首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The signal transduction protein P(II) from the cyanobacterium Synechococcus elongatus strain PCC 7942 forms a complex with the key enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK). Here we report the effect of complex formation on the catalytic properties of NAGK. Although pH and ion dependence are not affected, the catalytic efficiency of NAGK is strongly enhanced by binding of P(II), with K(m) decreasing by a factor of 10 and V(max) increasing 4-fold. In addition, arginine feedback inhibition of NAGK is strongly decreased in the presence of P(II), resulting in a tight control of NAGK activity under physiological conditions by P(II). Analysis of the NAGK-P(II) complex suggests that one P(II) trimer binds to one NAGK hexamer with a K(d) of approximately 3 nm. Complex formation is strongly affected by ATP and ADP. ADP is a strong inhibitor of complex formation, whereas ATP inhibits complex formation only in the absence of divalent cations or in the presence of Mg(2+) ions, together with increased 2-oxoglutarate concentrations. Ca(2+) is able to antagonize the negative effect of ATP and 2-oxoglutarate. ADP and ATP exert their adverse effect on NAGK-P(II) complex formation through binding to the P(II) protein.  相似文献   

2.
In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To determine the role of the putative kinase sites in the trafficking and hormonal regulation of human AQP2, three putative casein kinase II (Ser-148, Ser-229, Thr-244), one PKC (Ser-231), and one protein kinase A (Ser-256) site were altered to mimic a constitutively non-phosphorylated/phosphorylated state and were expressed in Madin-Darby canine kidney cells. Except for Ser-256 mutants, seven correctly folded AQP2 kinase mutants trafficked as wild-type AQP2 to the apical membrane via forskolin-sensitive intracellular vesicles. With or without forskolin, AQP2-Ser-256A was localized in intracellular vesicles, whereas AQP2-S256D was localized in the apical membrane. Phorbol 12-myristate 13-acetate-induced PKC activation following forskolin treatment resulted in vesicular distribution of all AQP2 kinase mutants, while all were still phosphorylated at Ser-256. Our data indicate that in collecting duct cells, AQP2 trafficking to vasopressin-sensitive vesicles is phosphorylation-independent, that phosphorylation of Ser-256 is necessary and sufficient for expression of AQP2 in the apical membrane, and that PMA-induced PKC-mediated endocytosis of AQP2 is independent of the AQP2 phosphorylation state.  相似文献   

3.
4.
We reported that phosphorylation by either cAMP-dependent protein kinase or protein kinase C (Ca2+/phospholipid-dependent enzyme) in vitro induces disassembly of the desmin filaments (Inagaki, M., Gonda, Y., Matsuyama, M., Nishizawa, K., Nishi, Y., and Sato, C. (1988) J. Biol. Chem. 263, 5970-5978). For this subunit protein, Ser-29, Ser-35, and Ser-50 within the non-alpha-helical head domain were shown to be the sites of phosphorylation for cAMP-dependent protein kinase (Geisler, N., and Weber, K. (1988) EMBO J. 7, 15-20). In the present work, we identified the sites of desmin phosphorylated in vitro by other protein kinase which affects the filament structure. The protein kinase C-phosphorylated desmin was hydrolyzed with trypsin, and the phosphorylated peptides were isolated by reverse-phase chromatography. Sequential analysis of the purified phosphopeptides, together with the known primary sequence, revealed that Ser-12, Ser-29, Ser-38, and Ser-56 were phosphorylated by protein kinase C. All four sites are located within the non-alpha-helical head domain of desmin. Ser-12, Ser-38, and Ser-56, specifically phosphorylated by protein kinase C, have arginine residues at the carboxyl-terminal side (Arg-14, Arg-42, and Arg-59, respectively). Ser-29 phosphorylated by both protein kinase C and cAMP-dependent protein kinase has arginine residues at the amino and carboxyl termini (Arg-27 and Arg-33). These findings support the view that the head domain-specific phosphorylation strongly influences desmin filament structure; however, each protein kinase differed with regard to site recognition on this domain.  相似文献   

5.
Calcium-/calmodulin-dependent protein kinase II (CaM kinase II), a decoder of Ca(2+) signals, and cytosolic phospholipase A(2) (cPLA(2)), an enzyme involved in arachidonate release, are involved in many physiological and pathophysiological processes. Activation of CaM kinase II in norepinephrine-stimulated vascular smooth muscle cells leads to activation of cPLA(2) and arachidonic acid release. Surface plasmon resonance, mass spectrometry, and kinetic studies show that CaM kinase II binds to cPLA(2) resulting in cPLA(2) phosphorylation on Ser-515 and an increase in its enzymatic activity. Phosphopeptide mapping studies with cPLA(2) from norepinephrine-stimulated smooth muscle cells indicates that phosphorylation of cPLA(2) on Ser-515, but not on Ser-505 or Ser-727, occurs in vivo. This novel signaling pathway for arachidonate release is shown to be cPLA(2)-dependent by use of a recently described and highly selective inhibitor of this enzyme.  相似文献   

6.
7.
8.
Us3 is a serine/threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). Here, we report the identification of a physiological Us3 phosphorylation site on serine at position 147 (Ser-147) which regulates its protein kinase activity in vitro. Moreover, mutation of this site influences Us3 function, including correct localization of the enzyme and induction of the usual morphological changes in HSV-1-infected cells. These conclusions are based on the following observations: (i) in in vitro kinase assays, a domain of Us3 containing Ser-147 was specifically phosphorylated by Us3 and protein kinase A, while a mutant domain in which Ser-147 was replaced with alanine was not; (ii) in vitro, alanine replacement of Ser-147 (S147A) in Us3 resulted in significant impairment of the kinase activity of the purified molecule expressed in a baculovirus system; (iii) phosphorylation of Ser-147 in Us3 tagged with the monomeric fluorescent protein (FP) VenusA206K (VenusA206K-Us3) from Vero cells infected with a recombinant HSV-1 encoding VenusA206K-Us3 was specifically detected using an antibody that recognizes phosphorylated serine or threonine residues with arginine at the -3 and -2 positions; and (iv) the S147A mutation influenced some but not all Us3 functions, including the ability of the protein to localize itself properly and to induce wild-type cytopathic effects in infected cells. Our results suggest that some of the regulatory activities of Us3 in infected cells are controlled by phosphorylation at Ser-147.  相似文献   

9.
Stimulus-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins   总被引:5,自引:0,他引:5  
Tyrosine hydroxylase (TH) is phosphorylated by CaM kinase II and is activated in situ in response to a variety of stimuli that increase intracellular Ca(2+). We report here, using baculovirus-expressed TH, that the 14-3-3 protein binds and activates the expressed TH when the enzyme is phosphorylated at Ser-19, a site of CaM kinase II-dependent phosphorylation located in the regulatory domain of TH. Site-directed mutagenesis showed that a TH mutant in which Ser-19 was substituted by Ala retained enzymatic activity at the same level as the non-mutated enzyme, but was a poor substrate for CaM kinase II and did not bind the 14-3-3 protein. Likewise, a synthetic phosphopeptide (FRRAVpSELDA) corresponding to the part of the TH sequence, including phosphoSer-19, inhibited the interaction between the expressed TH and 14-3-3, while the phosphopeptide (GRRQpSLIED) corresponding to the site of cAMP-dependent phosphorylation (Ser-40) had little effect on complex formation. The complex was very stable with a dissociation constant of 3 nM. Furthermore, analysis of PC12nnr5 cells transfected with myc-tagged 14-3-3 showed that 14-3-3 formed a complex with endogenous TH when the cultured cells were exposed to a high K(+) concentration that increases intracellular Ca(2+) and phosphorylation of Ser-19 in TH. These findings suggest that the 14-3-3 protein participates in the stimulus-coupled regulation of catecholamine synthesis that occurs in response to depolarization-evoked, Ca(2+)-dependent phosphorylation of TH.  相似文献   

10.
We investigated the effects of enzyme phosphorylation in vitro on the properties of diacylglycerol kinase. Diacylglycerol kinase and protein kinase C, both present as Mr-80,000 proteins, were highly purified from pig thymus cytosol. Protein kinase C phosphorylated diacylglycerol kinase (up to 1 mol of 32P/mol of enzyme) much more actively than did cyclic AMP-dependent protein kinase. Phosphorylated and non-phosphorylated diacylglycerol kinase showed a similar pI, approx. 6.8. Diacylglycerol kinase phosphorylated by either protein kinase C or cyclic AMP-dependent protein kinase was almost exclusively associated with phosphatidylserine membranes. In contrast, soluble kinase consisted of the non-phosphorylated form. The catalytic properties of the lipid kinase were not much affected by phosphorylation, although phosphorylation-linked binding with phosphatidylserine vesicles resulted in stabilization of the enzyme activity.  相似文献   

11.
Endothelial nitric-oxide synthase (eNOS) is an important regulatory enzyme in the cardiovascular system catalyzing the production of NO from arginine. Multiple protein kinases including Akt/PKB, cAMP-dependent protein kinase (PKA), and the AMP-activated protein kinase (AMPK) activate eNOS by phosphorylating Ser-1177 in response to various stimuli. During VEGF signaling in endothelial cells, there is a transient increase in Ser-1177 phosphorylation coupled with a decrease in Thr-495 phosphorylation that reverses over 10 min. PKC signaling in endothelial cells inhibits eNOS activity by phosphorylating Thr-495 and dephosphorylating Ser-1177 whereas PKA signaling acts in reverse by increasing phosphorylation of Ser-1177 and dephosphorylation of Thr-495 to activate eNOS. Both phosphatases PP1 and PP2A are associated with eNOS. PP1 is responsible for dephosphorylation of Thr-495 based on its specificity for this site in both eNOS and the corresponding synthetic phosphopeptide whereas PP2A is responsible for dephosphorylation of Ser-1177. Treatment of endothelial cells with calyculin selectively blocks PKA-mediated dephosphorylation of Thr-495 whereas okadaic acid selectively blocks PKC-mediated dephosphorylation of Ser-1177. These results show that regulation of eNOS activity involves coordinated signaling through Ser-1177 and Thr-495 by multiple protein kinases and phosphatases.  相似文献   

12.
S Ando  K Tanabe  Y Gonda  C Sato  M Inagaki 《Biochemistry》1989,28(7):2974-2979
We reported that stoichiometric phosphorylation by either cAMP-dependent protein kinase or protein kinase C induces disassembly of vimentin filaments [Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M., & Sato, C. (1987) Nature 328, 649-652; Inagaki, M., Gonda, Y., Matsuyama, M., Nishizawa, K., Nishi, Y., & Sato, C. (1988) J. Biol. Chem. 263, 5970-5978]. In the present work, we attempted to identify the sites of vimentin phosphorylated by each protein kinase. Sequential analysis of the purified phosphopeptides, together with the known primary sequence, revealed that Ser-8, Ser-9, Ser-20, Ser-25, Ser-33, and Ser-41 were specifically phosphorylated by protein kinase C, whereas Ser-46 was phosphorylated preferentially by cAMP-dependent protein kinase. Both kinases reacted with Ser-6, Ser-24, Ser-38, Ser-50, and Ser-65. Specific phosphorylation sites for protein kinase C are mostly located close to the amino-terminal side of arginine while those for cAMP-dependent protein kinase are located close to the carboxyl-terminal side of arginine. The phosphorylation sites exclusively occur in the amino-terminal non-alpha-helical head domain, particularly at the beta-turn region. These results provide clues to the molecular mechanisms of phosphorylation-dependent disassembly of vimentin filaments.  相似文献   

13.
Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxynucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We recently showed that dCK was activated in vivo by phosphorylation of Ser-74. However, the protein kinase responsible was not identified. Ser-74 is located downstream a Glu-rich region, presenting similarity with the consensus phosphorylation motif of casein kinase 1 (CKI), and particularly of CKI δ. We showed that recombinant CKI δ phosphorylated several residues of bacterially overexpressed dCK: Ser-74, but also Ser-11, Ser-15, and Thr-72. Phosphorylation of dCK by CKI δ correlated with increased activity reaching at least 4-fold. Site-directed mutagenesis demonstrated that only Ser-74 phosphorylation was involved in dCK activation by CKI δ, strengthening the key role of this residue in the control of dCK activity. However, neither CKI δ inhibitors nor CKI δ siRNA-mediated knock-down modified Ser-74 phosphorylation or dCK activity in cultured cells. Moreover, these approaches did not prevent dCK activation induced by treatments enhancing Ser-74 phosphorylation. Taken together, the data preclude a role of CKI δ in the regulation of dCK activity in vivo. Nevertheless, phosphorylation of dCK by CKI δ could be a useful tool for elucidating the influence of Ser-74 phosphorylation on the structure-activity relationships in the enzyme.  相似文献   

14.
We demonstrated previously that 5-lipoxygenase (5-LO), a key enzyme in leukotriene biosynthesis, can be phosphorylated by p38 MAPK-regulated MAPKAP kinases (MKs). Here we show that mutation of Ser-271 to Ala in 5-LO abolished MK2 catalyzed phosphorylation and clearly reduced phosphorylation by kinases prepared from stimulated polymorphonuclear leukocytes and Mono Mac 6 cells. Compared with heat shock protein 27 (Hsp-27), 5-LO was a weak substrate for MK2. However, the addition of unsaturated fatty acids (i.e. arachidonate 1-50 microm) up-regulated phosphorylation of 5-LO, but not of Hsp-27, by active MK2 in vitro, resulting in a similar phosphorylation as for Hsp-27. 5-LO was phosphorylated also by other serine/threonine kinases recognizing the motif Arg-Xaa-Xaa-Ser (protein kinase A, Ca(2+)/calmodulin-dependent kinase II), but these activities were not increased by fatty acids. HeLa cells expressing wild type 5-LO or S271A-5-LO, showed prominent 5-LO activity when incubated with Ca(2+)-ionophore plus arachidonate. However, when stimulated with only exogenous arachidonic acid, activity for the S271A mutant was significantly lower as compared with wild type 5-LO. It appears that phosphorylation at Ser-271 is more important for 5-LO activity induced by a stimulus that does not prominently increase intracellular Ca(2+) and that arachidonic acid stimulates leukotriene biosynthesis also by promoting this MK2-catalyzed phosphorylation.  相似文献   

15.
16.
Microtubule associated protein tau is abnormally hyperphosphorylated in Alzheimer disease (AD) brain. To investigate the role of protein kinases involved in this lesion, metabolically active slices made from brains of adult rats were treated with or without various specific kinase activators in oxygenated artificial cerebrospinal fluid. The basal kinase activities of protein kinase-A (PKA), CaM Kinase II and GSK-3 were stimulated more than two-fold by isoproterenol, bradykinin and wortmannin, respectively. We found that cdk5 activity was co-stimulated with PKA by isoproterenol. Sequential activation of PKA (+cdk5), CaM Kinase II and GSK-3 produced hyperphosphorylation of tau at Ser-198/Ser-199/Ser-202, Ser-214, Thr-231/Ser-235, Ser-262, Ser-396/Ser-404 and Ser-422 sites. Like AD P-tau, the P-tau from brain slices bound to normal tau and its binding to tubulin was inhibited. These studies suggest that PKA, cdk5, CaM Kinase II and GSK-3 are involved in the regulation of phosphorylation of tau and that AD-type phosphorylation of tau is probably a product of the synergistic action of two or more of these kinases.  相似文献   

17.
18.
PII is an important signal protein for regulation of nitrogen metabolism in bacteria and plants. We constructed a mutant of glnB, encoding PII, in a heterocystous cyanobacterium, Anabaena sp. PCC 7120, with a cre-loxP system. The mutant (MP2alpha) grew more slowly than the wild type under all nitrogen regimens. It excreted a large amount of ammonium when grown on nitrate due to altered activities of glutamine synthetase and nitrate reductase. MP2alpha had a low nitrogenase activity but was able to form heterocysts under diazotrophic conditions, suggesting that PII is not required for heterocyst differentiation. Analysis of the PII with mass spectroscopy found tyrosine nitration at Tyr-51 under diazotrophic conditions while no phosphorylation at Ser-49 was detected. The strains 51F and 49A, which have PII with mutations of Y51F and S49A, respectively, were constructed to analyze the functions of the two key residues on the T-loop. Like MP2alpha, they had low nitrogenase activity and grew slowly under diazotrophic conditions. 49A was also impaired in nitrate uptake and formed heterocysts in the presence of nitrate. The up-regulation of ntcA after nitrogen step-down, which was present in the wild type, was not observed in 51F and 49A. While our results showed that the Ser-49 residue is important to the function of PII in Anabaena sp. PCC 7120, evidence from the PII pattern of the wild type and 49A in non-denaturing gel electrophoresis suggested that Ser-49 is not modified. The possible physiological roles of tyrosine nitration of PII are discussed.  相似文献   

19.
We have characterized a phosphoserine binding domain in the coactivator CREB-binding protein (CBP) which interacts with the protein kinase A-phosphorylated, and hence activated, form of the cyclic AMP-responsive factor CREB. The CREB binding domain, referred to as KIX, is alpha helical and binds to an unstructured kinase-inducible domain in CREB following phosphorylation of CREB at Ser-133. Phospho-Ser-133 forms direct contacts with residues in KIX, and these contacts are further stabilized by hydrophobic residues in the kinase-inducible domain which flank phospho-Ser-133. Like the src homology 2 (SH2) domains which bind phosphotyrosine-containing peptides, phosphoserine 133 appears to coordinate with a single arginine residue (Arg-600) in KIX which is conserved in the CBP-related protein P300. Since mutagenesis of Arg-600 to Gln severely reduces CREB-CBP complex formation, our results demonstrate that, as in the case of tyrosine kinase pathways, signal transduction through serine/threonine kinase pathways may also require protein interaction motifs which are capable of recognizing phosphorylated amino acids.  相似文献   

20.
The single human tyrosine hydroxylase (TH) gene generates four different mRNA species through alternative splicing events. TH-1 and TH-2 mRNAs are expressed mostly in the brain. We have produced large amounts of the corresponding proteins in Escherichia coli to analyze their respective molecular characteristics. The polypeptides have molecular weights similar to those of TH expressed in Xenopus oocytes and react with antibodies to TH. The two isoforms were purified with a purity of 90% using a three-step procedure. The phosphorylation sites have been determined in the two isoforms after labeling with [gamma-32P]ATP in the presence of cAMP-dependent protein kinase (PKA) or calmodulin-dependent protein kinase II (CaM-PK II). In both isoforms, Ser-40 was found to be phosphorylated by PKA, and Ser-19 and Ser-40 were found to be phosphorylated by CaM-PK II. The putative phosphorylation site generated by alternative splicing (Ser-31) was phosphorylated specifically by CaM-PK II in TH-2 only. The kinetic properties of the two isoforms in the presence of various concentrations of the substrate (tyrosine) and of the natural cofactor [6R)-tetrahydrobiopterin) were also analyzed. TH produced in E. coli is unphosphorylated but nevertheless active. At 50 microM tyrosine and 300 microM (6R)-tetrahydrobiopterin, the specific activities of TH-1 and TH-2 are 1300 and 620 nmol of dihydroxyphenylalanine/min/mg, respectively. Phosphorylation of TH-1 and TH-2 by PKA activates both isoenzymes as shown by the increase in the affinity for the cofactor. No changes in kinetic parameters of the isoenzymes were observed after phosphorylation by CaM-PK II. Dopamine was found to inhibit both TH isoenzymes to the same extent as shown by their similar Ki values for dopamine. These values were increased after phosphorylation of each enzyme by PKA. Unlike TH-1, phosphorylation of TH-2 by CaM-PK II resulted in an increase of the Ki value for dopamine. This property may be related to the presence of the additional phosphorylated residue in TH-2 isoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号