首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyglutamylation is a widely distributed posttranslational modification of tubulin that can be demonstrated either by biochemical analysis or by the use of specific antibodies like GT335. Western blotting using GT335 demonstrated that polyglutamylated tubulin is enriched in isolated basal apparatus of Spermatozopsis similis. Single- and double-labeling experiments, using indirect immunofluorescence and immunogold electron microscopy of isolated cytoskeletons of S. similis and Chlamydomonas reinhardtii, revealed that polyglutamylated tubulin was predominately present in the basal bodies and the proximal part of the axonemes. Using immunogold labeling of whole mounts of Spermatozopsis cytoskeletons, we obtained evidence for a predominant occurrence of polyglutamylated tubulin in the B-tubule of the axonemal doublets. Polyglutamylation occurs early during premitotic basal body assembly in S. similis, whereas the probasal bodies of Chlamydomonas, which are present through interphase, showed a reduced staining with GT335 indicating that polyglutamylation is involved in basal body maturation. During flagella regeneration of C. reinhardtii, polyglutamylation preceded detyrosination and became visible shortly after the onset of flagellar regeneration. In C. reinhardtii and S. similis polyglutamylated tubulin was absent or highly reduced in the flagellar transition region, a specialized part of the flagellum linking the basal body to the axoneme. Furthermore, the transition region and the neighboring part of the axoneme showed reduced staining with L3, an antibody directed against detyrosinated tubulin. The results indicate that differences in the modification pattern can occur in a confined area of individual microtubules. The deficiency of polyglutamylated and detyrosinated tubulin in the transition region could have functional implications for flagellar turnover or excision.  相似文献   

2.
Dutcher SK 《Current biology : CB》2001,11(11):R419-R422
The requirements for building flagellar axonemes and centrioles are beginning to be uncovered. The carboxyl terminus of a specific beta tubulin isoform plays an important role in forming the '9 + 2' structure of the axoneme; delta tubulin plays an essential role in forming the triplet microtubules of centrioles and basal bodies.  相似文献   

3.
In the flagellum of mammalian spermatozoa, glutamylated and glycylated tubulin isoforms are detected according to longitudinal gradients and preferentially in axonemal doublets 1-5-6 and 3-8, respectively. This suggested a role for these tubulin isoforms in the regulation of flagellar beating. In the present work, using antibodies directed against various tubulin isoforms and quantitative immunogold analysis, we aimed at investigating whether the particular accessibility of tubulin isoforms in the mammalian sperm flagellum is restricted to this model of axoneme surrounded with periaxonemal structures or is also displayed in naked axonemes. In rodent lung ciliated cells, all studied tubulin isoforms are uniformly distributed in all axonemal microtubules with a unique deficiency of glutamylated tubulin in the transitional region. A similar distribution of tubulin isoforms is observed in cilia of Paramecium, except for a decreasing gradient of glutamylated tubulin labeling in the proximal part of axonemal microtubules. In the sea urchin sperm flagellum, predominant labeling of tyrosinated and detyrosinated tubulin in 1-5-6 and 3-8 doublets, respectively, were observed together with decreasing proximo-distal gradients of glutamylated and polyglycylated tubulin labeling and an increasing gradient of monoglycylated tubulin labeling. In flagella of Chlamydomonas, the glutamylated and glycylated tubulin isoforms are detected at low levels. Our results show a specific composition and organization of tubulin isoforms in different models of cilia and flagella, suggesting various models of functional organization and beating regulation of the axoneme.  相似文献   

4.
Seven monoclonal antibodies raised against tubulin from the axonemes of sea urchin sperm flagella recognize an acetylated form of alpha-tubulin present in the axoneme of a variety of organisms. The antigen was not detected among soluble, cytoplasmic alpha-tubulin isoforms from a variety of cells. The specificity of the antibodies was determined by in vitro acetylation of sea urchin and Chlamydomonas cytoplasmic tubulins in crude extracts. Of all the acetylated polypeptides in the extracts, only alpha-tubulin became antigenic. Among Chlamydomonas tubulin isoforms, the antibodies recognize only the axonemal alpha-tubulin isoform acetylated in vivo on the epsilon-amino group of lysine(s) (L'Hernault, S.W., and J.L. Rosenbaum, 1985, Biochemistry, 24:473-478). The antibodies do not recognize unmodified axonemal alpha-tubulin, unassembled alpha-tubulin present in a flagellar matrix-plus-membrane fraction, or soluble, cytoplasmic alpha-tubulin from Chlamydomonas cell bodies. The antigen was found in protein fractions that contained axonemal microtubules from a variety of sources, including cilia from sea urchin blastulae and Tetrahymena, sperm and testis from Drosophila, and human sperm. In contrast, the antigen was not detected in preparations of soluble, cytoplasmic tubulin, which would not have contained tubulin from stable microtubule arrays such as centrioles, from unfertilized sea urchin eggs, Drosophila embryos, and HeLa cells. Although the acetylated alpha-tubulin recognized by the antibodies is present in axonemes from a variety of sources and may be necessary for axoneme formation, it is not found exclusively in any one subset of morphologically distinct axonemal microtubules. The antigen was found in similar proportions in fractions from sea urchin sperm axonemes enriched for central pair or outer doublet B or outer doublet A microtubules. Therefore the acetylation of alpha-tubulin does not provide the mechanism that specifies the structure of any one class of axonemal microtubules. Preliminary evidence indicates that acetylated alpha-tubulin is not restricted to the axoneme. The antibodies described in this report may allow us to deduce the role of tubulin acetylation in the structure and function of microtubules in vivo.  相似文献   

5.
We have shown previously that the tubulins of Antarctic fish assemble into microtubules efficiently at low temperatures (-2 to +2 degrees C) due to adaptations intrinsic to the tubulin subunits. To determine whether changes in posttranslational glutamylation of the fish tubulins may contribute to cold adaptation of microtubule assembly, we have characterized C-terminal peptides from alpha- and beta-tubulin chains from brains of adult specimens of the Antarctic rockcod Notothenia coriiceps by MALDI-TOF mass spectrometry and by Edman degradation amino acid sequencing. Of the four fish beta-tubulin isotypes, nonglutamylated isoforms were more abundant than glutamylated isoforms. In addition, maximal glutamyl side-chain length was shorter than that observed for mammalian brain beta tubulins. For the nine fish alpha-tubulin isotypes, nonglutamylated isoforms were also generally more abundant than glutamylated isoforms. When glutamylated, however, the maximal side-chain lengths of the fish alpha tubulins were generally longer than those of adult rat brain alpha chains. Thus, Antarctic fish adult brain tubulins are glutamylated differently than mammalian brain tubulins, resulting in a more heterogeneous population of alpha isoforms and a reduction in the number of beta isoforms. By contrast, neonatal rat brain tubulin possesses low levels of glutamylation that are similar to that of the adult fish brain tubulins. We suggest that unique residue substitutions in the primary structures of Antarctic fish tubulin isotypes and quantitative changes in isoform glutamylation act synergistically to adapt microtubule assembly to low temperatures.  相似文献   

6.
A monoclonal antibody (GT335) directed against polyglutamylated tubulin was obtained by immunization with a synthetic peptide which mimics the structure of the polyglutamylated site of alpha-tubulin. This peptide corresponds to the C-terminal sequence Glu441-Gly448 and was chemically modified by the addition of two glutamyl units at Glu445. The specificity of GT335 was assayed by direct and competitive enzyme-linked immunosorbent assay (ELISA) against tubulin and several synthetic peptides differing either by the structure of the added polyglutamyl chain or by their amino acid sequence. Further characterization was carried out by immunoblotting detection after one- or two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The epitope appears to be formed by at least two constituents: a basic motif of monoglutamylation which is retained in the polyglutamylated forms independent of their degree of glutamylation, and some elements of the polypeptide chain close to the site of glutamylation. Given the specificity of GT335 and the delineation of its epitope, our results indicate that, in addition to alpha and beta' (class III)-tubulin, other beta-tubulin isotypes are also glutamylated. This antibody has been used to analyze the cell and tissue distributions of glutamylated tubulin. In mouse brain extracts, GT335 reacts strongly with alpha-tubulin and, to a lesser extent, with beta' (class III) and beta-tubulin. The same reactivity is also observed with cultured neurons whereas astroglial cells exhibit only low levels of glutamylated tubulin. In non-nervous mouse tissues such as spleen, lung or testis, glutamylation was shown to involve only beta-tubulin, but at far lower levels than in brain.  相似文献   

7.
Drosophila melanogaster sperm tubulins are posttranslationally glutamylated and glycylated. We show here that axonemes are the substrate for these tubulin C-terminal modifications. Axoneme architecture is required, but full length, motile axonemes are not necessary. Tubulin glutamylation occurs during or shortly after assembly into the axoneme; only glutamylated tubulins are glycylated. Tubulins in other testis microtubules are not modified. Only a small subset of total Drosophila sperm axoneme tubulins have these modifications. Biochemical fractionation of Drosophila sperm showed that central pair and accessory microtubules have the majority of poly-modified tubulins, whereas doublet microtubules have only small amounts of mono- and oligo-modified tubulins. Glutamylation patterns for different beta-tubulins experimentally assembled into axonemes were consistent with utilization of modification sites corresponding to those identified in other organisms, but surrounding sequence context was also important. We compared tubulin modifications in the 9 + 9 + 2 insect sperm tail axonemes of Drosophila with the canonical 9 + 2 axonemes of sperm of the sea urchin Lytichinus pictus and the 9 + 0 motile sperm axonemes of the eel Anguilla japonica. In contrast to Drosophila sperm, L. pictus sperm have equivalent levels of modified tubulins in both doublet and central pair microtubule fractions, whereas the doublets of A. japonica sperm exhibit little glutamylation but extensive glycylation. Tubulin C-terminal modifications are a prevalent feature of motile axonemes, but there is no conserved pattern for placement or amount of these  相似文献   

8.
In vertebrate cells, the centrosome consists of a pair of centrioles and surrounding pericentriolar material. Using anti-Golgi 58K protein antibodies that recognize formiminotransferase cyclodeaminase (FTCD), we investigated its localization to the centrosome in various cultured cells and human oviductal secretory cells by immunohistochemistry. In addition to the Golgi apparatus, FTCD was localized to the centrosome, more abundantly around the mother centriole. The centrosome localization of FTCD continued throughout the cell cycle and was not disrupted after Golgi fragmentation, which was induced by colcemid and brefeldin A. Centriole microtubules are polyglutamylated and stable against tubulin depolymerizing drugs. FTCD in the centrosome may be associated with polyglutamylated residues of centriole microtubules and may play a role in providing centrioles with glutamate produced by cyclodeaminase domains of FTCD.  相似文献   

9.
The cytoskeleton of the parasitic hemoflagellate Trypanosoma brucei brucei essentially consists of two microtubule-based structures: a subpellicular layer of singlet microtubules, which are in close contact with the cell membrane, and the flagellar axoneme. In addition, the cells contain a small pool of soluble tubulin. Two-dimensional gel electrophoretic analysis of the tubulins present in these subcellular compartments revealed two distinct electrophoretic isoforms of alpha-tubulin, termed alpha 1 and alpha 3. alpha 1-Tubulin most likely represents the primary translation product, while alpha 3-tubulin is a posttranslationally acetylated derivative of alpha 1-tubulin. In the pool of soluble cytoplasmic tubulin, alpha 1 is the predominant species, while the very stable flagellar microtubules contain almost exclusively the alpha 3-tubulin isoform. The subpellicular microtubules contain both isoforms. Neither of the two alpha-tubulin isoforms is organelle specific, but the alpha 3 isoform is predominantly located in stable microtubules.  相似文献   

10.
Sensory cells in the organ of Corti exhibit loose microtubule networks enriched in tyrosinated tubulin, whereas supporting cells have bundled microtubules containing post-translationally modified tubulin. The tubulin isoform distribution suggests that the microtubules in sensory cells are dynamic and those in supporting cells are stable. To test this, microtubule resistance to cold-induced depolymerization was examined by using immunocytochemical methods and antibodies to post-translationally modified tubulins. Microtubule labelling in cochleas perfused/immersed at room temperature was identical to that in previous studies of untreated cochleas. However, the microtubule patterns of perfused/immersed specimens were changed in cold-treated cochleas. Microtubules were no longer detected with antibodies to alpha- and tyrosinated tubulin in sensory cells from specimens exposed to cold, indicating their disassembly. Supporting cells in the same specimens showed almost total loss of detyrosinated and polyglutamylated tubulin in the middle and apical cochlear turns, and reduced labelling in the basal-most turn. Probing for alpha-, nontyrosinatable, acetylated and glycylated tubulin yielded decreased and sometimes patchy staining but these isoforms were observed even when detyrosinated and polyglutamylated tubulins were absent. The results indicate that sensory cells in the gerbil auditory sensory epithelium contain only cold-sensitive microtubules. In contrast, supporting cells possess a substantial subset of cold-stable microtubules, providing structural support to the vibratory sensory organ required for hearing.  相似文献   

11.
We have used monoclonal antibodies specific for acetylated and unacetylated alpha-tubulin to characterize the acetylated alpha-tubulin isotype of Physarum polycephalum, its expression in the life cycle, and its localization in particular microtubular organelles. We have used the monoclonal antibody 6-11B-1 (Piperno, G., and M. T. Fuller, 1985, J. Cell Biol., 101:2085-2094) as the probe for acetylated alpha-tubulin and have provided a biochemical characterization of the monoclonal antibody KMP-1 as a probe for unacetylated tubulin in Physarum. Concomitant use of these two probes has allowed us to characterize the acetylated alpha-tubulin of Physarum as the alpha 3 isotype. We have detected this acetylated alpha 3 tubulin isotype in both the flagellate and in the myxameba, but not in the plasmodium. In the flagellate, acetylated tubulin is present in both the flagellar axonemes and in an extensive array of cytoplasmic microtubules. The extensive arrangement of acetylated cytoplasmic microtubules and the flagellar axonemes are elaborated during the myxameba-flagellate transformation. In the myxameba, acetylated tubulin is not present in the cytoplasmic microtubules nor in the mitotic spindle microtubules, but is associated with the two centrioles of this cell. These findings, taken together with the apparent absence of acetylated alpha-tubulin in the ephemeral microtubules of the plasmodium suggest a natural correspondence between the presence of acetylated alpha-tubulin and microtubule organelles that are intrinsically stable or cross-linked.  相似文献   

12.
The diverse populations of microtubule polymers in cells are functionally distinguished by different posttranslational modifications, including polyglutamylation. Polyglutamylation is enriched on subsets of microtubules including those found in the centrioles, mitotic spindle, and cilia. However, whether this modification alters intrinsic microtubule dynamics or affects extrinsic associations with specific interacting partners remains to be determined. Here we identify the microtubule-binding protein centriole and spindle-associated protein (CSAP), which colocalizes with polyglutamylated tubulin to centrioles, spindle microtubules, and cilia in human tissue culture cells. Reducing tubulin polyglutamylation prevents CSAP localization to both spindle and cilia microtubules. In zebrafish, CSAP is required for normal brain development and proper left-right asymmetry, defects that are qualitatively similar to those reported previously for depletion of polyglutamylation-conjugating enzymes. We also find that CSAP is required for proper cilia beating. Our work supports a model in which polyglutamylation can target selected microtubule-associated proteins, such as CSAP, to microtubule subpopulations, providing specific functional capabilities to these populations.  相似文献   

13.
Polarity of flagellar assembly in Chlamydomonas.   总被引:1,自引:0,他引:1       下载免费PDF全文
During mating of the alga Chlamydomonas, two biflagellate cells fuse to form a single quadriflagellate cell that contains two nuclei and a common cytoplasm. We have used this cell fusion during mating to transfer unassembled flagellar components from the cytoplasm of one Chlamydomonas cell into that of another in order to study in vivo the polarity of flagellar assembly. In the first series of experiments, sites of tubulin addition onto elongating flagellar axonemes were determined. Donor cells that had two full-length flagella and were expressing an epitope-tagged alpha-tubulin construct were mated (fused) with recipient cells that had two half-length flagella. Outgrowth of the shorter pair of flagella followed, using a common pool of precursors that now included epitope-tagged tubulin, resulting in quadriflagellates with four full-length flagella. Immunofluorescence and immunoelectron microscopy using an antiepitope antibody showed that both the outer doublet and central pair microtubules of the recipient cells' flagellar axonemes elongate solely by addition of new subunits at their distal ends. In a separate series of experiments, the polarity of assembly of a class of axonemal microtubule-associated structures, the radial spokes, was determined. Wild-type donor cells that had two full-length, motile flagella were mated with paralyzed recipient cells that had two full-length, radial spokeless flagella. Within 90 min after cell fusion, the previously paralyzed flagella became motile. Immunofluorescence microscopy using specific antiradial spoke protein antisera showed that radial spoke proteins appeared first at the tips of spokeless axonemes and gradually assembled toward the bases. Together, these results suggest that both tubulin and radial spoke proteins are transported to the tip of the flagellum before their assembly into flagellar structure.  相似文献   

14.
Glutamylation is the major posttranslational modification of neuronal and axonemal tubulin and is restricted predominantly to centrioles in nonneuronal cells (Bobinnec, Y., M. Moudjou, J.P. Fouquet, E. Desbruyères, B. Eddé, and M. Bornens. 1998. Cell Motil. Cytoskel. 39:223–232). To investigate a possible relationship between the exceptional stability of centriole microtubules and the compartmentalization of glutamylated isoforms, we loaded HeLa cells with the monoclonal antibody GT335, which specifically reacts with polyglutamylated tubulin. The total disappearance of the centriole pair was observed after 12 h, as judged both by immunofluorescence labeling with specific antibodies and electron microscopic observation of cells after complete thick serial sectioning. Strikingly, we also observed a scattering of the pericentriolar material (PCM) within the cytoplasm and a parallel disappearance of the centrosome as a defined organelle. However, centriole disappearance was transient, as centrioles and discrete centrosomes ultimately reappeared in the cell population.During the acentriolar period, a large proportion of monopolar half-spindles or of bipolar spindles with abnormal distribution of PCM and NuMA were observed. However, as judged by a quasinormal increase in cell number, these cells likely were not blocked in mitosis.Our results suggest that a posttranslational modification of tubulin is critical for long-term stability of centriolar microtubules. They further demonstrate that in animal cells, centrioles are instrumental in organizing centrosomal components into a structurally stable organelle.  相似文献   

15.
We have assayed various materials for their ability to induce aster formation by microinjection into unfertilized eggs of Xenopus laevis. We have found that purified basal bodies from Chlamydomonas reinhardtii and Tetrahymena pyriformis induce the formation of asters and irregular cleavage furrows within 1 h after injection. Other microtubule structures such as flagella, flagellar axonemes, cilia, and brain microtubules are completely ineffective at inducing asters or cleavage furrows in unfertilized eggs. When known amounts of sonicated Tetrahymena and Chlamydomonas preparations are injected into unfertilized eggs, 50% of the injected eggs show a furrowing response at approximately 3 cell equvalents for Chlamydomonas and 0.1 cell equivalent for Tetrahymena. These results are close to those expected if basal bodies were the effective astral-inducing agent in these cells. Other materials effective at inducing asters in unfertilized eggs, such as crude brain nuclei, sperm, and a particulate fraction from brain known to induce parthenogenesis in eggs of Rana pipiens, probably contain centrioles as the effective agent. Our experiments provide the first functional assay to indicate that centrioles play an active role in aster initiation. None of the injected materials effective in unfertilized eggs produced any observable response in fully grown oocytes. Oocytes and eggs were found to have equal tubulin pools as judged by colchicine-binding activity. Therefore, the inability of oocytes to form asters cannot be due to a lack of an organizing center or to a lack of tubulin. Experiments in which D2O was found to stimulate aster-like fibrous areas in eggs but not oocytes suggest that the inability of oocytes to form asters may be due to an inability of tubulin in oocytes to assemble.  相似文献   

16.
Glutamylation is a functionally important tubulin posttranslational modification enriched on stable microtubules of neuronal axons, mitotic spindles, centrioles, and cilia. In vertebrates, balanced activities of tubulin glutamyl ligase and cytoplasmic carboxypeptidase deglutamylase enzymes maintain organelle- and cell type–specific tubulin glutamylation patterns. Tubulin glutamylation in cilia is regulated via restricted subcellular localization or expression of tubulin glutamyl ligases (ttlls) and nonenzymatic proteins, including the zebrafish TPR repeat protein Fleer/Ift70. Here we analyze the expression patterns of ccp deglutamylase genes during zebrafish development and the effects of ccp gene knockdown on cilia formation, morphology, and tubulin glutamylation. The deglutamylases ccp2, ccp5, and ccp6 are expressed in ciliated cells, whereas ccp1 expression is restricted to the nervous system. Only ccp5 knockdown increases cilia tubulin glutamylation, induces ciliopathy phenotypes, including axis curvature, hydrocephalus, and pronephric cysts, and disrupts multicilia motility, suggesting that Ccp5 is the principal tubulin deglutamylase that maintains functional levels of cilia tubulin glutamylation. The ability of ccp5 knockdown to restore cilia tubulin glutamylation in fleer/ift70 mutants and rescue pronephric multicilia formation in both fleer- and ift88-deficient zebrafish indicates that tubulin glutamylation is a key driver of ciliogenesis.  相似文献   

17.
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes missing some or all dyneins. Densitometry of Coomassie blue-stained polyacrylamide gels revealed that for each inner dynein arm subform, binding to axonemes was saturable and stoichiometric. Using structural markers of position and polarity, electron microscopy confirmed that subforms bound to the correct inner arm position. Inner arms did not bind to outer arm or inappropriate inner arm positions despite the availability of sites. These and previous observations implicate specialized tubulin isoforms or nontubulin proteins in designation of specific inner dynein arm binding sites. Further, microtubule sliding velocities were restored to dynein-depleted axonemes upon rebinding of the missing inner arm subtypes as evaluated by an ATP-induced microtubule sliding disintegration assay. Therefore, not only were the inner arm dynein subforms able to identify and bind to the correct location on doublet microtubules but they bound in a functionally active conformation.  相似文献   

18.
Polyglycylation, a posttranslational modification of tubulin, was discovered in the highly stable axonemal microtubules of Paramecium cilia where it involves the lateral linkage of up to 34 glycine units per tubulin subunit. The observation of this type of posttranslational modification mainly in axonemes raises the question as to its relationship with axonemal organization and with microtubule stability. This led us to investigate the glycylation status of cytoplasmic microtubules that correspond to the dynamic microtubules in Paramecium. Two anti-glycylated tubulin monoclonal antibodies (mAbs), TAP 952 and AXO 49, are shown here to exhibit different affinities toward mono- and polyglycylated synthetic tubulin peptides. Using immunoblotting and mass spectrometry, we show that cytoplasmic tubulin is glycylated. In contrast to the highly glycylated axonemal tubulin, which is recognized by the two mAbs, cytoplasmic tubulin reacts exclusively with TAP 952, and the α- and β- tubulin subunits are modified by only 1–5 and 2–9 glycine units, respectively. Our analyses suggest that most of the cytoplasmic tubulin contains side chain lengths of 1 or 2 glycine units distributed on several glycylation sites. The subcellular partition of distinct polyglycylated tubulin isoforms between cytoplasmic and axonemal compartments implies the existence of regulatory mechanisms for glycylation. By following axonemal tubulin immunoreactivity with anti-glycylated tubulin mAbs upon incubation with a Paramecium cellular extract, the presence of a deglycylation enzyme is revealed in the cytoplasm of this organism. These observations establish that polyglycylation is reversible and indicate that, in vivo, an equilibrium between glycylating and deglycylating enzymes might be responsible for the length of the oligoglycine side chains of tubulin.  相似文献   

19.
Microtubules are cytoskeletal polymers containing repeating alpha/beta-tubulin heterodimers and are found in all eukaryotes including the malaria parasite Plasmodium falciparum. Diverse cellular functions such as chromosomal segregation, organelle transport and the determination of cell shape and motility are all dependent on microtubules. This essential role played by tubulin in cells is reflected in the effective use of anti-microtubule agents as fungicides, herbicides, anti-parasitic and anti-cancer agents. Plasmodium falciparum microtubules have been proposed as a potential antimalarial drug target and knowledge of their molecular composition and cellular architecture in blood-stage parasites is required to substantiate this premise. We report here that: (i) the two alpha-tubulin isotypes, alphaI- and alphaII-tubulin, are produced in both asexual and sexual blood-stage parasites, contrary to the previous report that alphaII-tubulin was specific to male gametocytes; (ii) tubulin production is highly stage-dependent in asexual parasites, reaching its maximum level in schizonts and segmenters and (iii) there is evidence of post-translational polyglutamylation of tubulin. The glutamylation of P. falciparum tubulins is the first reported post-translational modification of tubulin in this organism and was found only in the microtubule-organising centres and post-mitotic microtubular structures, suggesting possible roles for this modification in spindle pole body formation and merozoite biogenesis. Taken together, these findings form the basis for a better biological appreciation of P. falciparum microtubules and for the correct deployment of purified tubulins in the evaluation of microtubule inhibitors as potential antimalarial drugs.  相似文献   

20.
The presence of glutamylated tubulin, a widespread posttranslational modification of alpha- and beta-tubulin, has been investigated in Drosophila melanogaster using the specific monoclonal antibody GT335. We show here that this modification is strongly detected in brain and testis whereas other tissues analyzed did not appear to contain any glutamylated isoforms. Neuronal microtubules are glutamylated on alpha-tubulin only whereas sperm flagella showed a strong modification of both alpha- and beta-tubulin. These results argue for an essential role for glutamylation in differentiation processes that require microtubule stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号