首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 102 毫秒
1.
Cyclin-dependent kinase (CDK) inhibitor p27Kip1 binds to the cyclin E.CDK2 complex and plays a major role in controlling cell cycle and cell growth. Our group and others have reported that anti-HER2 monoclonal antibodies exert inhibitory effects on HER2-overexpressing breast cancers through G1 cell cycle arrest associated with induction of p27Kip1 and reduction of CDK2. The role of p27Kip1 in anti-HER2 antibody-induced cell cycle arrest and growth inhibition is, however, still uncertain. Here we have provided several lines of evidence supporting a critical role for p27Kip1 in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. Induction of p27Kip1 and G1 growth arrest by anti-HER2 antibody, murine 4D5, or humanized trastuzumab (Herceptin) are concentration-dependent, time-dependent, irreversible, and long-lasting. The magnitude of G1 cell cycle arrest induced by trastuzumab or 4D5 is well correlated with the level of p27Kip1 protein induced. Up-regulation of p27Kip1 and G1 growth arrest could no longer be removed with as little as 14 h of treatment with trastuzumab. Anti-HER2 antibody-induced p27Kip1 protein, G1 arrest, and growth inhibition persist at least 5 days after a single treatment. The magnitude of growth inhibition of breast cancer cells induced by anti-HER2 antibody closely parallels the level of p27Kip1 induced. Induced expression of exogenous p27Kip1 results in a p27Kip1 level-dependent G1 cell cycle arrest and growth inhibition similar to that obtained with anti-HER2 antibodies. Reducing p27Kip1 expression using p27Kip1 small interfering RNA blocks anti-HER2 antibody-induced p27Kip1 up-regulation and G1 arrest. Treatment with anti-HER2 antibody significantly increases the half-life of p27Kip1 protein. Inhibition of ubiquitin-proteasome pathway, but not inhibition of calpain and caspase activities, up-regulates p27Kip1 protein to a degree comparable with that obtained with anti-HER2 antibodies. We have further demonstrated that anti-HER2 antibody significantly decreases threonine phosphorylation of p27Kip1 protein at position 187 (Thr-187) and increases serine phosphorylation of p27Kip1 protein at position 10 (Ser-10). Expression of S10A and T187A mutant p27Kip1 protein increases the fraction of cells in G1 and reduces a further antibody-induced G1 arrest. Consequently, p27Kip1 plays an important role in the anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition through post-translational regulation. Regulation of the phosphorylation of p27Kip1 protein is one of the post-translational mechanisms by which anti-HER2 antibody upregulates the protein.  相似文献   

2.
Conflicting results have been reported that butyrate in normal piglets leads either to an increase or to a decrease of jejunal villus length, implying a possible effect on the proliferation of enterocytes. No definitive study was found for the biological effects of butyrate in porcine jejunal epithelial cells. The present study used IPEC-J2 cells, a non-transformed jejunal epithelial line to evaluate the direct effects of sodium butyrate on cell proliferation, cell cycle regulation, and apoptosis. Low concentrations (0.5 and 1 mM) of butyrate had no effect on cell proliferation. However, at 5 and 10 mM, sodium butyrate significantly decreased cell viability, accompanied by reduced levels of p-mTOR and PCNA protein. Sodium butyrate, in a dose-dependent manner, induced cell cycle arrest in G0/G1 phase and reduced the numbers of cells in S phase. In addition, relative expression of p21, p27, and pro-apoptosis bak genes, and protein levels of p21Waf1/Cip1, p27Kip1, cyclinD3, CDK4, and Cleave-caspase3 were increased by higher concentrations of sodium butyrate (1, 5, 10 mM), and the levels of cyclinD1 and CDK6 were reduced by 5 and 10 mM butyrate. Butyrate increased the phosphorylated form of the signaling molecule p38 and phosphorylated JNK. In conclusion, the present in vitro study indicated that sodium butyrate inhibited the proliferation of IPEC-J2 cells by inducing cell cycle arrest in the G0/G1 phase of cell cycles and by increasing apoptosis at high concentrations.  相似文献   

3.
Zac1, a zinc-finger protein that regulates apoptosis and cell cycle arrest 1, such as p53, can induce cell-cycle arrest and apoptosis. The transactivation and coactivation functions of Zac1 may occur at non-promyelocytic leukemia nuclear body (PML-NB) sites in the presence of other PML-NB components, including ubiquitin-conjugating 9 (Ubc9). It is unclear whether post-translational modification of Zac1 by the small ubiquitin-like modifier SUMO plays a role in the coactivation functions of Zac1 for the regulation of the p21 gene. Mutagenesis experiments revealed that the two SUMO-binding lysine residues of Zac1, K237 and K424, repress the transactivation activity of Zac1. Studies using a SUMO-1 C-terminal di-glycine motif mutant that is deficient in the ability to form covalent bonds with lysines, SUMO-1 (GA), and a dominant-negative Ubc9 construct (C93S) indicated that SUMO-1 might regulate Zac1 transactivation and coactivation via a non-covalent interaction. Unlike the wild-type Zac1, which induced apoptosis, the Zac1 (K237/424R) double mutant had the ability to induce autophagy. The functional role of p21 remains to be investigated. SUMO-1 selectively suppressed the induction of the p21 gene and protein by wild-type Zac1 but not by the Zac1 (K237/424R) double mutant. Moreover, wild-type Ubc9 but not Ubc9 (C93S) further potentiated the suppression of SUMO-1 in all Zac1-induced p21 promoter activities. Our data reveal that p21 may be an important factor for the prevention of Zac1-induced apoptosis without affecting autophagosome formation. This work indicates that Zac1 functions are regulated, at least in part, via non-covalent interactions with SUMO-1 for the induction of p21, which is important for the modulation of apoptosis.  相似文献   

4.
5.
The present study aimed to examine the effect of FTY720, a new immunosuppressive agent, on the proliferation and apoptosis of glomerular mesangial cells (GMC), and investigate the underlying mechanisms. Cultured rat GMC were treated by FTY720, and the cell viability, apoptosis and cell cycle progression were examined. Furthermore, cell cycle related gene expression profile was analyzed by cDNA microarray, and the protein expression of cell cycle related genes as well as Bax and Bcl-2 were examined by Western blot. The results showed that FTY720 inhibited GMC proliferation and induced apoptosis of GMC in a dose- and time-dependent manner, and induced G(1) phase cell cycle arrest in GMC in a dose-dependent manner as well. cDNA microarray analysis revealed that FTY720 regulated the expression of cell cycle-related gene. Western blot analysis showed that FTY720 induced the downregulation of cyclin D1, cyclin E, CDK2, CDK4, Bcl-2 and E2F1 and the upregulation of Kip1/p27, Cip1/p21, Bax and Rb in GMC in a dose-dependent manner. These results demonstrated that FTY720 could inhibit the proliferation of GMC through inducing cell cycle arrest and apoptosis, probably via the regulation of the expression of cell cycle-related genes and Bax/Bcl-2.  相似文献   

6.
Glucocorticoids (GC) induce cell cycle arrest and apoptosis in lymphoblastic leukemia cells. To investigate cell cycle effects of GC in the absence of obscuring apoptotic events, we used human CCRF-CEM leukemia cells protected from cell death by transgenic bcl-2. GC treatment arrested these cells in the G1 phase of the cell cycle due to repression of cyclin D3 and c-myc. Cyclin E and Cdk2 protein levels remained high, but the kinase complex was inactive due to increased levels of bound p27(Kip1). Conditional expression of cyclin D3 and/or c-myc was sufficient to prevent GC-induced G1 arrest and p27(Kip1) accumulation but, importantly, did not interfere with the induction of apoptosis. The combined data suggest that repression of both, c-myc and cyclin D3, is necessary to arrest human leukemia cells in the G1 phase of the cell division cycle, but that neither one is required for GC-induced apoptosis.  相似文献   

7.
A family of mitogen-activated protein (MAP) kinases comprising the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 MAP kinases are involved in proliferation and apoptosis. However, there are some arguments concerning the role of these kinases in Ag-induced B cell apoptosis. Two of the B lymphoma cell lines (CH31 and WEHI-231) susceptible to anti-IgM-induced apoptosis were used as a model. To address these issues, we examined the kinetics of anti-IgM-induced activation of MAP kinases and established cell lines overexpressing a dominant-negative (dn) mutant form of JNK1 (dnJNK1). Anti-IgM induced a sustained JNK1 activation with a peak at 8 h, with a marginal activation of ERK1/ERK2 in CH31 cells. The sustained JNK1 activation was not a secondary event through a caspase activation. The peak point of the JNK1 activation was just before the onset of a decline in mitochondrial membrane potential, which preceded anti-IgM-induced cell death. Following anti-IgM stimulation, dnJNK1 prevented a decline in mitochondrial membrane potential at 24 h, with a prolonged inhibition up to 72 h in WEHI-231, although it did so only partially during a later time period in CH31. The dnJNK1 cells also demonstrated diminished procaspase-3 activation and a decreased rate of apoptosis upon anti-IgM stimulation, with a concomitant increased arrest in G(1) phase, which could be explained by enhanced levels of cyclin-dependent kinase inhibitor p27(Kip1) protein. Thus, anti-IgM-induced JNK activation might be implicated in cell cycle progression as well as in apoptosis regulation, probably involving p27(Kip1) protein.  相似文献   

8.
Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells. p27(Kip1)-expressing K562 cells, however, become resistant to apoptosis induction by the proteasome inhibitors PSI, MG132 and epoxomicin, in contrast to wild-type K562 cells that are efficiently killed. Cell cycle arrest in the S phase by aphidicolin, which is not associated with an accumulation of p27(Kip1) protein, did not protect K562 cells against the cytotoxic effect of the proteasome inhibitor PSI. The expression levels of p27(Kip1) thus constitute an important parameter, which decides on the overall sensitivity of cells against the cytotoxic effect of proteasome inhibitors.  相似文献   

9.
Ribosomal proteins not only act as components of the translation apparatus but also regulate cell proliferation and apoptosis. A previous study reported that MRPL41 plays an important role in p53-dependent apoptosis. It also showed that MRPL41 arrests the cell cycle by stabilizing p27(Kip1) in the absence of p53. This study found that MRPL41 mediates the p21(WAF1/CIP1)-mediated G1 arrest in response to serum starvation. The cells were released from serum starvation-induced G1 arrest via the siRNA-mediated blocking of MRPL41 expression. Overall, these results suggest that MRPL41 arrests the cell cycle by increasing the p21(WAF1/CIP1) and p27(Kip1) levels under the growth inhibitory conditions.  相似文献   

10.
Iron (Fe) is essential for cellular metabolism e.g., DNA synthesis and its depletion causes G1/S arrest and apoptosis. Considering this, Fe chelators have been shown to be effective anti-proliferative agents. In order to understand the anti-tumor activity of Fe chelators, the mechanisms responsible for G1/S arrest and apoptosis after Fe-depletion have been investigated. These studies reveal a multitude of cell cycle control molecules are regulated by Fe. These include p53, p27Kip1, cyclin D1 and cyclin-dependent kinase 2 (cdk2). Additionally, Fe-depletion up-regulates the mRNA levels of the cdk inhibitor, p21CIP1/WAF1, but paradoxically down-regulates its protein expression. This effect could contribute to the apoptosis observed after Fe-depletion. Iron-depletion also leads to proteasomal degradation of p21CIP1/WAF1 and cyclin D1 via an ubiquitin-independent pathway. This is in contrast to the mechanism in Fe-replete cells, where it occurs by ubiquitin-dependent proteasomal degradation. Up-regulation of p38 mitogen-activated protein kinase (MAPK) after Fe-depletion suggests another facet of cell cycle regulation responsible for inhibition of proliferation and apoptosis induction. Elucidation of the complex effects of Fe-depletion on the expression of cell cycle control molecules remains at its infancy. However, these processes are important to dissect for complete understanding of Fe-deficiency and the development of chelators for cancer treatment.  相似文献   

11.
Distinct protein kinase C (PKC) isoforms differentially regulate cellular proliferation in rat microvascular endothelial cells (EC). Overexpression of PKCalpha has little effect on proliferation, whereas PKCdelta slows endothelial cell proliferation and induces S-phase arrest. Analyses were performed on EC overexpressing PKCalpha (PKCalphaEC) or PKCdelta (PKCdeltaEC) to determine the role of specific cell cycle regulatory proteins in the PKCdelta-induced cell cycle arrest. Serum-induced stimulation of cyclins D1, E, and A-associated kinase activity was delayed by 12 h in the PKCdeltaEC line in association with S-phase arrest. However, the protein levels for cyclins D1, E, and A were similar. Nuclear accumulation of cyclin D1 protein in response to serum was also delayed in PKCdeltaEC. In the PKCdeltaEC line, serum induced p27(Kip1) but not p16(Ink4a) or p21(Cip1). Serum did not affect p27(Kip1) levels in the control vascular endothelial cell line. Immunoprecipitation-Western blotting analysis of p27(Kip1) showed serum stimulation of the vascular endothelial cell line resulted in increased amounts of cyclin D1 bound to p27(Kip1). In the PKCdeltaEC line, serum did not increase the amount of cyclin D1 bound to p27(Kip1). Transfection of full-length p27(Kip1) antisense into the PCKdeltaEC line reversed the S-phase arrest and resulted in normal cell cycle progression, suggesting a critical role for p27(Kip1) in the PKCdelta-mediated S-phase arrest.  相似文献   

12.
13.
14.
15.
Although it is evident that BCR-ABL can rescue cytokine-deprived hematopoietic progenitor cells from cell cycle arrest and apoptosis, the exact mechanism of action of BCR/ABL and interleukin (IL)-3 to promote proliferation and survival has not been established. Using the pro-B cell line BaF3 and a BaF3 cell line stably overexpressing BCR-ABL (BaF3-p210), we investigated the proliferative signals derived from BCR-ABL and IL-3. The results indicate that both IL-3 and BCR-ABL target the expression of cyclin Ds and down-regulation of p27(Kip1) to mediate pRB-related pocket protein phosphorylation, E2F activation, and thus S phase progression. These findings were further confirmed in a BaF3 cell line (TonB.210) where the BCR-ABL expression is inducible by doxycyclin and by using the drug STI571 to inactivate BCR-ABL activity in BaF3-p210. To establish the functional significance of cyclin D2 and p27(Kip1) expression in response to IL-3 and BCR-ABL expression, we studied the effects of ectopic expression of cyclin D2 and p27(Kip1) on cell proliferation and survival. Our results demonstrate that both cyclin D2 and p27(Kip1) have a role in BaF3 cell proliferation and survival, as ectopic expression of cyclin D2 is sufficient to abolish the cell cycle arrest and apoptosis induced by IL-3 withdrawal or by BCR-ABL inactivation, while overexpression of p27(Kip1) can cause cell cycle arrest and apoptosis in the BaF3 cells. Furthermore, our data also suggest that cyclin D2 functions upstream of p27(Kip1), cyclin E, and cyclin D3, and therefore, plays an essential part in integrating the signals from IL-3 and BCR-ABL with the pRB/E2F pathway.  相似文献   

16.
We studied the effects of apigenin on the cell cycle distribution and apoptosis of human breast cancer cells and explored the mechanisms underlying these effects. We first investigated the antiproliferative effects in SK-BR-3 cells exposed to between 1 and 100 microM apigenin for 24, 48 and 72 h. Apigenin significantly inhibited cell proliferation at concentrations over 50 microM, regardless of exposure time (P<.05), and resulted in significant cell cycle arrest in the G(2)/M phase after 48 h of treatment at high concentrations (50 and 100 microM; P<.05). To investigate the regulatory proteins of cell cycle arrest affected by apigenin, we treated cells with 50 and 100 microM apigenin for 72 h. Apigenin caused a slight decrease in cyclin D and cyclin E expression, with no change in CDK2 and CDK4. In addition, the apigenin-induced accumulation of the cell population in the G(2)/M phase resulted in a decrease in CDK1 together with cyclin A and cyclin B. In an additional study, apigenin also increased the accumulation of p53 and further enhanced the level of p21(Cip1), with no change in p27(Kip1). The expression of Bax and cytochrome c of p53 downstream target was increased markedly at high concentration treatment over 50 microM apigenin. Based on our findings, the mechanism by which apigenin causes cell cycle arrest via the regulation of CDK1 and p21(Cip1) and induction of apoptosis seems to be involved in the p53-dependent pathway.  相似文献   

17.
曲古抑菌素A对结肠癌细胞株SW480细胞周期影响的机制研究   总被引:4,自引:0,他引:4  
为了研究组蛋白去乙酰化酶(HDACs)抑制剂曲古抑菌素A(TSA)对结肠癌细胞周期和凋亡的影响,初步探讨TSA作用细胞周期的可能机制,将人结肠癌细胞系SW480经TSA处理后,运用流式细胞术检测细胞周期、凋亡以及细胞周期素的变化,最后采用western-blot对细胞周期相关的基因进行检测.结果表明,TSA处理细胞后,TSA能够延缓细胞周期G1-S进程,阻滞细胞于G1期,并且影响细胞周期素cyclinE、cyclinA聚集,而对凋亡无明显的影响.Western-blot显示,TSA能够上调p21Waf1/Cip1、p27Kip1的表达,下调CDK2、cyclinE以及cycli-nA的表达.以上结果说明在结肠癌细胞中,TSA能够通过上调p21Waf1/Cip1、p27Kip1的表达以及下调CDK2、cy-clinE、cyclinA的表达,从而阻滞细胞周期于G1期,最终影响肿瘤细胞的生长,以上研究为HDAC抑制剂应用于结肠癌治疗提供了理论依据.  相似文献   

18.
alpha-Lipoic acid is a naturally-occurring co-factor found in a number of multi-enzyme complexes regulating metabolism. We report here that alpha-lipoic acid induces hyperacetylation of histones in vivo and has differential effects on the growth and viability of normal versus transformed cell lines. The human tumor cell lines FaDu and Jurkat, as well as a Ki-v-Ras-transformed Balb/c-3T3 murine mesenchymal cell line, all initiated apoptosis following exposure to alpha-lipoic acid. In contrast, treatment of non-transformed cell lines with alpha-lipoic acid resulted only in reversible cell cycle arrest in G0/G1. Treatment with butyrate, another short-chain fatty acid, induced a G0/G1 arrest in both transformed and non-transformed cell lines. alpha-Lipoic acid caused a post-translational elevation in the levels of the cyclin-dependent kinase inhibitor p27Kip1. Studies using p27Kip1-deficient MEF cells demonstrated that p27Kip1 was required for the alpha-lipoic acid-mediated cell cycle arrest. The mechanism of apoptosis was independent of Fas-mediated signaling, as alpha-lipoic acid-treated Jurkat cell mutants deficient in Fas or FADD retained sensitivity to apoptosis. The differential selectivity of the pro-apoptotic effects of alpha-lipoic acid for transformed cells supports its potential use in the treatment of neoplastic disorders.  相似文献   

19.
Skp2 regulates G2/M progression in a p53-dependent manner   总被引:1,自引:0,他引:1  
Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27Kip1 and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27Kip1 or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27Kip1. These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27Kip1 degradation.  相似文献   

20.
The cyclin-dependent kinase inhibitor, p27(Kip1), which regulates cell cycle progression, is controlled by its subcellular localization and subsequent degradation. p27(Kip1) is phosphorylated on serine 10 (S10) and threonine 187 (T187). Although the role of T187 and its phosphorylation by Cdks is well-known, the kinase that phosphorylates S10 and its effect on cell proliferation has not been defined. Here, we identify the kinase responsible for S10 phosphorylation as human kinase interacting stathmin (hKIS) and show that it regulates cell cycle progression. hKIS is a nuclear protein that binds the C-terminal domain of p27(Kip1) and phosphorylates it on S10 in vitro and in vivo, promoting its nuclear export to the cytoplasm. hKIS is activated by mitogens during G(0)/G(1), and expression of hKIS overcomes growth arrest induced by p27(Kip1). Depletion of KIS using small interfering RNA (siRNA) inhibits S10 phosphorylation and enhances growth arrest. p27(-/-) cells treated with KIS siRNA grow and progress to S/G(2 )similar to control treated cells, implicating p27(Kip1) as the critical target for KIS. Through phosphorylation of p27(Kip1) on S10, hKIS regulates cell cycle progression in response to mitogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号