首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In 55 clinical isolates of Vibrio cholerae biotype El Tor, cholera toxin (CT) production was higher after growth in liquid medium first under relatively anaerobic conditions followed by excessive aeration (AKI conditions) as compared with growth under the optimal conditions for CT production from V. cholerae of classical biotype (median toxin level being 400 ng ml-1 and 1 ng ml-1 respectively, for the two different growth conditions). Large growth volumes further enhanced El Tor toxin production to levels at or above 3-5 micrograms ml-1 from several strains, which allowed for easy purification of toxin by salt precipitation, aluminium hydroxide adsorption and/or GM1 ganglioside affinity chromatography. However, such purified El Tor CT completely lacked the A subunit when examined by SDS-PAGE or by monoclonal anti-A subunit antibody GM1-ELISA. In contrast, when El Tor CT was prepared from bacteria grown in the presence of specific antiserum against soluble haemagglutinin/protease it contained the A subunit (unnicked) in the same proportion to the B subunit (1A:5B) as classical CT. Immunodiffusion-in-gel tests revealed that the B subunits of El Tor and classical CTs share major epitopes but also have one or more weaker biotype-specific epitopes. The two types of toxin were practically indistinguishable in various GM1-ELISA tests, and antisera raised against El Tor and classical CT, respectively, could also completely neutralize the heterologous as well as the homologous toxin activity in vivo. The results indicate that CTs from El Tor and classical V. cholerae, despite demonstrable epitope differences, are predominantly cross-reactive and give rise to antisera with strong cross-neutralizing activity.  相似文献   

2.
A mass spectrometric method was applied to the B subunit of Vibrio cholerae classical biotype Inaba 569B toxin to determine its amino acid sequence and to confirm the differences in the amino acid sequences predicted from the nucleotide sequences of the genes of El Tor biotype strains 62746 and 2125 toxins. In this method, the Staphylococcus aureus protease V8 digest of the CNBr-treated B subunit of the classical biotype toxin was examined directly by fast-atom-bombardment mass spectrometry without separation of individual peptides. The values of molecular ion signals observed in the mass spectra were compared with the amino acid sequences of the classical biotype and El Tor biotype toxins. All the observed mass values coincided with those calculated from the published sequences of the B subunit except those of the sequences at positions 12-29 and 69-79. Peptides with these sequences were isolated by high-performance liquid chromatography and analyzed by Edman degradation or by combination of mass spectrometry and enzymatic degradation. The results revealed that the amino acid residues at positions 22 and 70 were Asp instead of Asn in the published sequences of classical biotype toxin. It was also found that Asn at position 44 was partially deaminated to Asp. The amino acid sequence of the classical biotype toxin was found to be different only at positions 18 (His----Tyr), 47 (Thr----Ile) and 54 (Gly----Ser) from that of El Tor biotype toxins.  相似文献   

3.
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.  相似文献   

4.
Variation in epitopes of the B subunit of cholera toxin (CT-B) produced by strains of El Tor and classical biotype Vibrio cholerae O1 was examined using monoclonal antibodies prepared to V. cholerae 569B CT. CT-B epitopes were markedly conserved for V. cholerae classical biotypes. In contrast, epitope variation was observed for El Tor biotypes, which produced both a classical-like CT-B and a unique CT-B lacking at least one epitope common to 569B CT-B. The missing epitope was located outside the GM1 ganglioside-binding site. From results of the study reported here, genetic divergence is exhibited in the El Tor biotype CT-B versus classical CT-B. Furthermore, at least five unique epitopes of V. cholerae 569B CT-B can be defined.  相似文献   

5.
6.

Background

Vibrio cholerae O1 El Tor dominated the seventh cholera pandemic which occurred in the 1960s. For two decades, variants of V. cholerae O1 El Tor that produce classical cholera toxin have emerged and spread globally, replacing the prototypic El Tor biotype. This study aims to characterize V. cholerae O1 isolates from outbreaks in Thailand with special reference to genotypic variations over time.

Methods/Findings

A total of 343 isolates of V. cholerae O1 from cholera outbreaks from 2007 to 2010 were investigated, and 99.4% were found to carry the classical cholera toxin B subunit (ctxB) and El Tor rstR genes. Pulsed-field gel electrophoresis (PFGE) differentiated the isolates into 10 distinct pulsotypes, clustered into two major groups, A and B, with an overall similarity of 88%. Ribotyping, multiple-locus variable-number tandem-repeat analysis (MLVA), and PCR to detect Vibrio seventh pandemic island II (VSP-II) related genes of randomly selected isolates from each pulsotype corresponded to the results obtained by PFGE. Epidemiological investigations revealed that MLVA type 2 was strongly associated with a cholera outbreak in northeastern Thailand in 2007, while MLVA type 7 dominated the outbreaks of the southern Gulf areas in 2009 and MLVA type 4 dominated the outbreaks of the central Gulf areas during 2009–2010. Only MLVA type 16 isolates were found in a Thai-Myanmar border area in 2010, whereas those of MLVA types 26, 39, and 41 predominated this border area in 2008. Type 39 then disappeared 1–2 years later as MLVA type 41 became prevalent. Type 41 was also found to infect an outbreak area.

Conclusions

MLVA provided a high-throughput genetic typing tool for understanding the in-depth epidemiology of cholera outbreaks. Our epidemiological surveys suggest that some clones of V. cholerae O1 with similar but distinctive genetic traits circulate in outbreak sites, while others disappear over time.  相似文献   

7.
Pathogenic strains of Vibrio cholerae O139 possess the cholera toxin A subunit (ctxA) gene as well as the gene for toxin co-regulated pili (tcpA). We report the isolation of a ctxA-negative, tcpA-negative V. cholerae O139 strain (INDREI) from a patient in Mexico diagnosed with gastrointestinal illness. Certain phenotypic characteristics of this strain were identical to those of V. cholerae O1 biotype El Tor. Unlike ctxA-positive V. cholerae O139 strains, this strain was sensitive to a wide panel of antibiotics, including ampicillin, chloramphenicol, ciprofloxacin, gentamicin, furazolidone, nalidixic acid, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, and streptomycin, but was resistant to polymyxin B. Ribotype and pulsed-field gel electrophoresis profiles of INDRE1 differed from those of ctxA-positive V. cholerae O139 and other V. cholerae strains. Phenotypic characteristics of the Mexico strain were similar to those reported for V. cholerae O139 isolates from Argentina and Sri Lanka.  相似文献   

8.
In July 1994, 6 cholera cases due to Vibrio cholerae O1 El Tor Ogawa sporadically appeared in Okinawa. All 6 patients had no history of traveling abroad. In the period of this cholera outbreak, a strain of V. cholerae O1 El Tor Ogawa was detected from an imported fish at the Naha port quarantine station. The isolates were characterized to clarify whether or not, they belonged to a common clone. Phenotypes were identical except that one strain revealed cured Celebes and the others were original Celebes in kappa phage typing. The restriction fragment patterns of DNA of the isolates hybridized with an enzyme-labeled oligonucleotide probe for cholera toxin gene (ctx) were identical. Randomly amplified polymorphic DNA of the isolates were identical when a primer was used, but 2 patterns were seen when another primer was used. Pulsed-field gel electrophoresis of the chromosomal DNA digested with NotI restriction enzyme showed 3 patterns. The DNA fragment pattern of the strain isolated from the imported fish was different from the clinical isolates. These results suggested that there was no epidemiological relation among the strains of V. cholerae O1 isolated during this period.  相似文献   

9.
Monoclonal antibodies reacting with the B subunit of Vibrio cholerae O1 strain 569B cholera toxin (CT-B) were used to identify unique and common epitopes of V. cholerae non-O1 and Vibrio mimicus CT-B. Vibrio cholerae non-O1 strains produced CT-B showing three monoclonal antibody reaction patterns (epitypes), which corresponded with epitypes described previously for V. cholerae O1 classical biotype CT-B (CT1), El Tor biotype CT-B (CT2), and a unique V. cholerae non-O1 CT-B (CT3), which lacked an epitope located in or near the GM1 ganglioside binding site of 569B CT-B. Vibrio mimicus CT-B was immunologically indistinguishable from 569B CT-B. These and previous results define six epitopes on 569B CT-B, and a fourth epitope in or near the GM1 ganglioside binding site.  相似文献   

10.
Nine major transfer RNA (tRNA) gene clusters were analysed in variousVibrio cholerae strains. Of these, only the tRNA operon I was found to differ significantly inV. cholerae classical (sixth pandemic) and El Tor (seventh pandemic) strains. Amongst the sixteen tRNA genes contained in this operon, genes for tRNA Gln3 (CAA) and tRNA Leu6 (CUA) were absent in classical strains as compared to El Tor strains. The observation strongly supported the view that the above two pandemic strains constitute two different clones.  相似文献   

11.
霍乱毒素B亚单位(BS)已用于新型口服霍乱疫苗、佐剂及蛋白质载体,但成本高,来源困难.用重组霍乱毒素B亚单位(rBS)代替BS可克服上述缺点.rBS用于上述目的前必须证实其在物理、化学及免疫学性质方面与天然同类产品的一致性.用亲和层析法从各批次大罐发酵所获工程菌E.coliMM2(pMM-CTB)培养物上清中制备得到了小批量rBS纯品,在同等条件下与BS(Sig-ma公司产品)进行理化、免疫学性质的对比研究,证实二者在SDS-PAGE中电泳带位置一致、分子量相同,纯度达99%;在反相HPLC中出峰行为一致,纯度达100%;在半干式聚焦电泳分析中电泳带分布相同,等电点为7.91.rBSN端起的20个氨基酸序列为TPQNITDLCAEYHNTQIHTL,与克隆基因来源株的毒素B亚单位同一段序列完全一致.氨基酸组成分析证实rBS与BS相近.在免疫学性质分析中,rBS与BS在免疫双扩散试验中与抗CT均出一条沉淀线且相互吻合;在免疫电泳试验中二者与抗CT在相应位置上产生一条沉淀弧;二者均能与神经节苷脂GM1结合且这种结合均可通过二者与抗CT的预保温处理而被阻断.对比研究结果揭示rBS与BS性质完全一致,可代替BS用于  相似文献   

12.
Abstract We have constructed a very efficient synthesis and secretion system for cholera toxin B subunit (CTB) of Vibrio cholerae 569B using Bacillus brevis . The constructed expression-secretion vector has the multiple promoters and the signal peptide coding region of the mwp gene, a structural gene for one of the major cell wall proteins of B. brevis strain 47, directly followed by the gene encoding the mature CTB. A large amount of mature CTB (1.4 g per liter of culture) was secreted into the medium. It had the same amino terminal amino acid sequence as that of authentic CTB and was fully active in GM1 ganglioside binding assay.  相似文献   

13.
14.
Kenya is endemic for cholera with different waves of outbreaks having been documented since 1971. In recent years, new variants of Vibrio cholerae O1 have emerged and have replaced most of the traditional El Tor biotype globally. These strains also appear to have increased virulence, and it is important to describe and document their phenotypic and genotypic traits. This study characterized 146 V. cholerae O1 isolates from cholera outbreaks that occurred in Kenya between 1975 and 2017. Our study reports that the 1975–1984 strains had typical classical or El Tor biotype characters. New variants of V. cholerae O1 having traits of both classical and El Tor biotypes were observed from 2007 with all strains isolated between 2015 and 2017 being sensitive to polymyxin B and carrying both classical and El Tor type ctxB. All strains were resistant to Phage IV and harbored rstR, rtxC, hlyA, rtxA and tcpA genes specific for El Tor biotype indicating that the strains had an El Tor backbone. Pulsed field gel electrophoresis (PFGE) genotyping differentiated the isolates into 14 pulsotypes. The clustering also corresponded with the year of isolation signifying that the cholera outbreaks occurred as separate waves of different genetic fingerprints exhibiting different genotypic and phenotypic characteristics. The emergence and prevalence of V. cholerae O1 strains carrying El Tor type and classical type ctxB in Kenya are reported. These strains have replaced the typical El Tor biotype in Kenya and are potentially more virulent and easily transmitted within the population.  相似文献   

15.
16.
An unusual strain of Vibrio cholerae O1 biotype El Tor harbouring multiple tandem copies of classical CTX prophage caused a cholera epidemic in Mozambique in 2004. However, the location of the classical CTX prophage in the genome of the Mozambique strain was unknown. In this study, pulsed field gel electrophoresis (PFGE) of the whole genome along with Southern hybridization experiments indicated that the classical CTX prophage present in the Mozambique strain is located in the small chromosome. To determine the CTX prophage integration site in the small chromosome of Mozambique strain, the 5'and 3' junctions of the prophage and small chromosome were PCR amplified, cloned and sequenced. Sequence analysis indicated that the prophage was integrated in the conserved dif site of the replication terminus region of the Mozambique strain. While using an O1 El Tor isolate VC44 as a control strain, which carries tandem copies of CTX prophage in its small chromosome like the Mozambique strain, it was unexpectedly detected that the strain VC44 also possesses classical cholera toxin B gene allele. Since the strain VC44 was isolated in India in the year 1992, it appears that the Mozambique strain has probably originated from a VC44-like strain.  相似文献   

17.
GA Price  RK Holmes 《PloS one》2012,7(8):e42434
The secreted colonization factor, TcpF, which is produced by Vibrio cholerae 01 and 0139, has generated interest as a potential protective antigen in the development of a subunit vaccine against cholera. This study evaluated immunogenicity/protective efficacy of a TcpF holotoxin-like chimera (TcpF-A2-CTB) following intraperitoneal immunization compared to TcpF alone, a TcpF+CTB mixture, or CTB alone. Immunization with the TcpF-A2-CTB chimera elicited significantly greater amounts of anti-TcpF IgG than immunization with the other antigens (P<0.05). Protective efficacy was measured using 6-day-old pups reared from immunized dams and orogastrically challenged with a lethal dose of El Tor V. cholerae 01 Inaba strain N16961. Protection from death, and weight loss analysis at 24 and 48 hours post-infection demonstrated that immunization with TcpF alone was poorly protective. However, immunization with TcpF+CTB was highly protective and showed a trend toward greater protection than immunization with CTB alone (82% vs 64% survival). Immunization with the TcpF-A2-CTB chimera demonstrated less protection (50% survival) than immunization with the TcpF+CTB mixture. The TcpF-A2-CTB chimera used for this study contained the heterologous classical CTB variant whereas the El Tor CTB variant (expressed by the challenge strain) was used in the other immunization groups. For all immunization groups that received CTB, quantitative ELISA data demonstrated that the amounts of serum IgG directed against the homologous immunizing CTB antigen was statistically greater than the amount to the heterologous CTB antigen (P≤0.003). This finding provides a likely explanation for the poorer protection observed following immunization with the TcpF-A2-CTB chimera and the relatively high level of protection seen after immunization with homologous CTB alone. Though immunization with TcpF alone provided no protection, the additive protective effect when TcpF was combined with CTB demonstrates its possible value as a component of a multivalent subunit vaccine against Vibrio cholerae 01 and 0139.  相似文献   

18.
The distribution, characterization and function of the tcpA gene was investigated in Vibrio cholerae O1 strains of the El Tor biotype and in a newly emergent non-O1 strain classified as serogroup O139. The V. cholerae tcpA gene from the classical biotype strain O395 was used as a probe to identify a clone carrying the tcpA gene from the El Tor biotype strain E7946. The sequence of the E7946 tcpA gene revealed that the mature El Tor TcpA pilin has the same number of residues as, and is 82% identical to, TcpA of classical biotype strain O395. The majority of differences in primary structure are either conservative or clustered in a manner such that compensatory changes retain regional amino acid size, polarity and charge. In a functional analysis, the cloned gene was used to construct an El Tor mutant strain containing an insertion in tcpA. This strain exhibited a colonization defect in the infant mouse cholera model similar in magnitude to that previously described for classical biotype tcpA mutants, thus establishing an equivalent role for TCP in intestinal colonization by El Tor biotype strains. The tcpA analysis was further extended to both a prototype El Tor strain from the Peru epidemic and to the first non-O1 strain known to cause epidemic cholera, an O139 V. cholerae isolate from the current widespread Asian epidemic. These strains were shown to carry tcpA with a sequence identical to E7946. These results provide further evidence that the newly emergent non-O1 serogroup O139 strain represents a derivative of an El Tor biotype strain and, despite its different LPS structure, shares common TCP-associated antigens. Therefore, there appear to be only two related sequences associated with TCP pilin required for colonization by all strains responsible for epidemic cholera, one primary sequence associated with classical strains and one for El Tor strains and the recent O139 derivative. A diagnostic correlation between the presence of tcpA and the V. cholerae to colonize and cause clinical is now extended to strains of both O1 and non-O1 serotypes.  相似文献   

19.
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant.  相似文献   

20.
Strains of Vibrio cholerae O1, biotypes El Tor and classical, were infected with a known temperate phage (PhiP15) and monitored over a 15-day period for prophage induction. Over the course of the experiment two morphologically and three genomically distinct virus-like particles were observed from the phage-infected El Tor strain by transmission electron microscopy and field inversion gel electrophoresis, respectively, whereas only one phage, PhiP15, was observed from the infected classical strain. In the uninfected El Tor culture one prophage was spontaneously induced after 6 days. No induction in either strain was observed after treatment with mitomycin C. Data indicate that El Tor biotypes of V. cholerae may be polylysogenic and that secondary infection can promote multiple prophage induction. These traits may be important in the transfer of genetic material among V. cholerae by providing an environmentally relevant route for multiple prophage propagation and transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号