首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Yinghui Yang  Cang Hui 《Oikos》2021,130(2):260-273
Competitive intransitivity is mostly considered outside the main body of coexistence theories that rely primarily on the role of niche overlap and differentiation. How the interplay of competitive intransitivity and niche overlap jointly affects species coexistence has received little attention. Here, we consider a rock–paper–scissors competition system where interactions between species can represent the full spectra of transitive–intransitive continuum and niche overlap/differentiation under different levels of competition asymmetry. By comparing results from pair approximation that only considers interference competition between neighbouring cells in spatial lattices, with those under the mean-field assumption, we show that 1) species coexistence under transitive competition is only possible at high niche differentiation; 2) in communities with partial or pure intransitive interactions, high levels of niche overlap are not necessary to beget species extinction; and 3) strong spatial clustering can widen the condition for intransitive loops to facilitate species coexistence. The two mechanisms, competitive intransitivity and niche differentiation, can support species persistence and coexistence, either separately or in combination. Finally, the contribution of intransitive loops to species coexistence can be enhanced by strong local spatial correlations, modulated and maximised by moderate competition asymmetry. Our study, therefore, provides a bridge to link intransitive competition to other generic ecological theories of species coexistence.  相似文献   

2.
The twofold cost of sex implies that sexual and asexual reproduction do not coexist easily. Asexual forms tend to outcompete sexuals but may eventually suffer higher extinction rates, creating tension between short- and long-term advantages of different reproductive modes. The 'short-sightedness' of asexual reproduction takes a particularly intriguing form in gynogenetic species complexes, in which an asexual species requires sperm from a related sexual host species to trigger embryogenesis. Asexuals are then predicted to outcompete their host, after which neither species can persist. We examine whether spatial structure can explain continued coexistence of the species complex, and assess the evidence based on data on the Amazon molly (Poecilia formosa). A modification of the Levins metapopulation model creates two regions of good prospects for coexistence, connected by a region of poorer patch occupancy levels. In the first case, mate discrimination and/or niche differentiation keep local extinction rates low, and most patches contain both species; the other possibility resembles host-parasite dynamics where parasites frequently drive the host locally extinct. Several dynamical features are counterintuitive and relate to the parasitic nature of interactions in the species complex: for example, high local extinction rates of the asexual species can be beneficial for its own persistence. This creates a link from the evolution of sexual reproduction to that of prudent predation.  相似文献   

3.
Environmental variability can structure species coexistence by enhancing niche partitioning. Modern coexistence theory highlights two fluctuation‐dependent temporal coexistence mechanisms —the storage effect and relative nonlinearity – but empirical tests are rare. Here, we experimentally test if environmental fluctuations enhance coexistence in a California annual grassland. We manipulate rainfall timing and relative densities of the grass Avena barbata and forb Erodium botrys, parameterise a demographic model, and partition coexistence mechanisms. Rainfall variability was integral to grass–forb coexistence. Variability enhanced growth rates of both species, and early‐season drought was essential for Erodium persistence. While theoretical developments have focused on the storage effect, it was not critical for coexistence. In comparison, relative nonlinearity strongly stabilised coexistence, where Erodium experienced disproportionately high growth under early‐season drought due to competitive release from Avena. Our results underscore the importance of environmental variability and suggest that relative nonlinearity is a critical if underappreciated coexistence mechanism.  相似文献   

4.
Independent species fluctuations are commonly used as a null hypothesis to test the role of competition and niche differences between species in community stability. This hypothesis, however, is unrealistic because it ignores the forces that contribute to synchronization of population dynamics. Here we present a mechanistic neutral model that describes the dynamics of a community of equivalent species under the joint influence of density dependence, environmental forcing, and demographic stochasticity. We also introduce a new standardized measure of species synchrony in multispecies communities. We show that the per capita population growth rates of equivalent species are strongly synchronized, especially when endogenous population dynamics are cyclic or chaotic, while their long-term fluctuations in population sizes are desynchronized by ecological drift. We then generalize our model to nonneutral dynamics by incorporating temporal and nontemporal forms of niche differentiation. Niche differentiation consistently decreases the synchrony of species per capita population growth rates, while its effects on the synchrony of population sizes are more complex. Comparing the observed synchrony of species per capita population growth rates with that predicted by the neutral model potentially provides a simple test of deterministic asynchrony in a community.  相似文献   

5.
Population size dependence, competitive coexistence and habitat destruction   总被引:3,自引:0,他引:3  
1. Spatial dynamics can lead to coexistence of competing species even with strong asymmetric competition under the assumption that the inferior competitor is a better colonizer given equal rates of extinction. Patterns of habitat fragmentation may alter competitive coexistence under this assumption.
2. Numerical models were developed to test for the previously ignored effect of population size on competitive exclusion and on extinction rates for coexistence of competing species. These models neglect spatial arrangement.
3. Cellular automata were developed to test the effect of population size on competitive coexistence of two species, given that the inferior competitor is a better colonizer. The cellular automata in the present study were stochastic in that they were based upon colonization and extinction probabilities rather than deterministic rules.
4. The effect of population size on competitive exclusion at the local scale was found to have little consequence for the coexistence of competitors at the metapopulation (or landscape) scale. In contrast, population size effects on extinction at the local scale led to much reduced landscape scale coexistence compared to simulations not including localized population size effects on extinction, especially in the cellular automata models. Spatially explicit dynamics of the cellular automata vs. deterministic rates of the numerical model resulted in decreased survival of both species. One important finding is that superior competitors that are widespread can become extinct before less common inferior competitors because of limited colonization.
5. These results suggest that population size–extinction relationships may play a large role in competitive coexistence. These results and differences are used in a model structure to help reconcile previous spatially explicit studies which provided apparently different results concerning coexistence of competing species.  相似文献   

6.
Aim The size of the climatic niche of a species is a major factor determining its distribution and evolution. In particular, it has been proposed that niche width should be associated with the rate of species diversification. Here, we test whether species niche width affects the speciation and extinction rates of three main clades of vertebrates: amphibians, mammals and birds. Location Global. Methods We obtained the time‐calibrated phylogenies, IUCN conservation status, species distribution maps and climatic data for 2340 species of amphibians, 4563 species of mammals and 9823 species of birds. We computed the niche width for each species as the mean annual temperature across the species range. We estimated speciation, extinction and transition rates associated with lineages with either narrow (specialist) or wide (generalist) niches using phylogeny‐based birth–death models. We also tested if current conservation status was correlated with the niche width of species. Results We found higher net diversification rates in specialist species than in generalist species. This result was explained by both higher speciation rates (for the three taxonomic groups) and lower extinction rates (for mammals and birds only) in specialist than in generalist species. In contrast, current specialist species tended to be more threatened than generalist species. Main conclusions Our diversification analysis shows that the width of the climatic niche is strongly associated with diversification rates and may thus be a crucial factor for understanding the emergence of diversity patterns in vertebrates. The striking difference between our diversification results and current conservation status suggests that the current extinction process may be different from extinction rates estimated from the whole history of the group.  相似文献   

7.
To overcome stress, such as resource limitation, an organism often needs to successfully mediate competition with other members of its own species. This may favor the evolution of defective traits that are harmful to the species population as a whole, and that may lead to its dilution or even to its extinction (the tragedy of the commons). Here, we show that this phenomenon can be circumvented by cooperation plasticity, in which an individual decides, based on environmental conditions, whether to cooperate or to defect. Specifically, we analyze the evolution of density-dependent cooperation. In our model, the population is spatially subdivided, periodically remixed, and comprises several species. We find that evolution pushes individuals to be more cooperative when their own species is at lower densities, and we show that not only could this cooperation prevent the tragedy of the commons, but it could also facilitate coexistence between many species that compete for the same resource.  相似文献   

8.
Shade tolerance,canopy gaps and mechanisms of coexistence of forest trees   总被引:3,自引:0,他引:3  
The belief that canopy gaps are important for the maintenance of tree species diversity appears to be widespread, but there have been no formal theoretical models to assess under what conditions gap phase processes allow coexistence. Much of the empirical research on niche differentiation in response to gaps has focused on evidence for an interspecific tradeoff between low light survival and high light growth. The objectives of this study are first to distinguish the possible mechanisms allowing coexistence based on this tradeoff, and second, to explore their limitations. We present a theory of forest dynamics driven by small‐scale disturbances as a special case of the theory of coexistence in variable environments. We demonstrate that temporal and spatial heterogeneity in light conditions that results from canopy gaps can allow stable coexistence as a result of three previously documented general mechanisms: ‘relative non‐linearity’, ‘the successional niche’ and the ‘storage effect’. We find that temporal fluctuations in light availability alone allow the stable coexistence of only two species. Spatial variation in disturbance synchronicity and intensity allows three species to coexist in a narrow parameter space. The rate of extinction is, however, extremely slow and there is transient coexistence of a larger number of species for a long period of time. We conclude that while the low light survival/high light growth tradeoff may be ubiquitous in forest tree species, it is unlikely to function as an important mechanism for the stable coexistence of several tree species.  相似文献   

9.
The route to extinction in variable environments   总被引:3,自引:0,他引:3  
Estimating the extinction risk of natural populations is not only an urgent problem in conservation biology but also involves some profound aspects of population dynamics. Apart from the obvious case of a continuous decrease in a population's carrying capacity, understanding the extinction process necessarily includes environmental and demographic stochasticity. Here, we build from first principles two stochastic, single-population models that can account for various routes to extinction via demographic and environmental variability. The Ricker model of population dynamics generates extinctions from either low or high (around or above carrying capacity) population densities, primarily depending on the growth parameter r . Since extinctions from high densities seem 'unnatural', there is either something wrong with the model or with our intuition. Suitable data are scarce. Environmental variability has its strongest influence on extinction risk via per capita birth rates and is only marginally influencing that risk via per capita death rates if the growth parameter is high. The distribution of the environmental noise and the stochastic structure of the model have quantitative, but not qualitative effects on the estimates of extinction risks. We conclude that to determine the route to extinction and to estimate the extinction risk require a careful choice of both the deterministic component of the population model (e.g., under- or over-compensation) and the structure of the demographic and environmental variabilities.  相似文献   

10.
The exact nature of the relationship among species range sizes, speciation, and extinction events is not well understood. The factors that promote larger ranges, such as broad niche widths and high dispersal abilities, could increase the likelihood of encountering new habitats but also prevent local adaptation due to high gene flow. Similarly, low dispersal abilities or narrower niche widths could cause populations to be isolated, but such populations may lack advantageous mutations due to low population sizes. Here we present a large-scale, spatially explicit, individual-based model addressing the relationships between species ranges, speciation, and extinction. We followed the evolutionary dynamics of hundreds of thousands of diploid individuals for 200,000 generations. Individuals adapted to multiple resources and formed ecological species in a multidimensional trait space. These species varied in niche widths, and we observed the coexistence of generalists and specialists on a few resources. Our model shows that species ranges correlate with dispersal abilities but do not change with the strength of fitness trade-offs; however, high dispersal abilities and low resource utilization costs, which favored broad niche widths, have a strong negative effect on speciation rates. An unexpected result of our model is the strong effect of underlying resource distributions on speciation: in highly fragmented landscapes, speciation rates are reduced.  相似文献   

11.
Co-occurrence of cryptic species raises theoretically relevant questions regarding their coexistence and ecological similarity. Given their great morphological similitude and close phylogenetic relationship (i.e., niche retention), these species will have similar ecological requirements and are expected to have strong competitive interactions. This raises the problem of finding the mechanisms that may explain the coexistence of cryptic species and challenges the conventional view of coexistence based on niche differentiation. The cryptic species complex of the rotifer Brachionus plicatilis is an excellent model to study these questions and to test hypotheses regarding ecological differentiation. Rotifer species within this complex are filtering zooplankters commonly found inhabiting the same ponds across the Iberian Peninsula and exhibit an extremely similar morphology—some of them being even virtually identical. Here, we explore whether subtle differences in body size and morphology translate into ecological differentiation by comparing two extremely morphologically similar species belonging to this complex: B. plicatilis and B. manjavacas. We focus on three key ecological features related to body size: (1) functional response, expressed by clearance rates; (2) tolerance to starvation, measured by growth and reproduction; and (3) vulnerability to copepod predation, measured by the number of preyed upon neonates. No major differences between B. plicatilis and B. manjavacas were found in the response to these features. Our results demonstrate the existence of a substantial niche overlap, suggesting that the subtle size differences between these two cryptic species are not sufficient to explain their coexistence. This lack of evidence for ecological differentiation in the studied biotic niche features is in agreement with the phylogenetic limiting similarity hypothesis but requires a mechanistic explanation of the coexistence of these species not based on differentiation related to biotic niche axes.  相似文献   

12.
1.  Ecologists have identified two types of processes promoting species coexistence: stabilizing mechanisms (niche differentiation and related processes) that increase negative intraspecific interactions relative to negative interspecific interactions, and equalizing mechanisms (neutrality) that minimize the differences in species' demographic parameters. It has been theoretically and empirically shown that the two types of mechanisms can operate simultaneously; however, their relative importance remains unstudied although this is a key question in the synthesis of niche and neutral theories.
2.  We experimentally quantified the relative importance of niche and neutral mechanisms in promoting phenotypic diversity in a model microbial system involving different phenotypes of the bacterium Pseudomonas fluorescens . Initially isogenic populations of the bacterium can diversify into a series of major and minor classes of phenotypes that can be treated as analogues of species. We estimated the relative population growth rate when rare of 32 phenotypes from six replicate microcosms. Each phenotype was assessed in a re-assembled microcosm in which the relative densities of all phenotypes remained the same except for the focal one which was reduced in frequency. A growth rate advantage when rare was considered evidence of non-neutral processes.
3.  Approximately one-third of the phenotypes had a growth rate advantage when rare while the remaining two-thirds showed neutral or near-neutral dynamics. Furthermore, there was overall little evidence that productivity increased with phenotypic diversity.
4.  Our results suggest that niche and neutral processes may simultaneously contribute to the maintenance of biodiversity, with the latter playing a more important role in our system, and that the operation of niche mechanisms does not necessarily lead to a positive biodiversity effect on ecosystem properties.  相似文献   

13.
尽管为解释种类丰富的植物群落物种共存和多样性维持机制,生态学家位做了大量的努力并提出了许多假说和模型。但这一问题仍处在争议之中,需要更多的证据支持他们的观点或提出新的看法,使这一生物多样性难题不断地向前推进。以松赖平原物种丰富度较高的羊草-杂类草群落为对象,在土壤C、N、P、K和H2O等5个资源轴上,探讨了物种多样性与实现生态位的关系。结果表明:尽管物种生态位存在一定程度的分化,但多数物种的生态位是高度重叠的,物种生态位的分化在草地群落物种共存和多样性维持中,不是唯一的途径,认为应更加重视的物种在长期协同进化中所形成的生物学特性。  相似文献   

14.
The minimal model of the “relative nonlinearity” type fluctuation-maintained coexistence is investigated. The competing populations are affected by an environmental white noise. With quadratic density dependence, the long-term growth rates of the populations are determined by the average and the variance of the (fluctuating) total density. At most two species can coexist on these two “regulating” variables; competitive exclusion would ensue in a constant environment. A numerical study of the expected time until extinction of any of the two species reveals that the criterion of mutual invasibility predicts the parameter range of long-term coexistence correctly in the limit of zero extinction threshold. However, any extinction threshold consistent with a realistic population size will allow only short-term coexistence. Therefore, our simulations question the biological relevance of mutual invasibility, as a sufficient condition of coexistence, for large density fluctuations. We calculate the average and the variance of the fluctuating density of the coexisting populations analytically via the moment-closure approximation; the results are reasonably close to the simulated behavior. Based on this treatment, robustness of coexistence is studied in the limit of infinite population size. We interpret the results of this analysis in the context of necessity of niche segregation with respect to the regulating variables using a framework theory published earlier.  相似文献   

15.
Competition is among the most important factors regulating plant population and community dynamics, but we know little about how different vital rates respond to competition and jointly determine population growth and species coexistence. We conducted a field experiment and parameterised integral projection models to model the population growth of 14 herbaceous plant species in the absence and presence of neighbours across an elevation gradient (284 interspecific pairs). We found that suppressed individual growth and seedling establishment contributed the most to competition-induced declines in population growth, although vital rate contributions varied greatly between species and with elevation. In contrast, size-specific survival and flowering probability and seed production were frequently enhanced under competition. These compensatory vital rate responses were nearly ubiquitous (occurred in 92% of species pairs) and significantly reduced niche overlap and stabilised coexistence. Our study highlights the importance of demographic processes for regulating population and community dynamics, which has often been neglected by classic coexistence theories.  相似文献   

16.
Harsh conditions (e.g., mortality and stress) reduce population growth rates directly; secondarily, they may reduce the intensity of interactions between organisms. Near-exclusive focus on the secondary effect of these forms of harshness has led ecologists to believe that they reduce the importance of ecological interactions, such as competition, and favor coexistence of even ecologically very similar species. By examining both the costs and the benefits, we show that harshness alone does not lessen the importance of species interactions or limit their role in community structure. Species coexistence requires niche differences, and harshness does not in itself make coexistence more likely. Fluctuations in environmental conditions (e.g., disturbance, seasonal change, and weather variation) also have been regarded as decreasing species interactions and favoring coexistence, but we argue that coexistence can only be favored when fluctuations create spatial or temporal niche opportunities. We argue that important diversity-promoting roles for harsh and fluctuating conditions depend on deviations from the assumptions of additive effects and linear dependencies most commonly found in ecological models. Such considerations imply strong roles for species interactions in the diversity of a community.  相似文献   

17.
Investigating the effect of biodiversity on the stability of ecological communities is complicated by the numerous ways in which models of community interactions can be formulated. This has led to differences in conclusions and interpretations of how the number of species in a community affects its stability. Here, we derive a simple, general relationship between the coefficient of variation (CV) of combined species densities and the environmentally driven variability in species' per capita population growth rates. For a given level of environmentally driven variability in per capita population growth rates, increasing the number of species in a community decreases the CV of combined species densities, provided that species do not respond to environmental fluctuations in a perfectly correlated way. Thus, a community with more species of competitors will be more stable (have lower CV in combined species densities for a given level of environmental variability) than a species-poor community, provided that the species in both communities show equal variability in per capita population growth rates and provided that species within each community do not show strongly correlated responses to environmental fluctuations. This conclusion also applies to "noninteractive" models in which there is no competition between species.  相似文献   

18.
  1. Mutual reinforcement between abiotic and biotic factors can drive small populations into a catastrophic downward spiral to extinction—a process known as the “extinction vortex.” However, empirical studies investigating extinction dynamics in relation to species'' traits have been lacking.
  2. We assembled a database of 35 vertebrate populations monitored to extirpation over a period of at least ten years, represented by 32 different species, including 25 birds, five mammals, and two reptiles. We supplemented these population time series with species‐specific mean adult body size to investigate whether this key intrinsic trait affects the dynamics of populations declining toward extinction.
  3. We performed three analyses to quantify the effects of adult body size on three characteristics of population dynamics: time to extinction, population growth rate, and residual variability in population growth rate.
  4. Our results provide support for the existence of extinction vortex dynamics in extirpated populations. We show that populations typically decline nonlinearly to extinction, while both the rate of population decline and variability in population growth rate increase as extinction is approached. Our results also suggest that smaller‐bodied species are particularly prone to the extinction vortex, with larger increases in rates of population decline and population growth rate variability when compared to larger‐bodied species.
  5. Our results reaffirm and extend our understanding of extinction dynamics in real‐life extirpated populations. In particular, we suggest that smaller‐bodied species may be at greater risk of rapid collapse to extinction than larger‐bodied species, and thus, management of smaller‐bodied species should focus on maintaining higher population abundances as a priority.
  相似文献   

19.
It is widely accepted that niche differentiation plays a key role in coexistence on relatively small scales. With regard to a large community scale, the recently propounded neutral theory suggests that species abundances are more influenced by history and chance than they are by interspecies competition. This inference is mainly based on the probability that competitive exclusion is largely slowed by recruitment limitation, which may be common in species rich communities. In this respect, a theoretical study conducted by Hurtt and Pacala (1995) for a niche differentiated community has been frequently cited to support neutral coexistence. In this paper, we focused on the effect of symmetric recruitment limitation on delaying species competitive exclusion caused by both symmetric and asymmetric competition in a large homogeneous habitat. By removing niche differentiation in space, we found that recruitment limitation could delay competitive exclusion to some extent, but the effect was rather limited compared to that predicted by Hurtt and Pacala's model for a niche differentiated community. Our results imply that niche differentiation may be important for species coexistence even on large scales and this has already been confirmed in some species rich communities.  相似文献   

20.
In this article, we study population dynamics of a general two-species discrete-time competition model where each species suffers from both strong Allee effects and scramble intra-specific competitions. We focus on how the combinations of the scramble intra-specific and inter-specific competition affect the extinction and coexistence of these two competing species where each species is subject to strong Allee effects. We derive sufficient conditions on the extinction, essential-like extinction and coexistence for such models. One of the most interesting findings is that scramble competitions can promote coexistence of these two species at their high densities. This is supported by the outcome of single species models with strong Allee effects. In addition, we apply theoretical results to a symmetric competition model with strong Allee effects induced by predator saturations where we give a completed study of its possible equilibria and attractors. Numerical simulations are performed to support our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号