首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
It has been proposed that a finely tuned protease-anti-protease equilibrium must be maintained during processes of cell migration in order to limit extracellular proteolysis to the close proximity of the cell surface, and thereby to prevent excessive extracellular matrix degradation. We have previously shown that urokinase-type plasminogen activator (u-PA) activity is induced in microvascular endothelial cells migrating from the edges of a wounded monolayer in vitro (Pepper et al., J. Cell Biol., 105:2535-2541, 1987). By Northern analysis, we now demonstrate that plasminogen activator inhibitor 1 (PAI-1) mRNA is increased in multiple-wounded monolayers of bovine microvascular (BME) or aortic (BAE) endothelial cells, with a maximal 7- and 9-fold increase 4 h after wounding, respectively. By in situ hybridization, we demonstrate that the increase in PAI-1 mRNA is localized to cells at the edge of a wounded BME or BAE cell monolayer. The increase in PAI-1 mRNA observed in BME cells is independent of cell division and is inhibited by antibodies to basic fibroblast growth factor (bFGF), suggesting that PAI-1 induction in migrating cells is mediated by the autocrine activity of bFGF. Taken together with our previous observations on the induction of u-PA, these results support the hypothesis that the proteolytic balance in the pericellular environment of migrating cells is regulated through the concomitant production of proteases and protease inhibitors.  相似文献   

3.
4.
Mesenchymal cell (MC) condensation or the aggregation of MCs precedes chondrocyte differentiation and is required for subsequent cartilage formation during endochondral ossification. In this study, we used micromass cultures of C3H10T1/2 cells as an in vitro model system for studying MC condensation and the events important for this process. Transforming growth factor beta1 (TGF-beta1) served as the initiator of MC condensation in our model system and we were interested in determining whether CTGF functions as a downstream mediator of TGF-beta1. CTGF is a matricellular protein that has been found to be expressed in MC condensations and in the perichondrium. Micromass cultures of C3H10T1/2 cells condensed under TGF-beta1 stimulation concomitant with dramatic up-regulation of CTGF mRNA and protein levels. CTGF silencing by either CTGF siRNA or CTGF antisense oligonucleotide approaches showed that TGF-beta1-induced condensation was CTGF dependent. Furthermore, silencing of CTGF expression resulted in significant reductions in cell proliferation and migration, events that are crucial during MC condensation. In addition, up-regulation of Fibronectin (FN) and suppression of Sox9 expression by TGF-beta1 was also found to be mediated by CTGF. Immunofluorescence of developing mouse vertebrae showed that CTGF, TGF-beta1 and FN were co-expressed in condensations of MCs, while Sox9 expression was low at this stage. During subsequent chondrogenesis, Sox9 expression was high in chondrocytes while CTGF expression was limited to the perichondrium. Thus, CTGF is an essential downstream mediator of TGF-beta1-induced MC condensation through its effects on cell proliferation and migration. CTGF is also involved in up-regulating FN and suppressing Sox9 expression during TGF-beta1 induced MC condensation.  相似文献   

5.
6.
7.
Previously we have demonstrated that in MDCK epithelial cells not only transforming growth factor-beta (TGF-beta) but also hepatocyte growth factor/scatter factor (HGF/SF) regulates fibronectin (FN) splicing by increasing the ratio of EDA-containing FN (EDA+ FN) mRNA to EDA-minus FN (EDA- FN) mRNA (EDA+/EDA- ratio). EDA+ FN is known to be upregulated in tissues where cells actively migrate, such as those during morphogenesis, wound healing, and tumorigenesis. However, a direct association between cell migration and FN splicing at the EDA region has never been investigated. In this work, we have shown by using an in vitro wound migration assay that migrating epithelial cells regulate FN production and splicing differently compared to nonmigrating cells. Wounds were introduced as migration stimuli into the 10-day-old confluent cell sheet, where the EDA+/EDA- ratio and FN mRNA expression levels were stable. In migrating cells at the wound edge, the FN mRNA level decreased by 0.73-fold and the EDA+/EDA- ratio increased by 1.32-fold when compared with nonmigrating cells apart from the wound edge. HGF/SF significantly stimulated cell migration at the wound edge and concomitantly decreased the FN mRNA level by 0.60-fold and increased the EDA+/EDA- ratio by 1.84-fold in migrating cells. In nonmigrating cells apart from the wound edge, FN mRNA expression and splicing were not influenced by either wound stimulation or HGF/SF. EDA+ FN stimulates cell migration more effectively than EDA- FN and thus is considered to be a more active variant of FN. Taken together, migrating MDCK cells appear to regulate FN mRNA expression and splicing to produce a lesser amount of, but more active, FN.  相似文献   

8.
Matrix metalloproteinase-3 (MMP-3) expression is promoted after pulpotomy, and application of MMP-3 to dental pulp after pulpotomy accelerates angiogenesis and hard tissue formation. However, the mechanism by which MMP-3 promotes dental pulp wound healing is still unclear. Connective tissue growth factor/CCN family 2 (CTGF/CCN2), a protein belonging to the CCN family, is considered to participate in wound healing, angiogenesis, and cell migration. In this study, we examined the involvement of CTGF/CCN2 in MMP-3-induced cell migration in human dental pulp (fibroblast-like) cells. In human dental pulp cells, MMP-3 promoted cell migration, but this effect was clearly blocked in the presence of anti-CTGF/CCN2 antibody. MMP-3 provoked mRNA and protein expression and secretion of CTGF/CCN2 in a concentration- and time-dependent manner. The MMP-3 inhibitor NNGH failed to suppress MMP-3-induced CTGF/CCN2 protein expression. The potent dynamin inhibitor dynasore clearly inhibited MMP-3-induced CTGF/CCN2 expression. These results strongly suggest that MMP-3 induces CTGF/CCN2 production independently of the protease activity of MMP-3 and dependently on dynamin-related endocytosis, which is involved in cell migration in human dental pulp cells.  相似文献   

9.
We have previously demonstrated that vitronectin (VN), a morphoregulatory protein in the vessel wall, is internalized and translocated to the subendothelial matrix by an integrin-independent mechanism (J. Histochem. Cytochem.41, 1823–1832, 1993). The cell surface component which mediates the initial contact of VN with endothelial cells is defined here. The specific binding of VN to endothelial cells demonstrated the following properties: a threefold increase after phorbol ester treatment; 85% inhibition by pretreatment of cells with phosphatidylinositol–phospholipase C to release glycolipid-anchored surface proteins; a 90% inhibition by urokinase (u-PA) receptor blocking antibody. u-PA increased VN binding to cells due to an eightfold increase in the affinity of VN for the u-PA receptor. Structure–function studies showed that the amino-terminal fragment of u-PA, devoid of any proteolytic activity, mediated this effect. Active plasminogen activator inhibitor-1 (PAI-1), but not inactivated PAI-1, inhibited VN binding to cells and displaced VN that was prebound to endothelial cell monolayers. Similarly, VN binding to purified (immobilized) u-PA receptor, but not to integrin, was enhanced by u-PA and inhibited by PAI-1. Hence, the binding of soluble VN to endothelial cell surfaces is mediated by the u-PA receptor, and the relative concentrations of u-PA and PAI-1 are able to regulate the strength of this interaction. Endothelial cell adhesion to immobilized VN was found to be integrin-mediated without any involvement of the VN–uPA-receptor system. Hence, the interaction of VN with the u-PA receptor may be involved in the regulation of cellular processes necessary for endothelial cell invasion and migration at VN-rich extracellular matrix sites.  相似文献   

10.
One of the phenotypic hallmarks of migrating endothelial cells, both in vivo and in vitro, is expression of the urokinase-type plasminogen activator (u-PA), a key mediator of extracellular proteolysis. In the study reported here, we have used an in vitro model of endothelial cell migration to explore the mechanism of this phenomenon. We have found that wounding of an endothelial cell monolayer triggers a marked, rapid and sustained increase in expression of a specific high-affinity receptor for u-PA (u-PAr) on the surface of migrating cells. Migrating cells displayed an increase in the levels of u-PA and u-PAr mRNAs, and this increase was mediated by endogenous basic fibroblast growth factor (bFGF). We also show that the increase in u-PA activity on migrating cells can be accounted for by an increase in receptor-bound u-PA, and that the increase in activity is also dependent on endogenous bFGF. These results demonstrate that the expression of plasmin-mediated proteolytic activity by migrating endothelial cells is a consequence of increased production of both u-PA and its receptor, and that this in turn is mediated by endogenous bFGF. This suggests that u-PA, produced at increased levels by migrating cells, binds to u-PAr whose expression is upregulated on the same cells. These observations are in accord with the postulated role of u-PAr in mediating efficient and spatially restricted extracellular proteolysis, particularly in the context of cell migration.  相似文献   

11.
The microtubule and microfilament cytoskeletal systems as well as cell-to-cell contacts and cell–matrix interactions are critical regulators of cell structure and function. Alterations in cell shape profoundly influence signaling events and gene expression programs that impact a spectrum of biological responses including cell growth, migration and apoptosis. These same pathways also contribute to the progression of several important pathologic conditions (e.g., arteriosclerosis, vascular fibrosis, and endothelial dysfunction). Indeed, hemodynamic forces in the vascular compartment are established modifiers of endothelial and smooth muscle cell cytoarchitecture and orchestrate complex genetic and biological responses in concert with contributions from the extracellular matrix (ECM), growth factors (e.g., EGF, and TGF-β) and cell adhesion receptors (e.g., integrins, and cadherins). The profibrotic matricellular proteins plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) are prominent members of a subset of genes the expression of which is highly responsive to cell shape-altering stimuli (i.e., disruption of the actin-based and microtubule networks, shear strain and cyclic stretch). Since both PAI-1 and CTGF are major mediators of cardiovascular fibrotic disease, understanding cell structure-linked signaling cascades provides potential avenues for focused therapy. It is increasingly evident that growth factor receptors (EGFR) are activated by changes in cytoarchitecture and that the “repressive state” of certain signaling proteins (e.g., SMAD, and Rho-GEFs) is maintained by sequestration on cell structural networks. Functional repression can be relieved by cytoskeletal perturbations (e.g., in response to treatment with network-specific drugs) resulting in activation of signaling cascades (e.g., Rho, and MAPK) with associated changes in gene reprogramming. Recent studies document a complex network of both similar and unique signaling control elements leading to the induction of PAI-1 and CTGF in response to modifications in cell shape. The purpose of this review is to highlight our current understanding of “cell deformation”-responsive signaling cascades focusing on the potential value of targeting such pathways, and their model response genes (e.g., PAI-1, and CTGF), as a therapeutic option for the treatment of fibrotic diseases.  相似文献   

12.
Recent studies suggest that treatment with PPAR-gamma agonists and statins have beneficial effects on renal disease. However, the combined effects of PPAR-gamma agonists and statins in human renal epithelial cells are unknown. Our present study revealed that there were synergistic effects of pravastatin and pioglitazone in the expression of alpha-smooth muscle actin (alpha-SMA), connective tissue growth factor (CTGF), fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1) and collagen 1 in human renal proximal tubular epithelial cells induced by transforming growth factor-beta 1 (TGF-beta1). The beneficial effects of combined therapy against renal tubular epithelial cell injury are attributed, at least in part, to the inhibition of transdifferentiation, extracellular matrix deposition and cytokine production.  相似文献   

13.
14.
15.
16.
17.
Wounding of tissue induces cellular responses that ultimately result in wound repair. Studies in tissue culture model systems indicate that these responses include induction of AP-1 regulated genes, cell migration and mitogenesis which are also characteristic of cellular responses to growth factors. Investigations have identified cellular ras proteins as critical components of growth factor-stimulated signal transduction pathways, however their role in the wounding response is less clear. Investigation of the potential involvement of c-Ras in this process utilized quiescent living bovine corneal endothelium cells (BCE) which were microinjected with ras dominant interfering mutant protein (N17) and subsequently stimulated by mechanical wounding. Analysis of these cells demonstrated that microinjection of dominant- interfering ras protein, but not control proteins, inhibited the wounding response as evidenced by diminished Fos expression, lack of cell migration and a block in DNA synthesis.  相似文献   

18.
Yuan LQ  Lu Y  Luo XH  Xie H  Wu XP  Liao EY 《Amino acids》2007,32(3):425-430
Summary. Taurine is found in bone tissue, but its function in skeletal tissue is not fully understood. The present study was undertaken to investigate regulation of gene expression of connective tissue growth factor (CTGF), and the roles of mitogen-activated protein kinases (MAPKs) in murine osteoblast MC3T3-E1 cells treated with taurine. Western blot analysis showed taurine stimulated CTGF protein secretion in a dose- and time-dependent manner. Taurine induced activation of extracellular signal-regulated kinase (ERK), but not p38 and c-jun N-terminal Kinase (JNK), in osteoblasts. Furthermore, pretreatment of osteoblasts with the ERK inhibitor PD98059 abolished the taurine-induced CTGF production. These data indicate that taurine induces CTGF secretion in MC3T3-E1 cells mediated by the ERK pathway, and suggest that osteoblasts are direct targets of taurine.  相似文献   

19.
20.
Studies from our laboratory provide substantial evidence that thymosin beta 4, (Tbeta(4)), an actin-sequestering protein, promotes corneal wound healing through its ability to stimulate epithelial cell migration. Matrix metalloproteinases (MMPs), which are expressed in a wide variety of tissues including the cornea, also play a key role in epithelial cell migration and wound healing. In this study we investigated the role of MMPs in Tbeta(4)-stimulated corneal epithelial cell migration. In Boyden chamber assays, XG076, an inhibitor of the conversion of pro- to active MMPs, had no effect on epithelial cell migration stimulated by exogenous activated MMP-1. However, in in vitro migration assays where the activation of pro-MMPs was blocked, XG076 significantly inhibited cell migration and wound healing in the presence or absence of Tbeta(4). GM6001, a broad-spectrum inhibitor of active MMPs and selective MMP inhibitors, also suppressed Tbeta(4)-stimulated cell migration. Tbeta(4) upregulated MMP-1 gene and protein expression in primary human corneal epithelial cells and in transformed human corneal epithelial cells following scrape wounding. From these results we conclude that MMP catalytic activity is necessary for Tbeta(4) promotion of epithelial cell migration. These novel findings are the first to demonstrate a functional link between the two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号