首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Expression of the GCN4 gene of Saccharomyces cerevisiae is regulated at the translational level by short open reading frames (uORFs) present in the leader sequence of its mRNA. Under conditions of amino acid sufficiency, these sequences restrict the flow of initiating ribosomes to the GCN4 AUG start codon. Mutational analysis of GCN4 has led to a model in which ribosomes must translate the 5'-proximal uORF1 and reassemble an initiation complex in order to translate GCN4. This reassembly process is thought to be rapid when amino acids are abundant, such that reinitiation occurs at uORF2, uORF3, or uORF4. Reinitiation at these sites prevents translation of GCN4, presumably because ribosomes dissociate from the mRNA following termination at uORFs 2 to 4. Because of reduced initiation factor activity under starvation conditions, a substantial fraction of ribosomal subunits scanning downstream from uORF1 are not ready to reinitiate when they reach uORFs 2 to 4, but become competent to do so while scanning the additional sequences between uORF4 and GCN4. Examination of the effects of point mutations in the ATG codons of the different uORFs suggests a quantitative model for this control mechanism that describes the probability of reinitiation as a function of the distance scanned downstream from uORF1. This model accounts for the phenotypes of a number of deletion and insertion mutations that alter the intercistronic spacing between the uORFs and GCN4. The correspondence between observed and predicted results implies that the differential rates of reinitiation at GCN4 versus uORFs 2 to 4 are determined largely by the different scanning times required to reach each of these start sites following translation of uORF1. In addition, it supports the notion that an increased scanning-time requirement for reinitiation in amino acid-starved cells forms the basis for translational derepression of GCN4 expression.  相似文献   

3.
4.
Four short upstream open reading frames (uORFs) in the mRNA leader are required for the translational control of GCN4 expression in response to amino acid availability. Data are reviewed demonstrating that the fourth (3' proximal) uORF is sufficient to establish the repressed levels of GCN4 expression, while the first uORF functions as a positive regulatory element under starvation conditions to stimulate GCN4 translation. Furthermore, positive and negative trans-acting regulatory factors, the activities of which appear to be modulated according to amino acid availability, exert their effects on GCN4 expression through the uORFs. Direct comparison of the uORFs indicates that there are important nucleotide sequence differences between uORF1 and 4, and that these are located primarily around the termination codons of these elements. Recent findings suggest that the sequences that mediate repression of GCN4 expression are complex, but can be overcome under starvation conditions by ribosomes that have previously translated uORF1.  相似文献   

5.
The protein kinase GCN2 mediates translational control of gene expression in amino acid-starved cells by phosphorylating eukaryotic translation initiation factor 2alpha. In Saccharomyces cerevisiae, activation of GCN2 by uncharged tRNAs in starved cells requires its direct interaction with both the GCN1.GCN20 regulatory complex and ribosomes. GCN1 also interacts with ribosomes in cell extracts, but it was unknown whether this activity is crucial for its ability to stimulate GCN2 function in starved cells. We describe point mutations in two conserved, noncontiguous segments of GCN1 that lead to reduced polyribosome association by GCN1.GCN20 in living cells without reducing GCN1 expression or its interaction with GCN20. Mutating both segments simultaneously produced a greater reduction in polyribosome binding by GCN1.GCN20 and a stronger decrease in eukaryotic translation initiation factor 2alpha phosphorylation than did mutating in one segment alone. These findings provide strong evidence that ribosome binding by GCN1 is required for its role as a positive regulator of GCN2. A particular mutation in the GCN1 domain, related in sequence to translation elongation factor 3 (eEF3), decreased GCN2 activation much more than it reduced ribosome binding by GCN1. Hence, the eEF3-like domain appears to have an effector function in GCN2 activation. This conclusion supports the model that an eEF3-related activity of GCN1 influences occupancy of the ribosomal decoding site by uncharged tRNA in starved cells.  相似文献   

6.
7.
Regulation of the GCN4 gene of Saccharomyces cerevisiae is one of the best-documented instances of gene-specific translational control in an eukaryote. Upstream open reading frames (uORFs) in GCN4 mRNA modulate the flow of scanning ribosomes to the GCN4 start codon according to the availability of amino acids. Recent results suggest that sequences at the termination codons of the uORFs, a general initiation factor, and a protein kinase all make important contributions to the proper functioning of this interesting translational-control element.  相似文献   

8.
Multiple upstream AUG codons mediate translational control of GCN4   总被引:129,自引:0,他引:129  
P P Mueller  A G Hinnebusch 《Cell》1986,45(2):201-207
  相似文献   

9.
10.
Translational control of GCN4 expression in the yeast Saccharomyces cerevisiae is mediated by multiple AUG codons present in the leader of GCN4 mRNA, each of which initiates a short open reading frame of only two or three codons. Upstream AUG codons 3 and 4 are required to repress GCN4 expression in normal growth conditions; AUG codons 1 and 2 are needed to overcome this repression in amino acid starvation conditions. We show that the regulatory function of AUG codons 1 and 2 can be qualitatively mimicked by the AUG codons of two heterologous upstream open reading frames (URFs) containing the initiation regions of the yeast genes PGK and TRP1. These AUG codons inhibit GCN4 expression when present singly in the mRNA leader; however, they stimulate GCN4 expression in derepressing conditions when inserted upstream from AUG codons 3 and 4. This finding supports the idea that AUG codons 1 and 2 function in the control mechanism as translation initiation sites and further suggests that suppression of the inhibitory effects of AUG codons 3 and 4 is a general consequence of the translation of URF 1 and 2 sequences upstream. Several observations suggest that AUG codons 3 and 4 are efficient initiation sites; however, these sequences do not act as positive regulatory elements when placed upstream from URF 1. This result suggests that efficient translation is only one of the important properties of the 5' proximal URFs in GCN4 mRNA. We propose that a second property is the ability to permit reinitiation following termination of translation and that URF 1 is optimized for this regulatory function.  相似文献   

11.
12.
13.
G-proteins play critical roles in many cellular processes and are regulated by accessory proteins that modulate the nucleotide-bound state. Such proteins, including eukaryotic translation elongation factor 1A (eEF1A), are frequently reactivated by guanine nucleotide exchange factors (GEFs). In the yeast Saccharomyces cerevisiae, only the catalytic subunit of the GEF complex, eEF1Balpha, is essential for viability. The requirement for the TEF5 gene encoding eEF1Balpha can be suppressed by the presence of excess substrate, eEF1A. These cells, however, have defects in growth and translation. Two independent unbiased screens performed to dissect the cause of these phenotypes yielded dominant suppressors that bypass the requirement for extra eEF1A. Surprisingly, all mutations are in the G-protein eEF1A and cluster in its GTP-binding domain. Five mutants were used to construct novel strains expressing only the eEF1A mutant at normal levels. These strains show no growth defects and little to no decreases in total translation, which raises questions as to the evolutionary expression of GEF complexity and other potential functions of this complex. The location of the mutations on the eEF1A-eEF1Balpha structure suggests that their mechanism of suppression may depend on effects on the conserved G-protein elements: the P-loop and NKXD nucleotide-binding element.  相似文献   

14.
A series of mutations in the highly conserved N(153)KMD(156)GTP-binding motif of the Saccharomyces cerevisiae translation elongation factor 1A (eEF1A) affect the GTP-dependent functions of the protein and increase misincorporation of amino acids in vitro. Two critical regulatory processes of translation elongation, guanine nucleotide exchange and translational fidelity, were analyzed in strains with the N153T, D156N, and N153T/D156E mutations. These strains are omnipotent suppressors of nonsense mutations, indicating reduced A site fidelity, which correlates with changes either in total translation rates in vivo or in GTPase activity in vitro. All three mutant proteins also show an increase in the K(m) for GTP. An in vivo system lacking the guanine nucleotide exchange factor eukaryotic elongation factor 1Balpha (eEF1Balpha) and supported for growth by excess eEF1A was used to show the two mutations with the highest K(m) for GTP restore most but not all growth defects found in these eEF1Balpha deficient-strains to near wild type. An increase in K(m) alone, however, is not sufficient for suppression and may indicate eEF1Balpha performs additional functions. Additionally, eEF1A mutations that suppress the requirement for guanine nucleotide exchange may not effectively perform all the functions of eEF1A in vivo.  相似文献   

15.
16.
17.
18.
19.
Identification of a role for actin in translational fidelity in yeast   总被引:5,自引:0,他引:5  
Numerous studies have suggested a role for actin in translation, but the molecular details of this role are unknown. To elucidate the function(s) of actin in translation, we have studied 25 isogenic, conditional yeast actin mutants. Strikingly, analysis of these mutants indicates that none of those tested have conditional growth defects caused by reduced rates of protein synthesis; and analysis of latrunculin A-treated wild-type cells indicates that even complete disruption of the actin cytoskeleton has no significant effect on the rate of translation. However, analysis of the effect of the 25 actin mutations on fidelity and sensitivity to translation inhibitors identified two mutations ( act1-2 and act1-122) that cause a significant reduction in the fidelity of translation, as assayed by nonsense suppression, and several mutants that are sensitive to paromomycin, which affects translational fidelity. Translation elongation factor 1A (eEF1A) also has a role in fidelity, and in the presence of excess eEF1A four of the mutants ( act1-2, act1-20, act1-120, and act1-125) are even more sensitive to paromomycin, while one mutant ( act1-122) becomes less sensitive. Together, these findings suggest that actin may not be important for the rate of translation, but may have a critical role in ensuring translational fidelity.  相似文献   

20.
At equilibrium, empty ribosomes freely transit between the rotated and un-rotated states. In the cell, the binding of two translation elongation factors to the same general region of the ribosome stabilizes one state over the other. These stabilized states are resolved by expenditure of energy in the form of GTP hydrolysis. A prior study employing mutants of a late assembling peripheral ribosomal protein suggested that ribosome rotational status determines its affinity for elongation factors, and hence translational fidelity and gene expression. Here, mutants of the early assembling integral ribosomal protein uL2 are used to test the generality of this hypothesis. rRNA structure probing analyses reveal that mutations in the uL2 B7b bridge region shift the equilibrium toward the rotated state, propagating rRNA structural changes to all of the functional centers of ribosome. Structural disequilibrium unbalances ribosome biochemically: rotated ribosomes favor binding of the eEF2 translocase and disfavor that of the elongation ternary complex. This manifests as specific translational fidelity defects, impacting the expression of genes involved in telomere maintenance. A model is presented describing how cyclic intersubunit rotation ensures the unidirectionality of translational elongation, and how perturbation of rotational equilibrium affects specific aspects of translational fidelity and cellular gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号