首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The mitochondrial nicotinamide nucleotide transhydrogenase catalyzes hydride ion transfer between NAD(H) and NADP(H) in a reaction that is coupled to proton translocation across the inner mitochondrial membrane. The enzyme (1043 residues) is composed of an N-terminal hydrophilic segment (approximately 400 residues long) which binds NAD(H), a C-terminal hydrophilic segment (approximately 200 residues long) which binds NADP(H), and a central hydrophobic segment (approximately 400 residues long) which appears to form about 14 membrane-intercalating clusters of approximately 20 residues each. Substrate modulation of transhydrogenase conformation appears to be intimately associated with its mechanism of proton translocation. Using trypsin as a probe of enzyme conformation change, we have shown that NADPH (and to a much lesser extent NADP) binding alters transhydrogenase conformation, resulting in increased susceptibility of several bonds to tryptic hydrolysis. NADH and NAD had little or no effect, and the NADPH concentration for half-maximal enhancement of trypsin sensitivity of transhydrogenase activity (35 microM) was close to the Km of the enzyme for NADPH. The NADPH-promoted trypsin cleavage sites were located 200-400 residues distant from the NADP(H) binding domain near the C-terminus. For example, NADPH binding greatly increased the trypsin sensitivity of the K410-T411 bond, which is separated from the NADP(H) binding domain by the 400-residue-long membrane-intercalating segment. It also enhanced the tryptic cleavage of the R602-L603 bond, which is located within the central hydrophobic segment. These results, which suggest a protein conformation change as a result of NADPH binding, have been discussed in relation to the mechanism of proton translocation by the transhydrogenase.  相似文献   

2.
Treatment of submitochondrial particles (ETP) with trypsin at 0 degrees destroyed NADPH leads to NAD (or 3-acetylpyridine adenine dinucleotide, AcPyAD) transhydrogenase activity. NADH oxidase activity was unaffected; NADPH oxidase and NADH leads to AcPyAD transhydrogenase activities were diminished by less than 10%. When ETP was incubated with trypsin at 30 degrees, NADPH leads to NAD transhydrogenase activity was rapidly lost, NADPH oxidase activity was slowly destroyed, but NADH oxidase activity remained intact. The reduction pattern by NADPH, NADPH + NAD, and NADH of chromophores absorbing at 475 minus 510 nm (flavin and iron-sulfur centers) in complex I (NADH-ubiquinone reductase) or ETP treated with trypsin at 0 degrees also indicated specific destruction of transhydrogenase activity. The sensitivity of the NADPH leads to NAD transhydrogenase reaction to trypsin suggested the involvement of susceptible arginyl residues in the enzyme. Arginyl residues are considered to be positively charged binding sites for anionic substrates and ligands in many enzymes. Treatment of ETP with the specific arginine-binding reagent, butanedione, inhibited transhydrogenation from NADPH leads to NAD (or AcPyAD). It had no effect on NADH oxidation, and inhibited NADPH oxidation and NADH leads to AcPyAD transhydrogenation by only 10 to 15% even after 30 to 60 min incubation of ETP with butanedione. The inhibition of NADPH leads to NAD transhydrogenation was diminished considerably when butanedione was added to ETP in the presence of NAD or NADP. When both NAD and NADP were present, the butanedione effect was completely abolished, thus suggesting the possible presence of arginyl residues at the nucleotide binding site of the NADPH leads to NAD transhydrogenase enzyme. Under conditions that transhydrogenation from NADPH to NAD was completely inhibited by trypsin or butanedione, NADPH oxidation rate was larger than or equal to 220 nmol min-1 mg-1 ETP protein at pH 6.0 and 30 degrees. The above results establish that in the respiratory chain of beef-heart mitochondria NADH oxidation, NADPH oxidation, and NADPH leads to NAD transhydrogenation are independent reactions.  相似文献   

3.
Transhydrogenase couples hydride transfer between NADH and NADP+ to proton translocation across a membrane. The binding of Zn2+ to the enzyme was shown previously to inhibit steps associated with proton transfer. Using Zn K-edge X-ray absorption fine structure (XAFS), we report here on the local structure of Zn2+ bound to Escherichia coli transhydrogenase. Experiments were performed on wild-type enzyme and a mutant in which βHis91 was replaced by Lys (βH91K). This well-conserved His residue, located in the membrane-spanning domain of the protein, has been suggested to function in proton transfer, and to act as a ligand of the inhibitory Zn2+. The XAFS analysis has identified a Zn2+-binding cluster formed by one Cys, two His, and one Asp/Glu residue, arranged in a tetrahedral geometry. The structure of the site is consistent with the notion that Zn2+ inhibits proton translocation by competing with H+ binding to the His residues. The same cluster of residues with very similar bond lengths best fits the spectra of wild-type transhydrogenase and βH91K. Evidently, βHis91 is not directly involved in Zn2+ binding. The locus of βHis91 and that of the Zn-binding site, although both on (or close to) the proton-transfer pathway of transhydrogenase, are spatially separate.  相似文献   

4.
Karlsson J  Althage M  Rydström J 《Biochemistry》2003,42(21):6575-6581
Proton-translocating nicotinamide nucleotide transhydrogenase is a membrane-bound protein composed of three domains: the hydrophilic NAD(H)-binding domain, the hydrophilic NADP(H)-binding domain, and the hydrophobic membrane domain. The latter harbors the proton channel. In Escherichia coli transhydrogenase, the membrane domain is composed of 13 transmembrane alpha helices, of which especially helices 13 and 14 contain conserved residues. To characterize the roles of the individual residues betaLeu240 to betaSer260 in helix 14, these were mutated as single mutants to cysteines in the cysteine-free background, and in the case of betaGly245, betaGly249, and betaGly252, also to leucines. In addition to the residues forming the helix, residues betaAsn238 and betaAsp239 were also mutated. Except for betaI242C, all mutants were normally expressed, purified, and characterized with respect to, e.g., catalytic activities and proton pumping. The results show that mutation of the conserved glycines betaGly245, betaGly249, and betaGly252, located on the same face of the helix, led to a general inhibition of all activities, especially in the case of betaGly252, suggesting a role of these glycines in helix-helix interactions. In contrast, mutation of the conserved serines betaSer250, betaSer251, and betaSer256 led to enhanced activities of all reactions, including the cyclic reaction which was mediated by bound NADP(H). Mutation of the remaining residues resulted in intermediate inhibitory effects. The results strongly support an important regulatory role of the membrane domain on the NADP(H)-binding site.  相似文献   

5.
Conformational changes in proton pumping transhydrogenases have been suggested to be dependent on binding of NADP(H) and the redox state of this substrate. Based on a detailed amino acid sequence analysis, it is argued that a classical betaalphabetaalphabeta dinucleotide binding fold is responsible for binding NADP(H). A model defining betaA, alphaB, betaB, betaD, and betaE of this domain is presented. To test this model, four single cysteine mutants (cfbetaA348C, cfbetaA390C, cfbetaK424C, and cfbetaR425C) were introduced into a functional cysteine-free transhydrogenase. Also, five cysteine mutants were constructed in the isolated domain III of Escherichia coli transhydrogenase (ecIIIH345C, ecIIIA348C, ecIIIR350C, ecIIID392C, and ecIIIK424C). In addition to kinetic characterizations, effects of sulfhydryl-specific labeling with N-ethylmaleimide, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid, and diazotized 3-aminopyridine adenine dinucleotide (phosphate) were examined. The results are consistent with the view that, in agreement with the model, beta-Ala348, beta-Arg350, beta-Ala390, beta-Asp392, and beta-Lys424 are located in or close to the NADP(H) site. More specifically, beta-Ala348 succeeds betaB. The remarkable reactivity of betaR350C toward NNADP suggests that this residue is close to the nicotinamide moiety of NADP(H). beta-Ala390 and beta-Asp392 terminate or succeed betaD, and are thus, together with the region following betaA, creating the switch point crevice where NADP(H) binds. beta-Asp392 is particularly important for the substrate affinity, but it could also have a more complex role in the coupling mechanism for transhydrogenase.  相似文献   

6.
The nicotinamide nucleotide transhydrogenases of mitochondria and bacteria are proton pumps that couple direct hydride ion transfer between NAD(H) and NADP(H) bound, respectively, to extramembranous domains I and III to proton translocation by the membrane-intercalated domain II. To delineate the proton channel of the enzyme, 25 conserved and semiconserved prototropic amino acid residues of domain II of the Escherichia coli transhydrogenase were mutated, and the mutant enzymes were assayed for transhydrogenation from NADPH to an NAD analogue and for the coupled outward proton translocation. The results confirmed the previous findings of others and ourselves on the essential roles of three amino acid residues and identified another essential residue. Three of these amino acids, His-91, Ser-139, and Asn-222, occur in three separate membrane-spanning alpha helices of domain II of the beta subunit of the enzyme. Another residue, Asp-213, is probably located in a cytosolic-side loop that connects to the alpha helix bearing Asn-222. It is proposed that the three helices bearing His-91, Ser-139, and Asn-222 come together, possibly with another highly conserved alpha helix to form a four-helix bundle proton channel and that Asp-213 serves to conduct protons between the channel and domain III where NADPH binding energy is used via protein conformation change to initiate outward proton translocation.  相似文献   

7.
The pyridine nucleotide transhydrogenase carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD+ and NADP+. Previous workers (E. Holmberg et al. Biochemistry 33, 7691-7700, 1994; N. A. Glavas et al. Biochemistry 34, 7694-7702, 1995) had examined the role in proton translocation of conserved charged residues in the transmembrane domain. This study was extended to examine the role of conserved polar residues of the transmembrane domain. Site-directed mutagenesis of these residues did not produce major effects on hydride transfer or proton translocation activities except in the case of betaAsn222. Most mutants of this residue were drastically impaired in these activities. Three phenotypes were recognized. In betaN222C both activities were impaired maximally by 70%. The retention of proton translocation indicated that betaAsn222 was not directly involved in proton translocation. In betaN222H both activities were drastically reduced. Binding of NADP+ but not of NADPH was impaired. In betaN222R, by contrast, NADP+ remained tightly bound to the mutant transhydrogenase. It is concluded that betaAsn222, located in a transmembrane alpha-helix, is part of the conformational pathway by which NADP(H) binding, which occurs outside of the transmembrane domain, is coupled to proton translocation. Some nonconserved or semiconserved polar residues of the transmembrane domain were also examined by site-directed mutagenesis. Interaction of betaGlu124 with the proton translocation pathway is proposed.  相似文献   

8.
BACKGROUND: Membrane-bound ion translocators have important functions in biology, but their mechanisms of action are often poorly understood. Transhydrogenase, found in animal mitochondria and bacteria, links the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. Linkage is achieved through changes in protein conformation at the nucleotide binding sites. The redox reaction takes place between two protein components located on the membrane surface: dI, which binds NAD(H), and dIII, which binds NADP(H). A third component, dII, provides a proton channel through the membrane. Intact membrane-located transhydrogenase is probably a dimer (two copies each of dI, dII, and dIII). RESULTS: We have solved the high-resolution crystal structure of a dI:dIII complex of transhydrogenase from Rhodospirillum rubrum-the first from a transhydrogenase of any species. It is a heterotrimer, having two polypeptides of dI and one of dIII. The dI polypeptides fold into a dimer. The loop on dIII, which binds the nicotinamide ring of NADP(H), is inserted into the NAD(H) binding cleft of one of the dI polypeptides. The cleft of the other dI is not occupied by a corresponding dIII component. CONCLUSIONS: The redox step in the transhydrogenase reaction is readily visualized; the NC4 atoms of the nicotinamide rings of the bound nucleotides are brought together to facilitate direct hydride transfer with A-B stereochemistry. The asymmetry of the dI:dIII complex suggests that in the intact enzyme there is an alternation of conformation at the catalytic sites associated with changes in nucleotide binding during proton translocation.  相似文献   

9.
Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of l-glutamate to α-ketoglutarate using NAD(P) as a cofactor. The bacterial enzymes are hexamers and each polypeptide consists of an N-terminal substrate-binding (Domain I) followed by a C-terminal cofactor-binding segment (Domain II). The reaction takes place at the junction of the two domains, which move as rigid bodies and are presumed to narrow the cleft during catalysis. Distinct signature sequences in the nucleotide-binding domain have been linked to NAD(+) vs. NADP(+) specificity, but they are not unambiguous predictors of cofactor preferences. Here, we have determined the crystal structure of NAD(+)-specific Peptoniphilus asaccharolyticus glutamate dehydrogenase in the apo state. The poor quality of native crystals was resolved by derivatization with selenomethionine, and the structure was solved by single-wavelength anomalous diffraction methods. The structure reveals an open catalytic cleft in the absence of substrate and cofactor. Modeling of NAD(+) in Domain II suggests that a hydrophobic pocket and polar residues contribute to nucleotide specificity. Mutagenesis and isothermal titration calorimetry studies of a critical glutamate at the P7 position of the core fingerprint confirms its role in NAD(+) binding. Finally, the cofactor binding site is compared with bacterial and mammalian enzymes to understand how the amino acid sequences and three-dimensional structures may distinguish between NAD(+) vs. NADP(+) recognition.  相似文献   

10.
Althage M  Bizouarn T  Rydström J 《Biochemistry》2001,40(33):9968-9976
The two hydrophilic domains I and III of Escherichia coli transhydrogenase containing the binding sites for NAD(H) and NADP(H), respectively, are located on the cytosolic side of the membrane, whereas the hydrophobic domain II is composed of 13 transmembrane alpha-helices, and is responsible for proton transport. In the present investigation the segment betaC260-betaS266 connecting domain II and III was characterized primarily because of its assumed role in the bioenergetic coupling of the transhydrogenase reaction. Each residue of this segment was replaced by a cysteine in a cysteine-free background, and the mutated proteins analyzed. Except for betaS266C, binding studies of the fluorescent maleimide derivative MIANS to each cysteine in the betaC260-betaR266 region revealed an increased accessibility in the presence of NADP(H) bound to domain III; an opposite effect was observed for betaS266. A betaD213-betaR265 double cysteine mutant was isolated in a predominantly oxidized form, suggesting that the corresponding residues in the wild-type enzyme are closely located and form a salt bridge. The betaS260C, betaK261C, betaA262C, betaM263, and betaN264 mutants showed a pronounced inhibition of proton-coupled reactions. Likewise, several betaR265 mutants and the D213C mutant showed inhibited proton-coupled reactions but also markedly increased values. It is concluded that the mobile hinge region betaC260-betaS266 and the betaD213-betaR265 salt bridge play a crucial role in the communication between the proton translocation/binding events in domain II and binding/release of NADP(H) in domain III.  相似文献   

11.
BACKGROUND: Membrane-bound ion pumps are involved in metabolic regulation, osmoregulation, cell signalling, nerve transmission and energy transduction. How the ion electrochemical gradient interacts with the scalar chemistry and how the catalytic machinery is gated to ensure high coupling efficiency are fundamental to the mechanism of action of such pumps. Transhydrogenase is a conformationally coupled proton pump linking a proton gradient to the redox reaction between NAD(H) and NADP(H). The enzyme has three components; dI binds NAD(H), dII spans the membrane and dIII binds NADP(H). RESULTS: The first crystal structure of a transhydrogenase dI component (from Rhodospirillum rubrum) has been determined at 2.0 A resolution. The monomer comprises two domains. Both are involved in dimer formation, and one has a Rossmann fold that binds NAD+ in a novel mode. The two domains can adopt different conformations. In the most closed conformation, the nicotinamide ring is expelled from the cleft between the two domains and is exposed on the outside of the protein. In this conformation it is possible to dock the structure of dI/NAD+ with that of a dIII/NADP+ complex to provide the first insights into the molecular basis of the hydride-transfer step. CONCLUSIONS: Analysis of the model of the dI/dIII complex identifies residues potentially involved in dI/dIII interaction and shows how domain motion in dI results in a shift in position of the nicotinamide ring of NAD+. We propose that this movement is responsible for switching between the forbidden and allowed states for hydride transfer during proton pumping.  相似文献   

12.
The interaction of bovine milk α- and β-caseins as an efficient drug carrier system with Dipyridamole (DIP) was investigated using spectroscopy and molecular docking studies at different temperatures (20–37 °C). FTIR, CD, and fluorescence spectroscopy methods demonstrated that α- and β-caseins interact with DIP molecule mainly via hydrophobic and hydrophilic interactions and change in secondary structure of α- and β-caseins. DIP showed a higher quenching efficiency and binding constant of α-casein than β-casein. There was only one binding site for DIP and it was located on the surface of the protein molecule. The thermodynamic parameters of calculation showed that the binding process occurs spontaneously and demonstrated that α- and β-caseins provide very good binding and entrapment to DIP via hydrogen bonds, Van der Waals forces, and hydrophobic interactions. Fluorescence resonance energy transfer, synchronous fluorescence spectroscopy, and docking study showed that DIP binds to the Trp residues of α- and β-casein molecules with short distances. Docking study showed that DIP molecule made several hydrogen bonds and van der Waals interactions with α- and β-caseins. The study of cell culture and micellar solubility of DIP demonstrated α- and β-caseins relatively the same helping in delivery of DIP. Milk α- and β-caseins are considered as a useful vehicle for the solublization and stabilization of DIP in aqueous solution at natural pH.  相似文献   

13.
Proton-pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an α and a β subunit of 54 and 49 kDa, respectively, and is made up of three domains. Domain I (dI) and III (dIII) are hydrophilic and contain the NAD(H)- and NADP(H)-binding sites, respectively, whereas the hydrophobic domain II (dII) contains 13 transmembrane α-helices and harbours the proton channel. Using a cysteine-free transhydrogenase, the organization of dII and helix-helix distances were investigated by the introduction of one or two cysteines in helix-helix loops on the periplasmic side. Mutants were subsequently cross-linked in the absence and presence of diamide and the bifunctional maleimide cross-linker o-PDM (6 Å), and visualized by SDS-PAGE.In the α2β2 tetramer, αβ cross-links were obtained with the αG476C-βS2C, αG476C-βT54C and αG476C-βS183C double mutants. Significant αα cross-links were obtained with the αG476C single mutant in the loop connecting helix 3 and 4, whereas ββ cross-links were obtained with the βS2C, βT54C and βS183C single mutants in the beginning of helix 6, the loop between helix 7 and 8 and the loop connecting helix 11 and 12, respectively. In a model based on 13 mutants, the interface between the α and β subunits in the dimer is lined along an axis formed by helices 3 and 4 from the α subunit and helices 6, 7 and 8 from the β subunit. In addition, helices 2 and 4 in the α subunit together with helices 6 and 12 in the β subunit interact with their counterparts in the α2β2 tetramer. Each β subunit in the α2β2 tetramer was concluded to contain a proton channel composed of the highly conserved helices 9, 10, 13 and 14.  相似文献   

14.
We have analysed 1H, 15N-HSQC spectra of the recombinant, NADP(H)-binding component of transhydrogenase in the context of the emerging three dimensional structure of the protein. Chemical shift perturbations of amino acid residues following replacement of NADP+ with NADPH were observed in both the adenosine and nicotinamide parts of the dinucleotide binding site and in a region which straddles the protein. These observations reflect the structural changes resulting from hydride transfer. The interactions between the recombinant, NADP(H)-binding component and its partner, NAD(H)-binding protein, are complicated. Helix B of the recombinant, NADP(H)-binding component may play an important role in the binding process.  相似文献   

15.
Pletnev VZ  Weeks CM  Duax WL 《Proteins》2004,57(2):294-301
The dominant role of long-range electrostatic interatomic interactions in nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD/NADP) cofactor recognition has been shown for enzymes of the short-chain oxidoreductase (SCOR) family. An estimation of cofactor preference based only on the contribution of the electrostatic energy term to the total energy of enzyme-cofactor interaction has been tested for approximately 40 known three-dimensional (3D) crystal complexes and approximately 330 SCOR enzymes, with cofactor preference predicted by the presence of Asp or Arg recognition residues at specific 3D positions in the beta2alpha3 loop (Duax et al., Proteins 2003;53:931-943). The results obtained were found to be consistent with approximately 90% reliable cofactor assignments for those subsets. The procedure was then applied to approximately 170 SCOR enzymes with completely uncertain NAD/NADP dependence, due to the lack of Asp and Arg marker residues. The proposed 3D electrostatic approach for cofactor assignment ("3D_DeltaE(el)") has been implemented in an automatic screening procedure, and together with the use of marker residues proposed earlier (Duax et al., Proteins 2003;53:931-943), increases the level of reliable predictions for the putative SCORs from approximately 70% to approximately 90%. It is expected to be applicable for any NAD/NADP-dependent enzyme subset having at least 25-30% sequence identity, with at least one enzyme of known 3D crystal structure.  相似文献   

16.
The mitochondrial energy-linked nicotinamide nucleotide transhydrogenase is a homodimer of monomer Mr = 109,228. Hydropathy analysis of its cDNA-deduced amino acid sequence (1043 residues) has indicated that the molecule is composed of 3 domains: a 430-residue-long hydrophilic N-terminal domain which binds NAD(H), a 200-residue-long hydrophilic C-terminal domain which binds NADP(H), and a 400-residue-long hydrophobic central domain which appears to be made up mainly of about 14 hydrophobic clusters of approximately 20 residues each. In this study, antibodies were raised to the hydrophilic N- and C-terminal domains cleaved from the isolated transhydrogenase by proteolytic digestion, and to a synthetic, hydrophilic pentadecapeptide, which corresponded to position 540-554 within the central hydrophobic domain. Immunochemical experiments with mitoplasts (mitochondria denuded of outer membrane) and submitochondrial particles (inside-out inner membrane vesicles) as sources of antigens showed that essentially the entire N- and C-terminal hydrophilic domains of the transhydrogenase, as well as epitopes from the central pentadecapeptide, protrude from the inner membrane into the mitochondrial matrix, where the N- and C-terminal domains would be expected to come together to form the enzyme's catalytic site. Treatment of mitoplasts with several proteolytic enzymes indicated that large protease-sensitive masses of the transhydrogenase are not exposed on the cytosolic side of the inner membrane, which agreed with the exception that the central highly hydrophobic domain of the molecule should be largely membrane-intercalated. Trypsin, alpha-chymotrypsin, and papain had little or no effect on the mitoplast-embedded transhydrogenase. Proteinase K, subtilisin (Nagarse), thermolysin, and pronase E each split the mitoplast-embedded enzyme into two fragments only, a fragment of approximately 70 kDa containing the N-terminal hydrophilic domain, and one of approximately 40 kDa bearing the C-terminal hydrophilic domain. The cleavage site of proteinase K was determined to be A690 -A691, which is located in a small hydrophilic segment within the central hydrophobic domain. This protease-sensitive loop appears to be exposed on the cytosolic side of the inner membrane. The proteinase K-nicked enzyme containing two peptides of 71 and 39 kDa was isolated from mitoplasts and shown to have high transhydrogenase activity.  相似文献   

17.
Purified nicotinamide-nucleotide transhydrogenase from beef heart mitochondria was co-reconstituted with bacteriorhodopsin to from transhydrogenase-bacteriorhodopsin vesicles that catalyze a 20-fold light-dependent and uncoupler-sensitive stimulation of the reduction of NADP+ and NADP+ analogs by NADH and a 50-fold shift of the nicotinamide nucleotide ratio. In the presence of light, the transhydrogenase-bacteriorhodopsin vesicles catalyzed a pronounced light intensity-dependent inward proton pumping as indicated by a pH shift of the medium. As indicated by pH shifts, proton pumping by the bacteriorhodopsin essentially paralleled the light-driven transhydrogenase. Addition of valinomycin increased the pH shift twice with a concomitant 50% inhibition of the light-driven transhydrogenase, whereas nigericin inhibited the pH shift completely and the light-driven transhydrogenase partially. Taken together, these results suggest that transhydrogenase and bacteriorhodopsin interact through a delocalized proton-motive force. Possible partial reactions of transhydrogenase were investigated with transhydrogenase-bacteriorhodopsin vesicles energized by light. Reduction of oxidized 3-acetylpyridine adenine dinucleotide by NADH, previously claimed to represent partial reactions, was found to require NADPH. Similarly, reduction of thio-NADP+ by NADPH required NADH. It is concluded that these reactions do not represent partial reactions.  相似文献   

18.
The amino acid sequence of the bovine mitochondrial nicotinamide nucleotide transhydrogenase, which catalyzes hydride ion transfer between NAD(H) and NADP(H) coupled to proton translocation across the mitochondrial inner membrane, has been deduced from the corresponding cDNA. Two clones were isolated by screening a bovine lambda gt10 cDNA library, using two synthetic oligonucleotides and a cDNA restriction fragment as probes. The inserts together covered 3,105 base pairs of coding sequence, corresponding to 1.035 amino acid residues. However, the reading frame at the 5' end was still open. N-terminal sequence analysis of the isolated enzyme indicated the presence of 8 additional residues. Thus, the mature transhydrogenase appeared to have 1,043 amino acid residues and a calculated molecular weight of 109,212. The deduced amino acid sequence of the transhydrogenase contained the sequences of four tryptic peptides that had been isolated from the enzyme. Two of these were the peptides that had been used for construction of the oligonucleotide probes. The other two were tryptic peptides isolated after labeling the NAD-binding site of the transhydrogenase once with [3H]p-fluorosulfonylbenzoyl-5'-adenosine (FSBA), and another time with [14C]N,N'-dicyclohexylcarbodiimide. The FSBA-labeled peptide was found to be located immediately upstream of the [14C]N,N'-dicyclohexylcarbodiimide-labeled peptide, about 230 residues from the N terminus. One of the tryptic peptides used for oligonucleotide probe construction was the same as that labeled with [3H]FSBA when the NAD-binding site was protected from FSBA attack. This peptide, which might be at the NADP-binding site of the transhydrogenase, was located very near the C terminus of the enzyme. The central region of the transhydrogenase (residues 420-850) is highly hydrophobic and appears to comprise about 14 membrane-spanning segments. By comparison, the N- and the C-terminal regions of the enzyme, which contain the NAD- and the putative NADP-binding sites, respectively, are relatively hydrophilic and are probably located outside the mitochondrial inner membrane on the matrix side. There is considerable homology between the bovine enzyme and the Escherichia coli transhydrogenase (two subunits, alpha with Mr = 54,000 and beta with Mr = 48,700), whose amino acid sequence has been determined from the genes (Clarke, D.M., Loo, T.W., Gillam, S., and Bragg, P.D. (1986) Eur. J. Biochem. 158, 647-653).  相似文献   

19.
The 1.64 A structure of the apoenzyme form of saccharopine dehydrogenase (SDH) from Saccharomyces cerevisiae shows the enzyme to be composed of two domains with similar dinucleotide binding folds with a deep cleft at the interface. The structure reveals homology to alanine dehydrogenase, despite low primary sequence similarity. A model of the ternary complex of SDH, NAD, and saccharopine identifies residues Lys77 and Glu122 as potentially important for substrate binding and/or catalysis, consistent with a proton shuttle mechanism. Furthermore, the model suggests that a conformational change is required for catalysis and that residues Lys99 and Asp281 may be instrumental in mediating this change. Analysis of the crystal structure in the context of other homologous enzymes from pathogenic fungi and human sources sheds light into the suitability of SDH as a target for antimicrobial drug development.  相似文献   

20.
Pyridine nucleotide transhydrogenases of bacterial cytosolic membranes and mitochondrial inner membranes are proton pumps in which hydride transfer between NADP(+) and NAD(+) is coupled to proton translocation across cytosolic or mitochondrial membranes. The pyridine nucleotide transhydrogenase of Escherichia coli is composed of two subunits (alpha and beta). Three domains are recognized. The extrinsic cytosolic domain 1 of the amino-terminal region of the alpha subunit bears the NAD(H)-binding site. The NADP(H)-binding site is present in domain 3, the extrinsic cytosolic carboxyl-terminal region of the beta subunit. Domain 2 is composed of the membrane-intrinsic carboxyl-terminal region of the alpha subunit and the membrane-intrinsic amino-terminal region of the beta subunit. Treatment of the transhydrogenase of E. coli with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD chloride) inhibited enzyme activity. Analysis of inhibition revealed that several sites on the enzyme were involved. NBD chloride modified two (betaCys-147 and betaCys-260) of the seven cysteine residues present in the transhydrogenase. Modification of betaCys-260 in domain 2 resulted in inhibition of enzyme activity. Modification of residues other than cysteine residues also resulted in inhibition of transhydrogenation as shown by use of a cysteine-free mutant enzyme. The beta subunit was modified by NBD chloride to a greater extent than the alpha subunit. Reaction of domain 2 and domain 3 was prevented by NADPH. Modification of domain 3 is probably not associated with inhibition of enzyme activity. Modification of domain 2 of the beta subunit resulted in a decreased binding affinity for NADPH at its binding site in domain 3. The product resulting from the reaction of NBD chloride with NADPH was a very effective inhibitor of transhydrogenation. In experiments with NBD chloride in the presence of NADPH it is likely that all of the sites of reaction described above will contribute to the inhibition observed. The NBD-NADPH adduct will likely be more useful than NBD chloride in investigations of the pyridine nucleotide transhydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号