首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are caused by mutations in 14 and 15 different disease genes, respectively, in a part of the patients and the disease genes for cardiomyopathy overlap in part with that for limb-girdle muscular dystrophy (LGMD). In this study, we examined an LGMD gene encoding caveolin-3 (CAV3) for mutation in the patients with HCM or DCM. A Thr63Ser mutation was identified in a sibling case of HCM. Because the mutation was found at the residue that is involved in the LGMD-causing mutations, we investigate the functional change due to the Thr63Ser mutation as compared with the LGMD mutations by examining the distribution of GFP-tagged CAV3 proteins. It was observed that the Thr63Ser mutation reduced the cell surface expression of caveolin-3, albeit the change was mild as compared with the LGMD mutations. These observations suggest that HCM is a clinical spectrum of CAV3 mutations.  相似文献   

2.
目的:研究中国汉族肥厚型心肌病人群中α-Galactosidase A突变的患病率及其临床表现。方法:对439名肥厚型心肌病患者及156名健康对照GLA基因进行全外显子测序,及基因型及临床表型进行关联分析。结果:确定了2个致病性突变,包括1个错义突变E66Q和1个剪接位点的突变c.547+1GC。2个突变在156名健康人群未发现,在1000人基因组计划中未报道。确定中国汉族肥厚型心肌病人群中α-Galactosidase A突变0.45%的患病率。结论:Fabry病在中国汉族肥厚型心肌病人群中α-Galactosidase A突变的患病率较低。基因检测有助于Fabry病与肥厚型心肌病的鉴别诊断。  相似文献   

3.
Genetic screening of the beta-myosin heavy chain gene (MYH7) was evaluated in 100 consecutive unrelated patients with hypertrophic cardiomyopathy (HCM) and 200 normal unrelated subjects. Seventeen beta-myosin mutations were identified in 19 patients. Notably, 13, or 76%, were novel. Mutations were detected in both alleles in two patients: homozygous for Lys207Gln in one, and heterozygous for Pro211 Leu and Arg663His in another. No mutation was detected in the controls. MYH7-associated HCM was associated with more marked left atrial enlargement and syncope than non-MYH7-related HCM. Our findings indicate that: (1) screening methods should allow identification of novel mutations; and (2) more than one sarcomeric mutation may be present in a patient more commonly than is appreciated. Further studies are necessary to ascertain the clinical consequences of the novel and compound gene abnormalities, and to determine whether correlating functional domain to phenotype provides more useful information about the clinical significance of the molecular defects.  相似文献   

4.
Genotype-phenotype correlation of hypertrophic cardiomyopathy (HCM) has been challenging because of the genetic and clinical heterogeneity. To determine the mutation profile of Chinese patients with HCM and to correlate genotypes with phenotypes, we performed a systematic mutation screening of the eight most commonly mutated genes encoding sarcomere proteins in 200 unrelated Chinese adult patients using direct DNA sequencing. A total of 98 mutations were identified in 102 mutation carriers. The frequency of mutations in MYH7, MYBPC3, TNNT2 and TNNI3 was 26.0, 18.0, 4.0 and 3.5 % respectively. Among the 200 genotyped HCM patients, 83 harbored a single mutation, and 19 (9.5 %) harbored multiple mutations. The number of mutations was positively correlated with the maximum wall thickness. We found that neither particular gene nor specific mutation was correlated to clinical phenotype. In summary, the frequency of multiple mutations was greater in Chinese HCM patients than in the Caucasian population. Multiple mutations in sarcomere protein may be a risk factor for left ventricular wall thickness.  相似文献   

5.
About 10% of cases of hypertrophic cardiomyopathy (HCM) evolve into dilated cardiomyopathy (DCM) with unknown causes. We studied 11 unrelated patients (pts) with HCM who progressed to DCM (group A) and 11 who showed "typical" HCM (group B). Mutational analysis of the beta-myosin heavy chain (MYH7), myosin-binding protein C (MYBPC3), and cardiac troponin T (TNNT2) genes demonstrated eight mutations affecting MYH7 or MYBPC3 gene, five of which were new mutations. In group A-pts, the first new mutation occurred in the myosin head-rod junction and the second occurred in the light chain-binding site. The third new mutation leads to a MYBPC3 lacking titin and myosin binding sites. In group B, two pts with severe HCM carried two homozygous MYBPC3 mutations and one with moderate hypertrophy was a compound heterozygous for MYBPC3 gene. We identified five unreported mutations, potentially "malignant" defects as for the associated phenotypes, but no specific mutations of HCM/DCM.  相似文献   

6.
Mutations in troponin T (TNNT2) gene represent the important part of currently identified disease-causing mutations in hypertrophic (HCM) and dilated (DCM) cardiomyopathy. The aim of this study was to analyze TNNT2 gene exons in patients with HCM and DCM diagnosis to improve diagnostic and genetic consultancy in affected families. All 15 exons and their flanking regions of the TNNT2 gene were analyzed by DNA sequence analysis in 174 patients with HCM and DCM diagnosis. We identified genetic variations in TNNT2 exon regions in 56 patients and genetic variations in TNNT2 intron regions in 164 patients. Two patients were found to carry unique mutations in the TNNT2 gene. Limited genetic screening analysis is not suitable for routine testing of disease-causing mutations in patients with HCM and DCM as only individual mutation-positive cases may be identified. Therefore, this approach cannot be recommended for daily clinical practice even though, due to financial constraints, it currently represents the only available strategy in a majority of cardio-centers.  相似文献   

7.
Hypertrophic cardiomyopathy (HCM) is characterized by ventricular hypertrophy accompanied by myofibrillar disarrays. Molecular genetic analyses have revealed that mutations in 8 different genes cause HCM. Mutations in these disease genes, however, could be found in about half of HCM patients, suggesting that there are other unknown disease gene(s). Because the known disease genes encode sarcomeric proteins expressed in the cardiac muscle, we searched for a disease-associated mutation in the titin gene in 82 HCM patients who had no mutation in the known disease genes. A G to T transversion in codon 740, from CGC to CTC, replacing Arginine with Leucine was found in a patient. This mutation was not found in more than 500 normal chromosomes and increased the binding affinity of titin to alpha-actitin in the yeast two-hybrid assay. These observations suggest that the titin mutation may cause HCM in this patient via altered affinity to alpha-actinin.  相似文献   

8.
The aim of the current study was to determine the frequency of mutations in the beta-myosin heavy chain gene (MYH7) in a cohort of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) and their families, and to investigate correlations between genotype and phenotype. About 130 consecutive patients diagnosed with HCM or DCM (69 with HCM and 61 with DCM) attending the cardiology clinic of Post Graduate Institute of Medical Education and Research were screened for mutations in the MYH7 gene. The control group for genetic studies consisted of 100 healthy subjects. We report 14 mutations in 6 probands (5 probands in HCM and 1 proband in DCM) and their family members. Out of these 6 mutations, 3 are new and are being reported for the first time. One known mutation (p.Gly716Arg) was found to be "de novo" which resulted in severe asymmetric septal hypertrophy (31 mm) and resulted in the sudden cardiac death (SCD) of the proband at the age of 21 years. Further, a DCM causing novel mutation p.Gly377Ser was identified which resulted in the milder phenotype. The present study shows that there is genetic and phenotypic heterogeneity of cardiomyopathies in Indian population. Further, the location and type of mutation in a given sarcomeric gene determines the severity and phenotypic plasticity in cardiomyopathies.  相似文献   

9.

Background

About 2-7% of familial cardiomyopathy cases are caused by a mutation in the gene encoding cardiac troponin I (TNNI3). The related clinical phenotype is usually severe with early onset. Here we report on all currently known mutations in the Dutch population and compared these with those described in literature.

Methods

TheTNNI3 gene was screened for mutations in all coding exons and flanking intronic sequences in a large cohort of cardiomyopathy patients. All Dutch index cases carrying a TNNI3 mutation that are described in this study underwent extensive cardiological evaluation and were listed by their postal codes.

Results

In 30 families, 14 different mutations were identified. Three TNNI3 mutations were found relatively frequently in both familial and non-familial cases of hypertrophic cardiomyopathy (HCM) or restrictive cardiomyopathy (RCM). Haplotype analysis showed that p.Arg145Trp and p.Ser166Phe are founder mutations in the Netherlands, while p.Glu209Ala is not. The majority of Dutch TNNI3 mutations were associated with a HCM phenotype. Mean age at diagnosis was 36.5 years. Mutations causing RCM occurred less frequently, but were identified in very young children with a poor prognosis.

Conclusion

In line with previously published data, we found TNNI3 mutations to be rare and associated with early onset and severe clinical presentation.  相似文献   

10.
为研究中国人家族性肥厚型心肌病(HCM)的致病基因突变位点, 分析基因型与临床表型的相互关系, 文章在1个中国汉族HCM家系中进行心脏肌钙蛋白T (TNNT2) 基因、心脏肌球蛋白结合蛋白C (MYBPC3) 基因和心脏β-肌球蛋白重链 (MYH7) 基因的突变筛查, 聚合酶链式反应(PCR)扩增基因功能区外显子片段并对PCR产物进行测序分析。结果表明: 在该家系接受调查的7名成员中有4名成员携带MYH7基因c.1273G>A杂合突变, 该突变位点位于MYH7基因的14号外显子并使425位的甘氨酸(Gly)转换为精氨酸(Arg)。该突变首次在国内HCM家系中发现, 突变携带者的临床表型在家系内部呈现明显的异质性。该家系成员TNNT2及MYBPC3基因未发现突变且正常对照组相同位置未发现异常。MYH7基因是我国家族性 HCM的致病基因之一, 携带c.1273G>A突变的肥厚型心肌病患者临床表型差异明显, 提示可能有其它因素参与了肥厚型心肌病的发展过程。  相似文献   

11.
Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n = 8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (> 10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM.  相似文献   

12.

Background

Hypertrophic cardiomyopathy (HCM) due to mutations in genes encoding sarcomere proteins is most commonly inherited as an autosomal dominant trait. Since nearly 50% of HCM cases occur in the absence of a family history, a recessive inheritance pattern may be involved.

Methods

A pedigree was identified with suspected autosomal recessive transmission of HCM. Twenty-six HCM-related genes were comprehensively screened for mutations in the proband with targeted second generation sequencing, and the identified mutation was confirmed with bi-directional Sanger sequencing in all family members and 376 healthy controls.

Results

A novel missense mutation (c.1469G>T, p.Gly490Val) in exon 17 of MYBPC3 was identified. Two siblings with HCM were homozygous for this mutation, whereas other family members were either heterozygous or wild type. Clinical evaluation showed that both homozygotes manifested a typical HCM presentation, but none of others, including 5 adult heterozygous mutation carriers up to 71 years of age, had any clinical evidence of HCM.

Conclusions

Our data identified a MYBPC3 mutation in HCM, which appeared autosomal recessively inherited in this family. The absence of a family history of clinical HCM may be due to not only a de novo mutation, but also recessive mutations that failed to produce a clinical phenotype in heterozygous family members. Therefore, consideration of recessive mutations leading to HCM is essential for risk stratification and genetic counseling.  相似文献   

13.
Familial hypertrophic cardiomyopathy (HCM) is a primary myocardial disease with a prevalence of 1 in 500 in human beings. Causative mutations have been identified in several sarcomeric genes, including the cardiac myosin binding protein C (MYBPC3) gene. Heritable HCM also exists in a large-animal model, the cat, and we have previously reported a mutation in the MYBPC3 gene in the Maine coon breed. We now report a separate mutation in the MYBPC3 gene in ragdoll cats with HCM. The mutation changes a conserved arginine to tryptophan and appears to alter the protein structure. The ragdoll is not related to the Maine coon and the mutation identified is in a domain different from that of the previously identified feline mutation. The identification of two separate mutations within this gene in unrelated breeds suggests that these mutations occurred independently rather than being passed on from a common founder.  相似文献   

14.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and is characterized by asymmetric left ventricular hypertrophy and diastolic dysfunction, and a frequent cause of sudden cardiac death at young age. Pharmacological treatment to prevent or reverse HCM is lacking. This may be partly explained by the variety of underlying disease causes. Over 1500 mutations have been associated with HCM, of which the majority reside in genes encoding sarcomere proteins, the cardiac contractile building blocks. Several mutation-mediated disease mechanisms have been identified, with proof for gene- and mutation-specific cellular perturbations. In line with mutation-specific changes in cellular pathology, the response to treatment may depend on the underlying sarcomere gene mutation. In this review, we will discuss evidence for mutation-specific pathology and treatment responses in HCM patients, mouse models and engineered heart tissue. The pros and cons of these experimental models for studying mutation-specific HCM pathology and therapies will be outlined.  相似文献   

15.
We sought to determine the frequency of the genetic variations in the Troponin T (TNNT2) gene and its association in Indian cardiomyopathy patients. Sequencing of the entire TNNT2 gene in 162 hypertrophic cardiomyopathy (HCM) patients, along with 179 healthy controls, revealed a total of 15 variants. These included an A28V missense mutation, a novel single-nucleotide polymorphism (SNP) (g.7239;G→A) predicted to disturb the splicing significantly, three SNPs, rs3729547 (C→T), rs3729843 (G→A), rs3729842 (C→T), which were in high linkage disequilibrium, and a 5 bp polymorphism that skipped exon 4 during splicing, which was found to be significantly higher in HCM patients (del/del genotype, p=0.00011; deletion allele, p=0.00008). Further studies on the 5 bp polymorphism in 2092 randomly selected individuals belonging to 39 ethnic and endogamous populations from 19 states of India, and representing the major linguistic Indian families, revealed that the South and the Northwest Indians have a high frequency of 5 bp deletions. The missense mutations in TNNT2 are responsible for 15%-20% of familial HCM by impairing the function of the heart muscle. However, other than the 5 bp polymorphism, our comprehensive study on the Indian HCM patients have lowered the occurrence and overall prevalence of supposedly more aggressive and worst disease causing percentage of missense mutations in TNNT2 dramatically.  相似文献   

16.
Role of troponin T in disease   总被引:5,自引:0,他引:5  
Several striated muscle myopathies have been directly linked to mutations in contractile and associated proteins. Troponin T (TnT) is one of the three subunits that form troponin (Tn) which together with tropomyosin is responsible for the regulation of striated muscle contraction. All three subunits of cardiac Tn as well as tropomyosin have been associated with hypertrophic cardiomyopathy (HCM). However, TnT accounts for most of the mutations that cause HCM in these regulatory proteins. To date 30 mutations have been identified in the cardiac TnT (CTnT) gene that results in familial HCM (FHC). The CTnT gene has also been associated with familial dilated cardiomyopathy (DCM). CTnT deficiency is lethal due to impaired cardiac development. A recessive nonsense mutation in the gene encoding slow skeletal TnT has been associated with an unusual, severe form of nemaline myopathy among the Old Order Amish. How each mutation leads to the diverse clinical symptoms associated with FHC, DCM or nemaline myopathy is unclear. However, the use of animal model systems, in particular transgenic mice, has significantly increased our knowledge of normal and myopathic muscle physiology. In this review, we focus on the role of TnT in muscle physiology and disease. (Mol Cell Biochem 263: 115–129, 2004)  相似文献   

17.
BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a genetically heterogenous disease caused by mutations in genes that primarily encode sarcomeric proteins. No mutation is identified in up to 40% of HCM patients, suggesting other causative genes exist. Natriuretic peptide precursor B (NPPB; also known as "BNP") is a cardiac hormone involved in body fluid homeostasis and cardiac myocyte growth. NPPB concentrations are markedly increased in patients with ventricular hypertrophy, and it is therefore possible mutations in the NPPB gene could cause HCM. METHODS: Genomic DNA was extracted from peripheral blood in 238 consecutive probands with HCM. The coding regions and intron/exon boundaries in the NPPB gene were amplified by PCR, and products were screened for sequence variants using high-performance liquid chromatography, followed by direct DNA sequencing. RESULTS: Four sequence variants in the NPPB gene were identified in 9 of the 238 probands screened. Two of the variants were intronic, one was a synonymous variant at codon 79, and the final variant resulted in an amino acid substitution from arginine to histidine at codon 47 (Arg47His). The Arg47His variant was identified in a control population consisting of 204 chromosomes at an allelic frequency of 0.5%, and is therefore unlikely to cause disease. CONCLUSION: No disease causing mutations were identified in the NPPB gene in this cohort, indicating that mutations in this gene are unlikely to be responsible for HCM.  相似文献   

18.

Introduction

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant heart disease mostly due to mutations in genes encoding sarcomeric proteins. HCM is characterised by asymmetric hypertrophy of the left ventricle (LV) in the absence of another cardiac or systemic disease. At present it lacks specific treatment to prevent or reverse cardiac dysfunction and hypertrophy in mutation carriers and HCM patients. Previous studies have indicated that sarcomere mutations increase energetic costs of cardiac contraction and cause myocardial dysfunction and hypertrophy. By using a translational approach, we aim to determine to what extent disturbances of myocardial energy metabolism underlie disease progression in HCM.

Methods

Hypertrophic obstructive cardiomyopathy (HOCM) patients and aortic valve stenosis (AVS) patients will undergo a positron emission tomography (PET) with acetate and cardiovascular magnetic resonance imaging (CMR) with tissue tagging before and 4 months after myectomy surgery or aortic valve replacement + septal biopsy. Myectomy tissue or septal biopsy will be used to determine efficiency of sarcomere contraction in-vitro, and results will be compared with in-vivo cardiac performance. Healthy subjects and non-hypertrophic HCM mutation carriers will serve as a control group.

Endpoints

Our study will reveal whether perturbations in cardiac energetics deteriorate during disease progression in HCM and whether these changes are attributed to cardiac remodelling or the presence of a sarcomere mutation per se. In-vitro studies in hypertrophied cardiac muscle from HOCM and AVS patients will establish whether sarcomere mutations increase ATP consumption of sarcomeres in human myocardium. Our follow-up imaging study in HOCM and AVS patients will reveal whether impaired cardiac energetics are restored by cardiac surgery.  相似文献   

19.
Novel mutations in sarcomeric protein genes in dilated cardiomyopathy   总被引:11,自引:0,他引:11  
Mutations in sarcomeric protein genes have been reported to cause dilated cardiomyopathy (DCM). In order to detect novel mutations we screened the sarcomeric protein genes beta-myosin heavy chain (MYH7), myosin-binding protein C (MYBPC3), troponin T (TNNT2), and alpha-tropomyosin (TPM1) in 46 young patients with DCM. Mutation screening was done using single-strand conformation polymorphism (SSCP) analysis and DNA sequencing. The mutations in MYH7 were projected onto the protein data bank-structure (pdb) of myosin of striated muscle. In MYH7 two mutations (Ala223Thr and Ser642Leu) were found in two patients. Ser642Leu is part of the actin-myosin interface. Ala223Thr affects a buried residue near the ATP binding site. In MYBPC3 we found one missense mutation (Asn948Thr) in a male patient. None of the mutations were found in 88 healthy controls and in 136 patients with hypertrophic cardiomyopathy (HCM). Thus mutations in HCM causing genes are not rare in DCM and have potential for functional relevance.  相似文献   

20.
Structural analysis of obscurin gene in hypertrophic cardiomyopathy   总被引:3,自引:0,他引:3  
Hypertrophic cardiomyopathy (HCM) is a cardiac disease characterized by left ventricular hypertrophy with diastolic dysfunction. Molecular genetic studies have revealed that HCM is caused by mutations in genes for sarcomere/Z-band components including titin/connectin and its associate proteins. However, disease-causing mutations can be found in about half of the patients, suggesting that other disease-causing genes remain to be identified. To explore a novel disease gene, we searched for obscurin gene (OBSCN) mutations in HCM patients, because obscurin interacts with titin/connectin. Two linked variants, Arg4344Gln and Ala4484Thr, were identified in a patient and functional analyses demonstrated that Arg4344Gln affected binding of obscurin to Z9-Z10 domains of titin/connectin, whereas Ala4484Thr did not. Myc-tagged obscurin showed that Arg4344Gln impaired obscurin localization to Z-band. These observations suggest that the obscurin abnormality may be involved in the pathogenesis of HCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号