首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Schaaf MJ  Cidlowski JA 《Steroids》2002,67(7):627-636
An association between a gene polymorphism of the human glucocorticoid receptor (hGR) gene and rheumatoid arthritis has recently been suggested. This polymorphism contains an A to G mutation in the 3'UTR of exon 9beta, which encodes the 3'UTR of the mRNA of the hGRbeta isoform. The hGRbeta isoform can act as a dominant negative inhibitor of hGRalpha, and therefore may contribute to glucocorticoid resistance. The A to G mutation is located in an AUUUA motif, which is known to destabilize mRNA. In the present study, the importance of the mutation in this AUUUA motif was further characterized and mutations in other AUUUA motifs in the 3'UTR of hGRbeta and hGRalpha mRNA were studied. hGRbeta and hGRalpha expression vectors, carrying mutations in one AUUUA motif or all AUUUA motifs were transiently transfected into COS-1 cells. Each transfected vector was analyzed for the mRNA expression level, the mRNA turnover rate and the protein expression level. The naturally occurring mutation in the 3'UTR of hGRbeta mRNA increased mRNA stability and protein expression. Mutation of two other AUUUA motifs in the 3'UTR of hGRbeta, or mutation of all four AUUUA motifs resulted in a similar effect. Mutation of the most 5' AUUUA motif did not alter hGRbeta mRNA expression or mRNA stability. Mutation of all 10 AUUUA motifs in the 3'UTR of hGRalpha mRNA increased hGRalpha mRNA expression and mRNA stability as well as expression of the receptor protein level. Thus, the naturally occurring mutation in an AUUUA motif in the 3'UTR of hGRbeta mRNA results not only in increased mRNA stability, but also in increased receptor protein expression, which may contribute to glucocorticoid resistance. A similar role is suggested for two other AUUUA motifs in the 3'UTR of hGRbeta mRNA and for the 10 AUUUA motifs that are present in the 3'UTR of hGRalpha.  相似文献   

2.
3.
4.
5.
6.
7.
This study molecularly elucidates the basis for the dominant negative mechanism of the glucocorticoid receptor (GR) isoform hGRbeta, whose overexpression is associated with human glucocorticoid resistance. Using a series of truncated hGRalpha mutants and sequential mutagenesis to generate a series of hGRalpha/beta hybrids, we find that the absence of helix 12 is neither necessary nor sufficient for the GR dominant negative phenotype. Moreover, we have localized the dominant negative activity of hGRbeta to two residues and found that nuclear localization, in addition to heterodimerization, is a critical feature of the dominant negative activity. Molecular modeling of wild-type and mutant hGRalpha and hGRbeta provides structural insight and a potential physical explanation for the lack of hormone binding and the dominant negative actions of hGRbeta.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号