首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multilamellar phospholipid vesicles are introduced into the cis compartment on one side of a planar phospholipid bilayer membrane. The vesicles contain a water-soluble fluorescent dye trapped in the aqueous phases between the lamellae. If a vesicle containing n lamellae fuses with a planar membrane, an n-1 lamellar vesicle should be discharged into the opposite trans compartment, where it would appear as a discernible fluorescent particle. Thus, fusion events can be assayed by counting the number of fluorescent particles appearing in the trans compartment. In the absence of divalent cation, fusion does not occur, even after vesicles have been in the cis compartment for 40 min. When CaCl2 is introduced into the cis compartment to a concentration of greater than or equal to 20 mM, fusion occurs within the next 20 min; it generally ceases thereafter because of vesicle aggregation in the cis compartment. With approximately 3 x 10(8) vesicles/cm3 in the cis compartment, about 25-50 fusion events occur following CaCl2 addition. The discharge of vesicular contents across the planar membrane is the most convincing evidence of vesicle-membrane fusion and serves as a model for that ubiquitous biological phenomenon--exocytosis.  相似文献   

2.
Fusion of multilamellar phospholipid vesicles with planar phospholipid bilayer membranes was monitored by the rate of appearance in the planar membrane of an intrinsic membrane protein present in the vesicle membranes. An essential requirement for fusion is an osmotic gradient across the planar membrane, with the cis side (the side containing the vesicles) hyperosmotic to the opposite (trans) side; for substantial fusion rates, divalent cation must also be present on the cis side. Thus, the low fusion rates obtained with 100 mM excess glucose in the cis compartment are enhanced orders of magnitude by the addition of 5-10 mM CaCl2 to the cis compartment. Conversely, the rapid fusion rates induced by 40 mM CaCl2 in the cis compartment are completely suppressed when the osmotic gradient (created by the 40 mM CaCl2) is abolished by addition of an equivalent amount of either CaCl2, NaCl, urea, or glucose to the trans compartment. We propose that fusion occurs by the osmotic swelling of vesicles in contact with the planar membrane, with subsequent rupture of the vesicular and planar membranes in the region of contact. Divalent cations catalyze this process by increasing the frequency and duration of vesicle-planar membrane contact. We argue that essentially this same osmotic mechanism drives biological fusion processes, such as exocytosis. Our fusion procedure provides a general method for incorporating and reconstituting transport proteins into planar phospholipid bilayer membranes.  相似文献   

3.
Interactions of the peptides melittin and magainin with phospholipid vesicle membranes have been studied using fluorescence correlation spectroscopy. Molecular interactions of melittin and magainin with phospholipid membranes are performed in rhodamine-entrapped vesicles (REV) and in rhodamine-labelled phospholipid vesicles (RLV), which did not entrap free rhodamine inside. The results demonstrate that melittin makes channels into vesicle membranes since exposure of melittin to vesicles causes rhodamine release only from REV but not from RLV. It is obvious that rhodamine can not be released from RLV because the inside of RLV is free of dye molecules. In contrast, magainin breaks vesicles since addition of magainin to vesicles results in rhodamine release from both REV and RLV. As the inside of RLV is free of rhodamine, the appearance of rhodamine in solution confirms that these vesicles are broken into rhodamine-labelled phospholipid fragments after addition of magainin. This study is of pharmaceutical significance since it will provide insights that fluorescence correlation spectroscopy can be used as a rapid protocol to test incorporation and release of drugs by vesicles.  相似文献   

4.
Agents such as antimicrobial peptides and toxins can permeabilize membrane vesicles to cause leakage of entrapped contents in either a graded or an all-or-none fashion. Determination of which mode of leakage is induced is an important step in understanding the molecular mechanism of membrane permeabilization. Wimley et al. (1994, Protein Sci. 3:1362-1378) have developed a fluorescence method for distinguishing the two modes that makes use of the dye/quencher pair 8-aminonapthalene-1,3,6 trisulfonic acid (ANTS)/p-xylene-bis-pyridinium bromide (DPX) without the usual need for the physical separation of vesicles from released contents. Their "requenching" method establishes the mode of release through the fluorescence changes that occur when DPX is added externally to a solution of vesicles that have released some fraction of their contents. However, the requenching method as originally stated ignored the possibility of preferential release of dye or quencher. Here we extend the theory of the method to take into account preferential release and the effects of graded leakage. The ratio of the rates of release of the cationic quencher DPX and anionic dye 8-aminonapthalene-1,3,6 trisulfonic acid can be estimated by means of the theory. For graded leakage, we show that the release of the markers does not coincide with the fluorescence changes observed in the standard leakage assay. This is true for self-quenching dyes as well and means that 1) the amount of released material will be overestimated and 2) the kinetics will be nonexponential and have artificially high apparent rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The fusion of individual influenza virions with a planar phospholipid membrane was detected by fluorescence video microscopy. Virion envelopes were loaded with the lipophilic fluorescent marker octadecylrhodamine B (R18) to a density at which the fluorescence of the probe was self-quenched. Labeled virions were ejected toward the planar membrane from a micropipette in a custom-built video fluorescence microscope. Once a virion fused with the planar membrane, the marker was free to diffuse, and its fluorescence became dequenched, producing a flash of light. This flash was detected as a transient spot of light which increased and then diminished in brightness. The diffusion constants calculated from the brightness profiles for the flashes are consistent with fusion of virus to the membrane with consequent free diffusion of probe within the planar membrane. Under conditions known to be fusigenic for influenza virus (low pH and 37 degrees C), flashes appeared at a high rate and the planar membrane quickly became fluorescent. To further establish that these flashes were due to fusion, we showed that red blood cells, which normally do not attach to planar membranes, were able to bind to membranes that had been exposed to virus under fusigenic conditions. The amount of binding correlated with the amount of flashing. This indicates that flashes signaled the reconstitution of the hemagglutinin glycoprotein (HA) of influenza virus, a well-known erythrocyte receptor, into the planar membrane, as would be expected in a fusion process. The flash rate on ganglioside-containing asolectin membranes increased as the pH was lowered. This is also consistent with the known fusion behavior of influenza virus with cell membranes and with phospholipid vesicles. We conclude that the flashes result from the fusion of individual virions to the planar membrane.  相似文献   

6.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

7.
Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR) = 50 more than 105 FomA proteins could be incorporated in a bilayer array with a total membrane area of 2 mm2 within 20 min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications.  相似文献   

8.
Small hydrophobic peptides that are capable of inhibiting Sendai virus infection of cells (Richardson, C. D., Scheid, A., and Choppin, P. W. (1980) Virology 105, 205-222) are also capable of inhibiting membrane fusion in a pure lipid vesicle system. Large unilamellar vesicles of N-methyl dioleoylphosphatidylethanolamine containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid and/or p-xylene bis (pyridinium bromide) were formed by extrusion. Vesicle fusion (contents mixing) and leakage were then monitored with the 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylene bis(pyridinium bromide) fluorescence assay. Sendai virus fusion with lipid vesicles was measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride, a lipid mixing assay for fusion. The efficiency with which the peptides carbobenzoxy-D-Phe-L-PheGly, carbobenzoxy-L-Phe-L-Tyr, and carbobenz-oxy-Gly-L-Phe inhibit fusion of N-methyl dioleoyl-phosphatidylethanolamine large unilamellar vesicles directly paralleled their previously known effectiveness in blocking virus infectivity of cultured cells. In addition, above a certain concentration threshold, the inhibitory peptides decreased the initial rate of leakage from lipid vesicles. The inhibition by these peptides of virus-vesicle fusion followed the same order of potency as for vesicle-vesicle fusion. The observation of the same relative potency of these peptides toward inhibition of virus-cell infection, and virus-vesicle and vesicle-vesicle membrane fusion suggested that these peptides inhibited virus-cell infection by inhibiting the ability of the virus to fuse with the cell. Furthermore, these results suggest that the mechanism of inhibition of all three fusion events may have steps in common.  相似文献   

9.
Membrane fusion of a phospholipid vesicle with a planar lipid bilayer is preceded by an initial prefusion stage in which a region of the vesicle membrane adheres to the planar membrane. A resonance energy transfer (RET) imaging microscope, with measured spectral transfer functions and a pair of radiometrically calibrated video cameras, was used to determine both the area of the contact region and the distances between the membranes within this zone. Large vesicles (5-20 microns diam) were labeled with the donor fluorophore coumarin- phosphatidylethanolamine (PE), while the planar membrane was labeled with the acceptor rhodamine-PE. The donor was excited with 390 nm light, and separate images of donor and acceptor emission were formed by the microscope. Distances between the membranes at each location in the image were determined from the RET rate constant (kt) computed from the acceptor:donor emission intensity ratio. In the absence of an osmotic gradient, the vesicles stably adhered to the planar membrane, and the dyes did not migrate between membranes. The region of contact was detected as an area of planar membrane, coincident with the vesicle image, over which rhodamine fluorescence was sensitized by RET. The total area of the contact region depended biphasically on the Ca2+ concentration, but the distance between the bilayers in this zone decreased with increasing [Ca2+]. The changes in area and separation were probably related to divalent cation effects on electrostatic screening and binding to charged membranes. At each [Ca2+], the intermembrane separation varied between 1 and 6 nm within each contact region, indicating membrane undulation prior to adhesion. Intermembrane separation distances < or = 2 nm were localized to discrete sites that formed in an ordered arrangement throughout the contact region. The area of the contact region occupied by these punctate attachment sites was increased at high [Ca2+]. Membrane fusion may be initiated at these sites of closest membrane apposition.  相似文献   

10.
We have used magnetic alternating current mode atomic force microscopy (MAC-AFM) to investigate the formation of supported phospholipid bilayers (SPB) by the method of vesicle fusion. The systems studied were dioleoylphosphatidylcholine (DOPC) on mica and mica modified with 3-aminopropyl-triethoxy-silane (APTES), and DOPC vesicles with gramicidin incorporated on mica and APTES-modified mica. The AFM images reveal three stages of bilayer formation: localized disklike features that are single bilayer footprints of the vesicles, partial continuous coverage, and finally complete bilayer formation. The mechanism of supported phospholipid bilayers formation is the fusion of proximal vesicles, rather than surface disk migration. This mechanism does not appear to be affected by incorporation of gramicidin or by surface modification. Once formed, the bilayer develops circular defects one bilayer deep. These defects grow in size and number until a dynamic equilibrium is reached.  相似文献   

11.
Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems.  相似文献   

12.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calcium-induced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy: and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

13.
Two synthetic mutants of influenza HA2 fusion peptide (residues 1-25), containing Glu on the polar (residues 4,8-E5(4,8)) or the hydrophobic (residues 3,7-E5(3,7)) face of the amphipathic helix, were synthesized and labeled with NBD at the N-terminus. Introduction of Glu residues into the fusion peptide leads to increased sensitivity of various biochemical properties to pH compared to the wild type. The E5 peptides showed a decrease of alpha-helix content and increase of beta-sheet structure. Lipid binding was diminished, but not abolished even at high pH. The E5 analogs penetrate the lipid bilayer less deeply than the wild type, especially at high pH. The N-terminal half of the peptide showed significant variation of the depth of the penetration into the lipid bilayer. Both E5 peptides were fusion active. The properties of E5(3,7) were more affected by the Glu substitution and showed greater variation with pH than E5(4,8).  相似文献   

14.
15.
W D Niles  Q Li    F S Cohen 《Biophysical journal》1992,63(3):710-722
We have developed an algorithm for automated detection of the dynamic pattern characterizing flashes of fluorescence in video images of membrane fusion. The algorithm detects the spatially localized, transient increases and decreases in brightness that result from the dequenching of fluorescent dye in phospholipid vesicles or lipid-enveloped virions fusing with a planar membrane. The flash is identified in video images by its nonzero time derivative and the symmetry of its spatial profile. Differentiation is implemented by forward and backward subtractions of video frames. The algorithm groups spatially connected pixels brighter than a user-specified threshold into distinct objects in forward- and backward-differentiated images. Objects are classified as either flashes or noise particles by comparing the symmetries of matched forward and backward difference profiles and then by tracking each profile in successive difference images. The number of flashes identified depends on the brightness threshold, the size of the convolution kernel used to filter the image, and the time difference between the subtracted video frames. When these parameters are changed so that the algorithm identifies an increasing percentage of the flashes recognized by eye, an increasing number of noise objects are mistakenly identified as flashes. These mistaken flashes can be eliminated by a human observer. The algorithm considerably shortens the time needed to analyze video data. Tested extensively with phospholipid vesicle and virion fusion with planar membranes, our implementation of the algorithm accurately determined the rate of fusion of influenza virions labeled with the lipophilic dye octadecylrhodamine (R18).  相似文献   

16.
Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an α-helical structure from Lys3 to Lys21 and from Ala25 to Val35, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as Trp2 and Phe5 at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi. [BMB Reports 2013; 46(5): 282-287]  相似文献   

17.
Membrane fusion was studied using human neutrophil plasma membrane preparations and phospholipid vesicles approximately 0.15 microns in diameter and composed of phosphatidylserine and phosphatidylethanolamine in a ratio of 1 to 3. Liposomes were labeled with N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl (NBD) and lissamine rhodamine B derivatives of phospholipids. Apparent fusion was detected as an increase in fluorescence of the resonance energy transfer donor, NBD, after dilution of the probes into unlabeled membranes. 0.5 mM Ca2+ alone was sufficient to cause substantial fusion of liposomes with a plasma membrane preparation but not with other liposomes. Both annexin I and des(1-9)annexin I caused a substantial increase in the rate of fusion under these conditions while annexin V inhibited fusion. Fusion mediated by des(1-9)annexin I was observed at Ca2+ concentrations as low as approximately 5 microM, suggesting that the truncated form of this protein may be active at physiologically low Ca2+ concentrations. Trypsin treated plasma membranes were incapable of fusion with liposomes, suggesting that plasma membrane proteins may mediate fusion. Liposomes did not fuse with whole cells at any Ca2+ concentration, indicating that the cytoplasmic side of the membrane is involved. These results suggest that annexin I and unidentified plasma membrane proteins may play a role in Ca(2+)-dependent degranulation of human neutrophils.  相似文献   

18.
When mixed with vesicles containing acidic phospholipids, myelin basic protein causes vesicle aggregation. The kinetics of this vesicle cross-linking by myelin basic protein was investigated by using stopped-flow light scattering. The process was highly cooperative, requiring about 20 protein molecules per vesicle to produce a measurable aggregation rate and about 35 protein molecules per vesicle to produce the maximum rate. The maximum aggregation rate constant approached the theoretical vesicle-vesicle collisional rate constant. Vesicle aggregation was second order in vesicle concentration and was much slower than protein-vesicle interaction. The highest myelin basic protein concentration used here did not inhibit vesicle aggregation, indicating that vesicle cross-linking occurred through protein-protein interactions. In contrast, poly(L-lysine)-induced vesicle aggregation was easily inhibited by increasing peptide concentrations, indicating that it did cross-link vesicles as a peptide monomer. The myelin basic protein:vesicle stoichiometry required for aggregation and the low affinity for protein dimerization suggested that multiple protein cross-links were needed to form a stable aggregate. Stopped-flow fluorescence was used to estimate the kinetics of myelin basic protein-vesicle binding. The half-times obtained suggested a rate constant that approached the theoretical protein-vesicle collisional rate constant.  相似文献   

19.
Fluorescence spectral features of 6-propionyl-2-dimethylaminonaphthalene (Prodan) in phospholipid vesicles of different phase states are investigated. Like the spectra of 6-lauroyl-2-dimethylaminonaphthalene (Laurdan), the steady-state excitation and emission spectra of Prodan are sensitive to the polarity of the environment, showing a relevant shift due to the dipolar relaxation phenomenon. Because of the different lengths of their acyl residues, the partitioning of the two probes between water and the membrane bilayer differs profoundly. To account for the contribution of Prodan fluorescence arising from water, we introduce a three-wavelength generalized polarization method that makes it possible to separate the spectral properties of Prodan in the lipid phase and in water, and to determine the probe partitioning between phospholipid and water and between the gel and the liquid-crystalline phases of phospholipids. In contrast to Laurdan, Prodan preferentially partitions in the liquid-crystalline phase with respect to the gel and is sensitive to the polar head pretransition, and its partition coefficient between the membrane and water depends on the phase state, i.e., on the packing of the bilayer. Prodan is sensitive to polarity variations occurring closer to the bilayer surface than those detected by Laurdan.  相似文献   

20.
The clathrin-induced fusion of liposome membranes, the membrane binding of clathrin, and the conformational states of clathrin were investigated over a wide pH range using large unilamellar and multilamellar vesicles composed of phosphatidylserine (PS), phosphatidylcholine (PC), PS/PC (2:1), PS/PC (1:1), or PS/PC (1:2). The pH profiles of clathrin-induced fusion of all types of liposomes containing PS showed biphasic patterns. Their pH thresholds were found in the pH range of 5-6 and shifted to lower pH values with decrease in the PS content. Similar shifts were observed in the pH range of 5-6 and shifted to lower pH values with decrease in the PS content. Similar shifts were observed in the pH profiles of clathrin binding to these vesicles, but the pH profiles of binding were different from the biphasic fusion patterns. With PC vesicles, only small degrees of fusion and clathrin binding were observed at pH 2-4. The pH dependences of the conformation and hydrophobicity of clathrin were determined by measuring the extent of the blue shift of the fluorescence maximum of 1-anilinonaphthalene-8-sulfonate in the presence of the protein, the fluorescence intensity of N-(1-anilinonaphthyl-4)maleimide bound to the clathrin molecule, the resonance energy transfer from its tryptophan to anilinonaphthyl residues, the partitioning of the protein in Triton X-114 solution, and the hydrophobicity index of clathrin using cis-parinaric acid. These measurements indicated that conformational change and exposure of hydrophobic regions occur below pH 6 and suggested that clathrin may adopt different conformational states in the pH region where it induced membrane fusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号