or pharmacological (steroid treatment) alterations in their circulating levels of estrogens and progesterone. The in vitro release of CAs from incubated adrenal medullas of estradiol-treated rats was lower than that obtained in vehicle-treated animals. In consequence, the preovulatory increase of estradiol would be the responsible of the low in vitro release of CAs observed during the estrous phase of ovarian cycle. However, this steroid does not seem to affect the CA synthesis, since the adrenal medulla activity of TH was not altered after the estradiol treatment nor during the estrous cycle. On the contrary, progesterone treatment increased TH activity 24 h after the steroid injection. This effect was independent of estradiol. However, an estrogen-dependent increase in TH activity occurred short-time after the steroid administration. Although progesterone by itself failed to modify the in vitro release of both CAs, it was able to reverse the estradiol-induced decrease in epinephrine release. In summary, estradiol seems to decrease the ability of the adrenal medulla to release CAs to the peripheral blood, without affecting the CA synthesis, whereas progesterone mostly affects TH activity, being its effects temporary and partially depending on estrogens.  相似文献   

14.

Background

Carbonic anhydrases (CAs) are key enzymes for physiological pH regulation, including the process of urine acidification. Previous studies have identified seven cytosolic or membrane-bound CA isozymes in the kidney. Recently, we showed by in situ hybridization that the mRNA for the most novel CA isozyme, CA XV, is present in the renal cortex. CA XV is a unique isozyme among mammalian CAs, because it has become a pseudogene in primates even though expressed in several other species.

Methodology/Principal Findings

In the present study, we raised a polyclonal antibody against recombinant mouse CA XV that was produced in a baculovirus/insect cell expression system, and the antibody was used for immunohistochemical analysis in different mouse tissues. Positive immunoreactions were found only in the kidney, where the enzyme showed a very limited distribution pattern. Parallel immunostaining experiments with several other anti-CA sera indicated that CA XV is mainly expressed in the thick ascending limb of Henle and collecting ducts, and the reactions were most prominent in the cortex and outer medulla.

Conclusion/Significance

Although other studies have proposed a role for CA XV in cell proliferation, its tightly limited distribution may point to a specialized function in the regulation of acid-base homeostasis.  相似文献   

15.
Carbonic anhydrases (CAs), which catalyze the reversible reaction of carbonate hydration, are important for cartilage homeostasis. The full spectrum of CA activity of all 13 isoenzymes in articular cartilage is unknown. This study quantified the mRNA profile of CAs in rat articular cartilage, using quantitative polymerase chain reactions. Among the 13 functional CAs, CAs II, III, Vb, IX, XII and XIII were significantly expressed at mRNA level by the chondrocytes in articular cartilage. To verify these significantly expressed CAs in articular cartilage at protein level, immunohistochemistry was performed. While CAs III, Vb and XII distributed in the full-thickness of cartilage, including the calcified zone of cartilage, CA II was mainly localized in the proliferative zone of cartilage. CA IX was limited in the superficial zone of cartilage and CA XIII expressed in the superficial and partially mid zone. These results provide a framework for understanding individual CAs as well as the integrated CA family in cartilage biology, including matrix mineralization.  相似文献   

16.
Intracellular carbonic anhydrase of Chlamydomonas reinhardtii.   总被引:3,自引:1,他引:2       下载免费PDF全文
An intracellular carbonic anhydrase (CA; EC 4.2.1.1) was purified to homogeneity from a mutant strain of Chlamydomonas reinhardtii (CW 92) lacking a cell wall. Intact cells were washed to remove periplasmic CA and were lysed and fractionated into soluble and membrane fractions by sedimentation. All of the CA activity sedimented with the membrane fraction and was dissociated by treatment with a buffer containing 200 mM KCI. Solubilized proteins were fractionated by ammonium sulfate precipitation, anionic exchange chromatography, and hydrophobic interaction chromatography. The resulting fraction had a specific activity of 1260 Wilbur-Anderson units/mg protein and was inhibited by acetazolamide (50% inhibition concentration, 12 nM). Final purification was accomplished by the specific absorption of the enzyme to a Centricon-10 microconcentrator filter. A single, 29.5-kD polypeptide was eluted from the filter with sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer, and a 1.5 M ammonium sulfate eluate contained CA activity. In comparison with human CA isoenzyme II, the N-terminal and internal amino acid sequences from the 29.5-kD polypeptide were 40% identical with the N-terminal region and 67% identical with an internal conserved region. Based on this evidence, we postulate that the 29.5-kD polypeptide is an internal CA in C. reinhardtii and that the enzyme is closely related to the alpha-type CAs observed in animal species.  相似文献   

17.
1. Yeast alcohol dehydrogenase (EC 1.1.1.1) is inhibited by stoicheiometric concentrations of diethyl pyrocarbonate. The inhibition is due to the acylation of a single histidine residue/monomer (mol.wt. 36000). 2. Alcohol dehydrogenase is also inhibited by stoicheiometric amounts of 5,5'-dithiobis-(2-nitrobenzoate), owing to the modification of a single cysteine residue/monomer. 3. Native alcohol dehydrogenase binds two molecules of reduced coenzyme/molecule of enzyme (mol.wt. 144000). 4. Modification of a single histidine residue/monomer by treatment with diethyl pyrocarbonate prevents the binding of acetamide in the ternary complex, enzyme-NADH-acetamede, but does not prevent the binding of NADH to the enzyme. 5. Modification of a single cysteine residue/monomer does not prevent the binding of acetamide to the ternary complex. After the modification of two thiol groups/monomer by treatment with 5,5'-dithiobis-(2-nitrobenzoate), the capacity of enzyme to bind coenzyme in the ternary complex was virtually abolished. 6. From the results presented in this paper we conclude that at least one histidine and one cysteine residue are closely associated in the substrate-binding site of alcohol dehydrogenase.  相似文献   

18.
Cephalosporin acylase (CA) is a recently identified N-terminal hydrolase. It is also a commercially important enzyme in producing 7-aminocephalosporanic acid (7-ACA), a backbone chemical in synthesizing semi-synthetic cephalosporin antibiotics. CA is translated as an inactive single chain precursor, being post-translationally modified into an active enzyme. The post-translational modification takes place in two steps. The first intramolecular autocatalytic proteolysis takes place at one end of the spacer peptide by a nucleophilic Ser or Thr, which in turn becomes a new N-terminal Ser or Thr. The second intermolecular modification cleaves off the other end of the spacer peptide by another CA. Two binary structures in complex with glutaryl-7-ACA (the most favored substrate of CAs) and glutarate (side chain of glutaryl-7-ACA) were determined, and they revealed the detailed interactions of glutaryl-7-ACA with the active site residues (Y. Kim and W. G. J. Hol (2001) Chem. Biol., in press). In this report: 1) we have mutated key active site residues into nonfunctional amino acids, and their roles in catalysis were further analyzed; 2) we performed mutagenesis studies indicating that secondary intermolecular modification is carried out in the same active site where deacylation reaction of CA occurs; and 3) the cleavage site of secondary intermolecular modification by another CA was identified in the spacer peptide using mutational analysis. Finally, a schematic model for intermolecular cleavage of CA is proposed.  相似文献   

19.
Carbonic anhydrases (CAs, EC 4.2.1.1) are inhibited by sulfonamides, inorganic anions, phenols, salicylic acid derivatives (acting as drug or prodrugs). A novel class of CA inhibitors (CAIs), interacting with the CA isozymes I and II (cytosolic) in a different manner, is reported here. Kinetic measurements allowed us to identify thiazolidin-based compounds as submicromolar-low micromolar inhibitors of these two CA isozymes. Molecular docking studies of a set of such inhibitors within CA I and II active site allowed us to understand the inhibition mechanism. This new class of inhibitors bind differently compared to other classes of inhibitors known to date: they were found between the phenol-binding site, filling thus the middle of the enzyme cavity.  相似文献   

20.
1. As in two "lower" vertebrates, the lamprey and the eel, single intravascular injections of physiological doses (2.5 micrograms/kg) of epinephrine (E) into the rat immediately increased levels of plasma dopamine (DA) and norepinephrine (NE). 2. Single doses of DA (5 micrograms/kg) enhanced circulating NE and E, while NE (5 micrograms/kg) had no clear impact on the plasma levels of the other two catecholamines (CAs). 3. These data are at variance with findings in the eel, where all three CAs are mutually stimulatory; and in the lamprey, where only E stimulates release of the other two CAs. 4. It appears that E-stimulated CA release is widespread or ubiquitous among vertebrates, and that complex interactions between circulating CAs must be considered under experimental, physiological, and clinical conditions. 5. None of the injections had a significant hyperglycemic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号