首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The DNAs of two closely related orthopoxviruses, rabbit poxvirus (RPV) and vaccinia virus (VV), were mapped by overlapping-fragment analysis using restriction endonucleases HindIII and Sst I. The exact arrangement of these fragments was accomplished by total digestion of isolated partial restriction products and by end-fragment determination. RPV and VV DNAs showed identical restriction patterns in an internal region comprising approximately 60% of the genome. The size, by electrophoretical analysis of the RPV DNA, was 118 X 10(6) daltons, some 6 X 10(6) daltons less than VV DNA. The two opposite terminal restriction fragments of RPV DNA cross-hybridized to each other.  相似文献   

2.
Structure of varicella-zoster virus DNA   总被引:28,自引:23,他引:5       下载免费PDF全文
Varicella-zoster virus (VZV) DNA was prepared from nucleocapsids and from enveloped virions of a laboratory strain (Ellen) and directly from the vesicle fluids of patients with zoster infections. VZV Ellen nucleocapsid DNA was cleaved with 11 different restriction endonucleases and electrophoresed in agarose gels. The restriction profiles of the nucleocapsid DNA were identical to those of the DNA recovered from purified virions, but differed from those of another VZV strain (KM). In vitro-labeled VZV K.M. DNA purified directly from vesicle fluid yielded a distinct restriction pattern which appeared to be unchanged after several tissue culture passages of the isolate from that fluid. Restriction endonuclease analysis (EcoRI or BglII) of VZV DNA revealed the presence of four cleavage fragments with a molar ratio of approximately 0.5. No individual fragments with molar ratios of 0.25 were noted. This observation suggests that the VZV genome may contain one invertible segment. Comparison of the electrophoretic migrations of VZV DNA fragments relative to those of DNAs of known size permitted calculation of the VZV genome size to be 72 X 10(6) to 80 X 10(6) daltons. These results were confirmed by electron microscopy which demonstrated a genome size of about 76 X 10(6) daltons for passaged and unpassaged VZV DNA. Electron microscopy also revealed that some of the DNA molecules recovered from nucleocapsids or directly from vesicle fluids were superhelical circles.  相似文献   

3.
Summary Mitochondrial DNA from the yeast strain SR23, tentatively allocated to the species, Candida rhagii, consists of linear molecules 30 kb long. This has been demonstrated by restriction analysis and selective radioactive labelling of terminal restriction fragments. Preliminary sequence analysis indicated that the two ends of the molecule are formed by inverted repeats. The arrangement of several genes in the mitochondrial genome of C. rhagii SR23 was established by specific hybridisation with probes prepared from mitochondrial DNA of Saccharomyces cerevisiae. The arrangement is unique, with genes coding for the two ribosomal RNAs placed widely apart. Intron(s) may be present in the gene coding for cytochrome b.  相似文献   

4.
5.
Mapping of the ribosomal RNA genes on spinach chloroplast DNA.   总被引:22,自引:12,他引:10       下载免费PDF全文
Spinach chloroplast ribosomal RNAs have been hybridized to restriction endonuclease fragments of spinach chloroplast DNA. All three RNA species (23S, 16S and 5S) hybridized to a single large fragment when the DNA was digested with either Sall or Pstl. Hybridization of 23S RNA to fragments produced by Smal yielded two radioactive bands which corresponded to the bi-molar 2.5 X 10(6) and 1.15 X 10(6) Mr fragments. 16S RNA also hybridized to two, bi-molar Smal fragments (3.4 X 10(6) and 2.5 X 10(6) Mr) and 5S RNA hybridized to the 1.15 X 10(6) Mr bi-molar Smal fragment. The 23S RNA and 16S RNA cistrons were each also shown to contain a single EcoRI site. From the data it was possible to conclude that the ribosomal RNA genes are located on the inverted repeat region of the spinach chloroplast DNA restriction map [1,2], that the sequence of the cistrons is 16S - 23S - 5S and that the size of the spacer between the 16S and 23S RNA cistrons is approximately 0.90 X 10(6) Mr.  相似文献   

6.
Characterization of a plasmid from Streptomyces coelicolor A3(2).   总被引:6,自引:6,他引:0       下载免费PDF全文
Covalently closed circular deoxyribonucleic acid (DNA) with a molecular weight of 20 X 10(6) was identified in strains of Streptomyces coelicolor A3(2) of various fertility types. Hybridization studies and digestion by various restriction endonucleases indicated that the circular DNAs (pSH1) were identical regardless of the fertility type (UF, IF, or NF) of the strain from which it was isolated. The pSH1 DNA was cleaved to many fragments by the endonucleases HincII, SmaI, and SalI and to three or four fragments by BamHI and PstI. Plasmid pSH1 carries single sites for each of the two restriction enzymes, EcoRI and HindIII. These sites are 7.6 X 10(6) daltons apart. Attempts to isolate the fertility factor SCP1 as covalently closed circular DNA were unsuccessful. These data suggest that the biochemically isolated plasmid pSH1 is not identical to the genetically characterized fertility factor SCP1, which has been identified in an autonomous state in IF-type strains and in an integrated state in NF-type strains.  相似文献   

7.
Fragments of guinea pig cytomegalovirus (GPCMV) DNA produced by HindIII or EcoRI restriction endonuclease digestion were cloned into vectors pBR322 and pACYC184, and recombinant fragments representing ca. 97% of the genome were constructed. Hybridization of 32P-labeled cloned and gel-purified HindIII, EcoRI, and XbaI fragments to Southern blots of HindIII-, EcoRI-, and XbaI-cleaved GPCMV DNA verified the viral origin of cloned fragments and allowed construction of HindIII, EcoRI, and XbaI restriction maps. On the basis of the cloning and mapping experiments, the size of GPCMV DNA was calculated to include 239 kilobase pairs, corresponding to a molecular weight of 158 X 10(6). No cross-hybridization between any internal fragments was seen. We conclude that the GPCMV genome consists of a long unique sequence with terminal repeat sequences but without internal repeat regions. In addition, GPCMV DNA molecules exist in two forms. In the predominant form, the molecules demonstrate sequence homology between the terminal fragments; in the minor population, one terminal fragment is smaller by 0.7 X 10(6) daltons and is not homologous with the fragment at the other end of the physical map. The structural organization of GPCMV DNA is unique for a herpesvirus DNA, similar in its simplicity to the structure reported for murine cytomegalovirus DNA and quite dissimilar from that of human cytomegalovirus DNA.  相似文献   

8.
A comparative analysis of three Epstein-Barr virus DNAs from American patients with infectious mononucleosis (B95-8, Cherry, and Lamont) and four Epstein-Barr virus DNAs from African patients with Burkitt lymphoma (AG876, W91, Raji, and P3HR-1) indicated that the usual format of Epstein-Barr virus DNA includes a variable number of direct repeats of a 0.35 X 10(6)-dalton sequence (TR) at both ends of the DNA, a 9 X 10(6)-dalton sequence of largely unique DNA (Us), a variable number of repeats of a 2 X 10(6)-dalton sequence (IR), and a 89 X 10(6)-dalton sequence of largely unique DNA (UL). Within UL there was homology between DNA at 26 X 10(6) to 28 X 10(6) daltons and DNA at 93 X 10(6) to 95 X 10(6) daltons. The relative sequence order (TR, US, IR, UL, TR) did not vary among "standard" Epstein-Barr virus DNA molecules of each isolate. B95-8 DNA had an unusual deletion extending from 91 X 10(6) to 100 X 10(6) daltons, and P3HR-1 DNA had an unusual deletion extending from 23.5 X 10(6) to 26 X 10(6) daltons. There was sufficient variability among the EcoRI and BamHI fragments of the DNAs to identify each isolate specifically. However, we discerned no distinguishing features for the two geographic or pathogenic origins of the seven isolates. Three intracellular DNAs (Raji, Lamont, and Cherry) and one virion DNA (P3HR-1) were heterogenous in molecular organization and had subpopulations of rearranged or defective molecules. Some regions, particularly 59 X 10(6) to 63 X 10(6) daltons and sequences around TR, frequently participated in rearrangements. Restriction endonuclease maps of the standard and rearranged DNAs of the seven isolates are presented.  相似文献   

9.
Isolation of yeast tRNALeu genes. DNA sequence of a cloned tRNALeu3 gene.   总被引:7,自引:0,他引:7  
A library of cloned yeast DNA fragments generated by digestion of yeast DNA with the restriction endonuclease Bam HI has been screened by colony hybridization to total yeast [32P]tRNA. Four hundred colonies carrying yeast tRNA genes were isolated. By hybridization to 125I-tRNALeu3, we have isolated from this collection 14 colonies carrying fragments containing yeast tRNALeu genes. The size of the yeast Bam HI inserts ranged from 2.45 x 10(6) to 14 x 10(6) daltons. One of these fragments was mapped in detail by restriction endonuclease digestion and hybridization to 125I-tRNALeu3. The presence of a tRNALeu3 gene was confirmed by DNA sequence. The results indicate that the tRNALeu3 coding region is not co-linear with the tRNALeu3. An intervening tract of 33 base pairs interrupts the coding sequences 1 base pair past the anticodon coding region. The putative structure of a tRNALeu3 precursor is deduced in which the anticodon base pairs with residues from the intervening sequence.  相似文献   

10.
Plasmid pSL103 was previously constructed by cloning a Trp fragment (approximately 2.3 X 10(6) daltons) from restriction endonuclease EcoRI-digested chromosome DNA of Bacillus pumilus using the neomycin-resistance plasmid pUB110 (approximately 2.8 X 10(6) daltons) as vector and B. subtilis as transformation recipient. In the present study the EcoRI Trp fragment from pSL103 was transferred in vitro to EcoRI fragments of the Bacillus plasmid pPL576 to determine the ability of the plasmid fragments to replicate in B. subtilis. Endonuclease EcoRI digestion of pPL576 (approximately 28 X 10(6) daltons) generated three fragments having molecular weights of about 13 X 13(6) (the A fragment), 9.5 X 10(6) (B fragment, and 6.5 X 10(6) (C fragment). Trp derivatives of pPL576 fragments capable of autonomous replication in B. subtilis contained the B fragment (e.g., pSL107) or both the B and C fragments (e.g., pSL108). Accordingly, the B fragment of pPL576 contains information essential for autonomous replication. pSL107 and pSL108 are compatible with pUB110. Constructed derivatives of the compatible plasmids pPL576 and pUB110, harboring genetically distinguishable EcoRI-generated Trp fragments cloned from the DNA of a B. pumilus strain, exhibited relatively high frequency recombination for a trpC marker when the plasmid pairs were present in a recombination-proficient strain of B. subtilis. No recombination was detected when the host carried the chromosome mutation recE4. Therefore, the recE4 mutation suppresses recombination between compatible plasmids that contain homologous segments.  相似文献   

11.
Inheritance of the 2μm DNA Plasmid from Saccharomyces   总被引:9,自引:0,他引:9       下载免费PDF全文
A variety of Saccharomyces strains were examined for the presence of 2micro DNA and, if present, for the pattern of fragments produced by its digestion with site-specific (restriction) endonucleases. Two strains were found that did not contain detectable levels of 2micro DNA, and two strains contained 2micro DNA molecules having only one EcoRI restriction endonuclease recognition site rather than the usual two.-A haploid containing 2micro DNA with one EcoRI restriction site was mated with a haploid containing 2micro DNA with two EcoRI restriction sites and the resulting diploid maintained both types during vegetative growth. Sporulation of the diploid produced four spores, and the clones from these spores contained both types.-A haploid lacking 2micro DNA was mated with a haploid containing 2micro DNA and the resulting diploid contained 2micro DNA. The four clones derived from the haploid spores after sporulation of this diploid all contained 2micro DNA. A rho(-) strain without 2micro DNA was mated to a rho(+) strain with 2micro DNA, and heteroplasmons were selected that had received the nucleus from the strain without 2micro DNA and the mitochondria from the strain with 2micro DNA. Twelve of twenty-four such clones contained 2micro DNA.-I conclude that: (1) the different types of 2micro DNA identified in these strains do not restrict one another, (2) the different types are inherited extrachromosomally, (3) lack of 2micro DNA in two strains is not due to the absence of genes needed for maintenance and (4) the approximately 100 copies of 2micro DNA contained within a single cell are probably clustered within one or a few cytoplasmic organelles.  相似文献   

12.
From a colony bank of HindIII-generated yeast DNA fragments we have isolated a number of recombinant DNAs carrying genes for ribosomal proteins (e.g., S10, S16A, S20, S24, S31, S33, L16, L25 and L34) of the yeast Saccharomyces carlsbergensis. By electron microscopic analysis of the R-loops formed between various DNA fragments and yeast mRNA, we could locate the ribosomal protein genes on the physical maps of the cloned DNA fragments. The R-loop structures observed indicate that a number of the ribosomal protein genes contain an intervening sequence.  相似文献   

13.
We studied Bacillus thuringiensis var galleriae, strain 612 plasmids. B. thuringiensis cells contain double-stranded plasmid DNA molecules (ranging of about 12% from total DNA content) with buoyant density 1.59 g/cm3. Plasmid DNA content was constant during the exponential and stationary phases of bacterial growth. The plasmid fractions consist of DNA molecules with molecular weights of 5.9 x 10(6), 10.0 x 10(6), and 110.9 x 10(6) daltons (pVD1, pVD2 pVD3, respectively). Endonuclease EcoRI cuts the plasmids pVD2 and pVD3 into two and four fragments, respectivelyy, but pVDI seemed to be resistent to EcoRI treatment. We found that pVD2 and pVD3 plasmids contain a common DNA fragment with the molecular weight of 6.7 x 10(6) dalton as it was shown by restriction analysis. In contrast, the same plasmids contain the common fragment with molecular weight of 7.5 x 10(6) dalton as shown by heteroduplex analysis. Plasmid pVD3 has a transposon-like structure.  相似文献   

14.
A procedure is developed for the isolation of intact chloroplast DNA (ctDNA) from Petunia hybrida. The molecular weight, calculated from contour length measurements, is 96.0 +/- 4.5 x 10(6) daltons. This value is in good agreement with the value of 101.2 x 10(6) daltons that was estimated from the electrophoretic mobilities of restriction endonuclease fragments of ctDNA. Analysis of petunia ctDNA in neutral CsCl gradients revealed the presence of only one type of DNA at a buoyant density of 1.6987 +/- 0.0005 gcm-3. This corresponds with a GC-content of 39.3 +/- 0.5%. A physical map of petunia ctDNA was constructed by using the restriction endonucleases Sal I, Bgl I, Hpa I and Kpn I. The map indicates that petunia ctDNA contains two copies of a sequence in an inverted orientation. The inverted repeat regions have a minimum length of 10 x 10(6) daltons. Hybridization data indicate that part of the inverted repeat regions contain the genes for chloroplast ribosomal RNAs.  相似文献   

15.
Summary Tobacco chloroplast ribosomal RNAs were shown to be hybridized with two EcoRI fragments of tobacco chloroplast DNA. These DNA fragments having molecular weights of 1.9x106 and 2.8x106 daltons were cloned using the bacterial plasmid pMB9 as a vector and E. coli HB101 as host bacteria. The recombinant plasmids containing either or both of these fragments were constructed and characterized.Abbreviations rRNA ribosomal RNA - EDTA ethylenediamine tetraacetic acid - SSC 0.15 M NaCl-0.015 M sodium citrate - EcoRI and HindIII restriction endonucleases isolated from E. coli RY13 and Haemophilus influenzae Rd, respectively  相似文献   

16.
Molecular cloning of herpes simplex virus type 2 DNA   总被引:2,自引:0,他引:2  
Restriction enzyme HindIII digestion of the whole genome of herpes simplex virus type 2 strain 186 yielded 10 DNA fragments with molecular weights ranging from approximately 22 X 10(6) to 1.2 X 10(6), which were cloned into the HindIII site of bacterial plasmid pACYC 184. The cloned fragments were identified by hybridization to HSV-2 virus DNA and by double digestion with restriction endonucleases. The recombinant plasmids, even if they carried DNA sequences with molecular weights of more than 10(7), were efficiently replicated in E. coli HB101.  相似文献   

17.
The restriction endonuclease EcoR1 cleaves Saccharomyces cerevisiae DNA, which codes for ribosomal RNA (rRNA), into seven fragments, A second restriction endonuclease, HindIII, cleaves the same yeast ribosomal DNA into two fragments. These two restriction enzymes each yield DNA segments that total about 5.9 megadaltons. The "repeat unit" of the yeast genes coding for rRNA is thus about 5.9 megadaltons or about 9000 base pairs long. The two HindIII-cleaved DNA fragments as well as one of the EcoR1-cleaved DNA fragments were purified and amplified by cloning in Escherichia coli. Three of the seven EcoR1-generated DNA fragments could then be ordered by treating the two cloned HindIII DNA fragments with EcoR1. This led the assignment of the two HindIII restriction sites. The various restriction DNA fragments were hybridized directly from the gel utilizing 32P-labeled 5 S, 5.8 S, 18 S, and 25 S rRNA. Identification of the various DNA restriction segments then led to the final ordering of the DNA fragments. The gene coding for the 5 S RNA is adjacent to the gene coding for the 35 S precursor rRNA. These two groups of genes thus occur as a cluster in the following sequence: [5 S-spacer]-[spacer-18 S-5.8 S-25 S-spacer]-[spacer-5 S]. The actual map of the DNA restriction fragments is presented.  相似文献   

18.
19.
The arrangement of EcoRI, Hsu I, and Sal I restriction enzyme sites in the DNA of the B95-8 and W91 isolates of Epstein-Barr virus (EBV) has been determined from the size of the single-enzyme-cleaved fragments and from blot hybridizations that identify which fragments cut from the DNA with one enzyme contain nucleotide sequences in common with fragments cut from the DNA with a second enzyme. The DNA of the B95-8 isolate was the prototype for this study. The data indicate that (i) approximately 95 X 10(6) to 100 X 10(6) daltons of EBV (B95-8) DNA is in a consistent and unique sequence arrangement. (ii) Both termini are variable in length. One end of the molecule after Hsu I endonuclease cleavage consists of approximately 3,000 base pairs, with as many as 10 additional 500-base pair segments. The opposite end of the molecule after Sal I endonuclease cleavage consists of approximately 1,500 base pairs, with as many as 10 additional 500-base pair segments. (iii) The opposite ends of the molecule contain homologous sequences. The high degree of homology between the opposite ends of the molecule and the similarity in size of the "additional" 500-base pair segments suggests that there are identical repeating units at both ends of the DNA. The arrangement of restriction endonuclease fragments of the DNA of the W91 isolate of EBV is similar to that of the B95-8 isolate and differs from the latter in the presence of approximately 7 X 10(6) daltons of "extra" DNA at a single site. Thus, the size of almost all EcoRI, Hsu I, and Sal I fragments of EBV (W91) DNA is identical to that of fragments of EBV (B95-8) DNA. A single EcoRI fragment, C, of EBV (W91) DNA is approximately 7 X 10(6) daltons larger than the corresponding EcoRI fragment of EBV (B95-8) DNA. Digestion of EBV (W91) DNA with Hsu I or Sal I restriction endonucleases produces two fragments (Hsu I D1 and D2 or Sal I G2 and G3) which differ in total size by approximately 7 X 10(6) daltons from the fragments of EBV (B95-8) DNA. Furthermore, the EcoRI, Hsu I, and Sal I fragments of EBV (W91) and (B95-8) DNAs, which are of similar molecular weight, have homologous nucleotide sequences. Moreover, the W91 fragments contain only sequences from a single region of the B95-8 genome. Two lines of evidence indicate that the "extra" sequences present in W91 EcoRI fragment C are viral DNA and not cellular. (i) The molecular weight of the "enlarged" EcoRI C fragment of EBV (W91) DNA is identical to that of the EcoRI C fragment of another isolate of EBV (Jijoye), (ii) The HR-1 clone of Jijoye has previously been shown to contain DNA which is not present in the B95-8 strain but is present in the EcoRI C and Hsu I D2 and D1 fragments of EBV (W91) DNA (N. Raab-Traub, R. Pritchett, and E. Kieff, J. Virol. 27:388-398, 1978).  相似文献   

20.
M Heller  P Gerber    E Kieff 《Journal of virology》1981,37(2):698-709
EcoRI, HindII, SalI, nd XbaI restriction endonuclease maps of herpesvirus papio (HVPapio) DNA were derived by determining the fragment sizes and the linkage relationships between fragments generated by the different enzymes. The data indicate that HVPapio DNA has a single molecular arrangement which is similar to that of Epstein-Barr virus DNA. The size of the DNA was 110 X 10(6) to 114 X 10(6) daltons. Restriction fragments from both ends varied in the number of repeats of a 4 X 10(5)-dalton sequence, TR, and hybridized to each other. This suggests that there is an identical repeating unit, TR, at both ends of the DNA. There were usually six tandem repetitions (range, 1 to 11) of a 2 X 10(6)-dalton sequence, IR, within the DNA. IR separated the DNA into two domains of largely unique sequence complexity, a 9 X 10(6)-dalton segment, Us, and an 88 X 10(6)-dalton segment, UL. There was homology between DNA fragments which mapped at 25 X 10(6) to 29 X 10(6) to 91 X 10(6) to 95 X 10(6) daltons in UL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号