首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The present study examined whether a high caffeine dose improved running and cycling performance and altered substrate metabolism in well-trained runners. Seven trained competitive runners [maximal O2 uptake (VO2max) 72.6 +/- 1.5 ml.kg-1.min-1] completed four randomized and double-blind exercise trials at approximately 85% VO2max; two trials running to exhaustion and two trials cycling to exhaustion. Subjects ingested either placebo (PL, 9 mg/kg dextrose) or caffeine (CAF, 9 mg/kg) 1 h before exercise. Endurance times were increased (P less than 0.05) after CAF ingestion during running (PL 49.2 +/- 7.2 min, CAF 71.0 +/- 11.0 min) and cycling (PL 39.2 +/- 6.5 min, CAF 59.3 +/- 9.9 min). Plasma epinephrine concentration [EPI] was increased (P less than 0.05) with CAF before running (0.22 +/- 0.02 vs. 0.44 +/- 0.08 nM) and cycling (0.31 +/- 0.06 vs. 0.45 +/- 0.06 nM). CAF ingestion also increased [EPI] (P less than 0.05) during exercise; PL and CAF values at 15 min were 1.23 +/- 0.13 and 2.51 +/- 0.33 nM for running and 1.24 +/- 0.24 and 2.53 +/- 0.32 nM for cycling. Similar results were obtained at exhaustion. Plasma norepinephrine was unaffected by CAF at rest and during exercise. CAF ingestion also had no effect on respiratory exchange ratio or plasma free fatty acid data at rest or during exercise. Plasma glycerol was elevated (P less than 0.05) by CAF before exercise and at 15 min and exhaustion during running but only at exhaustion during cycling. Urinary [CAF] increased to 8.7 +/- 1.2 and 10.0 +/- 0.8 micrograms/ml after the running and cycling trials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We assessed in ponies the adequacy of using rectal (Tre) rather than arterial temperature (Tar) under conditions common to ventilatory control experiments, i.e., CO2 breathing, thermal stress, and particularly exercise. We were interested in whether, and to what extent, Tar-Tre differences could lead to errors in arterial blood gas corrections. At control environmental temperatures (Ta) of 5 degrees C in the winter and 21 degrees C in the summer, Tar and Tre (37.1 degrees C) did not differ (P greater than 0.05). Elevating winter or summer Ta by 10-18 degrees C for 2-days or lowering summer Ta by 9 degrees C (2-days) did not change Tar or Tre (P greater than 0.05). Furthermore, elevating inspired PCO2 to 42 Torr for 15 min did not alter Tar or Tre from control (P greater than 0.05). During treadmill exercise, at 1.8 mph 5% grade, Tar and Tre did not change significantly (P greater than 0.05) from rest by 11 min of work. At 3 mph 5% grade, Tar increased progressively by 0.3 degrees C (P less than 0.05) while Tre tended to increase 0.1 degree C by 11 min. During moderate exercise at 6 mph 5% grade, Tar increased 0.9 degree C (P less than 0.05) while Tre increased 0.25 degree C (P less than 0.05). Finally, by 6 min of heavy exercise at 8 mph 20% grade, Tar increased 2 degrees C (P less than 0.05) while Tre increased 0.5 degree C (P less than 0.05). The Tar-Tre differences during the latter three work loads were statistically significant (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The influence of exercise intensity on thermoregulation was studied in 8 men and 8 women volunteers during three levels of arm-leg exercise (level I: 700 ml oxygen (O2).min-1; level II: 1250 ml O2.min-1; level III: 1700 ml O2.min-1) for 1 h in water at 20 and 28 degrees C (Tw). For the men in Tw 28 degrees C the rectal temperature (Tre) fell 0.79 degree C (P less than 0.05) during immersion in both rest and level-I exercise. With level-II exercise a drop in Tre of 0.54 degree C (P less than 0.05) was noted, while at level-III exercise Tre did not change from the pre-immersion value. At Tw of 20 degrees C, Tre fell throughout immersion with no significant difference in final Tre observed between rest and any exercise level. For the women at rest at Tw 28 degrees C, Tre fell 0.80 degree C (P less than 0.05) below the pre-immersion value. With the two more intense levels of exercise Tre did not decrease during immersion. In Tw 20 degrees C, the women maintained higher Tre (P less than 0.05) during level-II and level-III exercise compared to rest and exercise at level I. The Tre responses were related to changes in tissue insulation (I(t)) between rest and exercise with the largest reductions in I(t) noted between rest and level-I exercise across Tw and gender. For mean and women of similar percentage body fat, decreases in Tre were greater for the women at rest and level-I exercise in Tw 20 degrees C (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on endurance capacity and metabolic responses during arm exercise were determined in 10 untrained males (20-26 yr). Subjects performed arm ergometer exercise (60% peak O2 consumption) to exhaustion after consumption of standard diets (55% carbohydrate, 15% protein, 30% fat; 35 kcal/kg) containing either 100 g of Polycose (placebo, P) or DHAP (3:1, treatment) substituted for a portion of carbohydrate. The two diets were administered in a random order, and each was consumed for a 7-day period. Biopsy of the triceps muscle was obtained immediately before and after exercise. Blood samples were drawn through radial artery and axillary vein catheters at rest, after 60 min of exercise, and at exercise termination. Arm endurance was 133 +/- 20 min after P and 160 +/- 22 min after DHAP (P less than 0.01). Triceps glycogen at rest was 88 +/- 8 (P) and 130 +/- 19 mmol/kg (DHAP) (P less than 0.05). Whole arm arteriovenous glucose difference (mmol/l) was greater (P less than 0.05) for DHAP than P at rest (0.60 +/- 0.12 vs. 0.05 +/- 0.09) and after 60 min of exercise (1.00 +/- 0.12 vs. 0.36 +/- 0.11), but it did not differ at exhaustion. Neither respiratory exchange ratio nor respiratory quotient differed between trials at rest, after 60 min of exercise, or at exhaustion. Plasma free fatty acid, glycerol, beta-hydroxybutyrate, catecholamines, and insulin were similar during rest and exercise for both diets. Feeding DHAP for 7 days increased arm muscle glucose extraction before and during exercise, thereby enhancing submaximal arm endurance capacity.  相似文献   

5.
This study examined the effect of acute exposure of the whole body to cold on blood lactate response during incremental exercise. Eight subjects were tested with a cycle ergometer in a climatic chamber, room temperature being controlled either at 24 degrees C (MT) or at -2 degrees C (CT). The protocol consisted of a step increment in exercise intensity of 30 W every 2 min until exhaustion. Oxygen consumption (VO2) was measured at rest and during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for estimations of plasma norepinephrine (NE), epinephrine (E), free fatty acid (FFA) and glucose concentrations, during the last 15 s of each exercise step and also during the 1st, 4th, 7th, and the 10th min following exercise for the determination of blood lactate (LA) concentration. The VO2 was higher during CT than during MT at rest and during nearly every exercise intensity. At CT, lactate anaerobic threshold (LAT), determined from a marked increase of LA above resting level, increased significantly by 49% expressed as absolute VO2, and 27% expressed as exercise intensity as compared with MT. The LA tended to be higher for light exercise intensities and lower for heavy exercise intensities during CT than during MT. The E and NE concentrations increased during exercise, regardless of ambient temperature. Furthermore, at rest and at exhaustion E concentrations did not differ between both conditions, while NE concentrations were greater during CT than during MT. Moreover, an increase off FFA was found only during CT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on metabolic responses and endurance capacity during leg exercise were determined in eight untrained males (20-30 yr). During the 7 days before exercise, a high-carbohydrate diet was consumed (70% carbohydrate, 18% protein, 12% fat; 35 kcal/kg body weight). One hundred grams of either Polycose (placebo) or dihydroxyacetone and pyruvate (treatment, 3:1) were substituted for a portion of carbohydrate. Dietary conditions were randomized, and subjects consumed each diet separated by 7-14 days. After each diet, cycle ergometer exercise (70% of peak oxygen consumption) was performed to exhaustion. Biopsy of the vastus lateralis muscle was obtained before and after exercise. Blood samples were drawn through radial artery and femoral vein catheters at rest, after 30 min of exercise, and at exercise termination. Leg endurance was 66 +/- 4 and 79 +/- 2 min after placebo and DHAP, respectively (P less than 0.01). Muscle glycogen at rest and exhaustion did not differ between diets. Whole leg arteriovenous glucose difference was greater (P less than 0.05) for DHAP than for placebo at rest (0.36 +/- 0.05 vs. 0.19 +/- 0.07 mM) and after 30 min of exercise (1.06 +/- 0.14 vs. 0.65 +/- 0.10 mM) but did not differ at exhaustion. Plasma free fatty acids, glycerol, and beta-hydroxybutyrate were similar during rest and exercise for both diets. Estimated total glucose oxidation during exercise was 165 +/- 17 and 203 +/- 15 g after placebo and DHAP, respectively (P less than 0.05). It is concluded that feeding of DHAP for 7 days in conjunction with a high carbohydrate diet enhances leg exercise endurance capacity by increasing glucose extraction by muscle.  相似文献   

7.
Seven men were studied during maximal cycle ergometer exercise, to assess the effects of a single or continuous caffeine ingestion on performance and catecholamine secretion. A single blind and randomised procedure was followed with three trials at 100 +/- 5% VO2 max until exhaustion. The first trial was performed after a single administration of 250 mg of caffeine (a). The second and third trials were performed after a treatment of 5 days with 250 mg caffeine per day (continuous = c) and after placebo (p). a and c caffeine administration, 60 min prior to exercise, did not significantly change the time to exhaustion, but increased the plasma levels of both epinephrine (E) and norepinephrine (NE) at exhaustion (p less than 0.05). Single ingestion of caffeine accelerated the elimination of E and NE and increased the maximal blood lactic acid. These data suggest that both single and continuous administration of caffeine do not enhance performance during maximal cycle ergometer exercise, but do increase the exercise response of catecholamine. Only a single administration modifies the blood lactate accumulation.  相似文献   

8.
Preliminary data from our laboratory have shown that the decrease in plasma free carnitine levels normally found during prolonged exercise is blunted in type 1 diabetic man. This study was designed to test the hypothesis that this might be due to the sustained peripheral hyperinsulinemia seen during exercise in diabetics treated by subcutaneous insulin. Ten male subjects underwent 90 min of cycle ergometry at 60% of their maximal oxygen uptake capacity on two occasions, one with and the other without a constant 0.13 mU.kg-1.min-1 i.v. insulin infusion. Blood samples were taken at rest, during exercise, and after exercise for measurement of plasma glucose, insulin, C-peptide, free fatty acids, and carnitine. Plasma glucose dropped significantly (p less than 0.01) from basal during both infusions, but values at 30, 45, and 60 min of exercise were lower (p less than 0.05) during insulin infusion compared with the saline infusion. Exercise produced a significant (p less than 0.01) fall in plasma insulin in both infusions. However, from 30 to 90 min of exercise, the plateau insulin level was higher during the insulin infusion compared with the saline infusion (91.4 +/- 3.0 vs. 32.9 +/- 3.0 pmol/L; p less than 0.001). Plasma C-peptide decreased significantly (p less than 0.01) during exercise and recovery in both infusions, but values between infusions were not significantly different. Plasma free fatty acids increased significantly (p less than 0.01) at 90 min of exercise during the saline infusion, while during the insulin infusion this was noted during recovery only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The relative influences of the supine posture and of immersion on the renin-aldosterone system (RAS) were studied at rest and during moderate exercise in five healthy men. When supine, resting or immersion to the neck for 20 min in a thermoneutral environment both induced a decrease in plasma renin activity (PRA) when compared with the levels measured after 15 min sitting at rest (resting: -44%, p less than 0.05. Immersion: -45%, p less than 0.05). There was no significant difference in PRA decrease between the two situations. Aldosterone (ALDO) values were lower after supine rest or immersion than those observed after sitting at rest, but the difference was not significant. Two types of exercise at a constant relative work load (40-50% maximal oxygen uptake), namely cycling on an ergocycle in the supine position and free-style swimming, induced increases in PRA and ALDO when compared with the levels measured after 15 min rest when sitting (respectively, PRA = +35%, p less than 0.05, and +45%, p less than 0.05, ALDO = +32%, p less than 0.01 and +35%, p less than 0.05). Increases in PRA and ALDO did not differ between the two exercises. Thus inhibitory effects on RAS of change in external pressure are negligible during water immersion to the neck in the supine position and during swimming at moderate intensity.  相似文献   

10.
BACKGROUND: Although hormonal responses to exercise performed in fed state are well documented, far less in known about the effect of a single exercise bout, performed after overnight fasting, on cardio-respiratory responses and hormones secretion. It has been reported that recently discovered hormones as leptin and ghrelin may affect cardiovascular responses at rest. However, their effect on the cardiovascular responses to exercise is unknown. AIMS: This study was designed to determine the effect of overnight fasting on cardio- respiratory responses during moderate incremental exercise. We have hypothesised that fasting / exercise induced changes in plasma leptin / ghrelin concentrations may influence cardiovascular response. MATERIAL AND METHODS: Eight healthy non-smoking men (means +/- SE.: age 23.0 +/- 0.5 years; body mass 71.9 +/- 1.5 kg; height 179.1 +/- 0.8 cm; BMI 22.42 +/- 0.49 kg x m(-2) with VO2max of 3.71 +/- 0.10 l x min(-1)) volunteered for this study. The subjects performed twice an incremental exercise test, with the increase of power output by 30 W every 3 minutes. Tests were performed in a random order: once in the feed state--cycling until exhaustion and second, about one week later, after overnight fasting--cycling until reaching 150 W. RESULTS: In the present study we have compared the results obtained during incremental exercise performed only up to 150 W (59 +/- 2 % of VO2max) both in fed and fasted state. Heart rate measured during exercise at each power output, performed in fasted state was by about 10 bt x min(-1) (p = 0.02) lower then in fed subjects. Respiratory quotient and plasma lactate concentration in fasted state were also significantly (p<0.001) lower than in the fed state. Pre-exercise plasma leptin and ghrelin concentrations were not significantly different in fed and fasted state. Exercise induced increase in hGH was not accompanied by a significant changes in the studied gut hormones such as ghrelin, leptin, and insulin, except for plasma gastrin concentration, which was significantly (p = 0.008) lower in fasting subjects at the power output of 150 W. Plasma [IL-6] at rest before exercise performed in fasted state was significantly (p = 0.03) elevated in relation to the fed state. This was accompanied by significantly higher (p = 0.047) plasma noradrenaline concentration. Plasma IL-6 concentration at rest in fed subjects was negatively correlated with plasma ghrelin concentration (r = -0.73, p < 0.05) and positively correlated with plasma insulin concentration (r = 0.78, p < 0.05). Significant negative correlation (r = -0.90; p < 0.05) was found between plasma insulin and ghrelin concentration at rest in fed subjects. CONCLUSIONS: We have concluded that plasma leptin and ghrelin concentrations have no significant effect on the fasting-induced attenuation of heart rate during exercise. We have postulated that this effect is caused by increased plasma norepinephrine concentration, leading to the increase in systemic vascular resistance and baroreceptor mediated vagal stimulation. Moreover we believe, that the fasting-induced significant increase in plasma IL-6 concentration at rest, accompanied by higher plasma norepinephrine concentration and lower RQ, belongs to the physiological responses, maintaining energy homeostasis in the fasting state.  相似文献   

11.
The purpose of this study was to test the reproducibility of plasma norepinephrine (NE) and epinephrine (E) concentrations, at rest and during exercise, in man. Twelve young men were evaluated on two occasions (one week apart) at rest in supine and sitting positions and during dynamic exercise on bicycle ergometer: 5 min at a low intensity workload (heart rate = 131-133 bt min-1) and 5 and 20 min at a higher intensity (174-175 bt min-1). Mean plasma NE and E concentrations were not significantly different (p less than 0.05) on the two occasions in any of the experimental situations. However large within-subject variations were present, and the "standard errors of a single measurement" corrected for the variability of the catecholamine assay, ranged from 14 to 50% for NE and 14 to 37% for E. These results indicate that the mean plasma NE and E concentrations observed in a group of subjects are reproducible from one week to the other, but that individual plasma NE and E concentrations are not. This lack of reliability of a single determination of plasma catecholamine concentrations might be due to cyclic variations of plasma NE and E concentrations over time.  相似文献   

12.
Six men were studied during exercise to exhaustion on a cycle ergometer at 73% of VO2max following ingestion of glycerol, glucose or placebo. Five of the subjects exercised for longer on the glucose trial compared to the placebo trial (p less than 0.1; 108.8 vs 95.9 min). Exercise time to exhaustion on the glucose trial was longer (p less than 0.01) than on the glycerol trial (86.0 min). No difference in performance was found between the glycerol and placebo trials. The ingestion of glucose (lg X kg-1 body weight) 45 min before exercise produced a 50% rise in blood glucose and a 3-fold rise in plasma insulin at zero min of exercise. Total carbohydrate oxidation was increased by 26% compared to placebo and none of the subjects exhibited a fall in blood glucose below 4 mmol X 1-1 during the exercise. The ingestion of glycerol (lg X kg-1 body weight) 45 min before exercise produced a 340-fold increase in blood glycerol concentration at zero min of exercise, but did not affect resting blood glucose or plasma insulin levels; blood glucose levels were up to 14% higher (p less than 0.05) in the later stages of exercise and at exhaustion compared to the placebo or glucose trials. Both glycerol and glucose feedings lowered the magnitude of the rise in plasma FFA during exercise compared to placebo. Levels of blood lactate and alanine during exercise were not different on the 3 dietary treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Ten male volunteers were divided into two groups based on body morphology and mass. The large-body mass (LM) group (n = 5) was 16.3 kg heavier and 0.22 cm2 X kg-1 X 10(-2) smaller in surface area-to-mass ratio (AD X wt-1) (P less than 0.05) than the small-body mass (SM) group (n = 5). Both groups were similar in total body fat and skinfold thicknesses (P greater than 0.05). All individuals were immersed for 1 h in stirred water at 26 degrees C during both rest and one intensity of exercise (metabolic rate approximately 550 W). During resting exposures metabolic rate (M) and rectal temperature (Tre) were not different (P greater than 0.05) between the LM and SM groups at min 60. Esophageal temperature (Tes) was higher (P less than 0.05) for the SM group at min 60, although the change in Tes during the 60 min between groups was similar (LM, -0.4 degrees C; SM, -0.2 degrees C). Tissue insulation (I) was lower (P less than 0.05) for SM (0.061 degrees C X m-2 X W-1) compared with the LM group (0.098 degrees C X m-2 X W-1). During exercise M, Tre, Tes, and I were not different (P greater than 0.05) between groups at min 60. These data illustrate that a greater body mass between individuals increases the overall tissue insulation during rest, most likely as a result of a greater volume of muscle tissue to provide insulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Catecholamine release is known to be regulated by feedforward and feedback mechanisms. Norepinephrine (NE) and epinephrine (Epi) concentrations rise in response to stresses, such as exercise, that challenge blood glucose homeostasis. The purpose of this study was to assess the hypothesis that the lactate anion is involved in feedback control of catecholamine concentration. Six healthy active men (26 +/- 2 yr, 82 +/- 2 kg, 50.7 +/- 2.1 ml.kg(-1).min(-1)) were studied on five occasions after an overnight fast. Plasma concentrations of NE and Epi were determined during 90 min of rest and 90 min of exercise at 55% of peak O2 consumption (VO2 peak) two times with exogenous lactate infusion (lactate clamp, LC) and two times without LC (CON). The blood lactate profile ( approximately 4 mM) of a preliminary trial at 65% VO2 peak (65%) was matched during the subsequent LC trials. In resting men, plasma NE concentration was not different between trials, but during exercise all conditions were different with 65% > CON > LC (65%: 2,115 +/- 166 pg/ml, CON: 1,573 +/- 153 pg/ml, LC: 930 +/- 174 pg/ml, P < 0.05). Plasma Epi concentrations at rest were different between conditions, with LC less than 65% and CON (65%: 68 +/- 9 pg/ml, CON: 59 +/- 7 pg/ml, LC: 38 +/- 10 pg/ml, P < 0.05). During exercise, Epi concentration showed the same trend (65%: 262 +/- 37 pg/ml, CON: 190 +/- 34 pg/ml, LC: 113.2 +/- 23 pg/ml, P < 0.05). In conclusion, lactate attenuates the catecholamine response during moderate-intensity exercise, likely by feedback inhibition.  相似文献   

15.
The effect of progressive rehydration with either water or a carbohydrate solution on the plasma growth hormone (GH) and prolactin (PRL) response to exercise was examined together with plasma somatostatin. Five subjects underwent four 3-h experimental sessions at 36 degrees C in which 25-min exercise periods alternated with 5-min rest periods. The sessions were conducted without fluid replacement (DH) or under rehydration with either water or isosmotic carbohydrate solutions AISO (acid) or NISO (neutral). The fluid was given every 10 min after the 1st h of exercise. Plasma GH increased significantly (p less than 0.01) under DH after 2 and 3 h of exercise; this increase was prevented by rehydration with water, AISO and NISO. Plasma glucose was significantly higher following AISO and NISO rehydration compared with DH. This possibly influenced the GH response, but there was no difference between plasma glucose levels under DH and water rehydration at any time. The solutions tended to attenuate the increase in heart rate, rectal temperature and plasma cortisol, suggesting that the lack of GH response under rehydration conditions is a result of decreasing physiological stress levels. The GH response could not be explained by plasma somatostatin, which tended to decline in all sessions. Plasma PRL did not increase in any of the sessions, confirming that exercise without rehydration is a more potent stimulator of GH than of PRL. It is concluded that progressive rehydration with water is sufficient to prevent the exercise-induced increase in plasma GH.  相似文献   

16.
Plasma free catecholamines rise during exercise, but sulfoconjugated catecholamines reportedly fall. This study examined the relationship between exercise intensity and circulating levels of sulfoconjugated norepinephrine, epinephrine, and dopamine. Seven exercise-trained men biked at approximately 30, 60, and 90% of their individual maximal oxygen consumption (VO2max) for 8 min. The 90% VO2max period resulted in significantly increased plasma free norepinephrine (rest, 219 +/- 85; exercise, 2,738 +/- 1,149 pg/ml; P less than or equal to 0.01) and epinephrine (rest, 49 +/- 49; exercise, 555 +/- 516 pg/ml; P less than or equal to 0.05). These changes were accompanied by consistent increases in sulfoconjugated norepinephrine at both the 60% (rest, 852 +/- 292; exercise, 1,431 +/- 639; P less than or equal to 0.05) and 90% (rest, 859 +/- 311; exercise, 2,223 +/- 1,015; P less than or equal to 0.05) VO2max periods. Plasma sulfoconjugated epinephrine and dopamine displayed erratic changes at the three exercise intensities. These findings suggest that sulfoconjugated norepinephrine rises during high-intensity exercise.  相似文献   

17.
This study examined both the thermal and metabolic responses of individuals in cool (30 degrees C, n = 9) and cold (18 degrees C, n = 7; 20 degrees C, n = 2) water. Male volunteers were immersed up to the neck for 1 h during both seated rest (R) and leg exercise (LE). In 30 degrees C water, metabolic rate (M) remained unchanged over time during both R (115 W, 60 min) and LE (528 W, 60 min). Mean skin temperature (Tsk) declined (P less than 0.05) over 1 h during R, while Tsk was unchanged during LE. Rectal (Tre) and esophageal (Tes) temperatures decreased (P less than 0.05) during R (delta Tre, -0.5 degrees C; delta Tes, -0.3 degrees C) and increased (P less than 0.05) during LE (delta Tre, 0.4 degrees C; Tsk, 0.4 degrees C). M, Tsk, Tre, and Tes were higher (P less than 0.05) during LE compared with R. In cool water, all regional heat flows (leg, chest, and arm) were generally greater (P less than 0.05) during LE than R. In cold water, M increased (P less than 0.05) over 1 h during R but remained unchanged during LE. Tre decreased (P less than 0.05) during R (delta Tre, -0.8 degrees C) but was unchanged during LE. Tes declined (P less than 0.05) during R (delta Tes, -0.4 degrees C) but increased (P less than 0.05) during LE (delta Tes, 0.2 degrees C). M, Tre, and Tes were higher (P less than 0.05), whereas Tsk was not different during LE compared with R at 60 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Four women were studied at 0400 h and 1600 h to determine if their hormonal and hemodynamic responses to exercise varied with the circadian cycle. Esophageal temperature was measured during rest and exercise (60% peak VO2; 30 min) in a warm room (Ta = 35 degrees C; PH2O = 1.7 kPa). Venous blood samples were drawn during rest and exercise and hemoglobin concentration (Hb), hematocrit (Hct), plasma osmolality (Posm), plasma protein concentration (Pp), colloid osmotic pressure (COP), plasma renin activity (PRA), cortisol, aldosterone, norepinephrine (NE) and epinephrine (E) were determined. Changes in plasma volume (PV) were estimated from changes in Hb and Hct. The relative hemoconcentration (-11.2%) was similar at 0400 h and 1600 h, but the absolute PV was smaller at 1600 h than at 0400 h (p = 0.03). The responses of Posm, Pp and COP to exercise were unaffected by time of day. Although PRA was not different at the two times of day, PRA was 244% greater during exercise at 1600 h, but only 103% greater during exercise at 0400 h. The normal circadian rhythms in plasma aldosterone (p = 0.043) and plasma cortisol (p = 0.004) were observed. Plasma aldosterone was 57% greater during exercise, while plasma cortisol did not change. The change in E and NE was greater at 0400 h, but this was due to the lower resting values of the catecholamines at 0400 h. These data indicate that time of day generally did not affect the hormonal or hemodynamic responses to exercise, with the exception that PRA was markedly higher during exercise at 1600 h compared to 0400 h.  相似文献   

19.
Eight healthy men exercised to exhaustion on a cycle ergometer at a work load of 176 +/- 9 (SE) W corresponding to 67% (range 63-69%) of their maximal O2 uptake (exercise I). Exercise of the same work load was repeated after 75 min of recovery (exercise II). Exercise duration (range) was 65 (50-90) and 21 (14-30) min for exercise I and II, respectively. Femoral venous blood samples were obtained before and during exercise and analyzed for NH3 and lactate. Plasma NH3 was 12 +/- 2 and 19 +/- 6 mumol/l before exercise I and II, respectively and increased during exercise to exhaustion to peak values of 195 +/- 29 (exercise I) and 250 +/- 30 (exercise II) mumol/l, respectively. Plasma NH3 increased faster during exercise II compared with exercise I and at the end of exercise II was threefold higher than the value for the corresponding time of exercise I (P less than 0.001). Blood lactate increased during exercise I and after 20 min of exercise was 3.7 +/- 0.4 mmol/l and remained unchanged until exhaustion. During exercise II blood lactate increased less than during exercise I. It is concluded that long-term exercise to exhaustion results in large increases in plasma NH3 despite relatively low levels of blood lactate. It is suggested that the faster increase in plasma NH3 during exercise II (vs. exercise I) reflects an increased formation in the working muscle that may be caused by low glycogen levels and impairment of the ATP resynthesis.  相似文献   

20.
To determine whether the concomitant effects of pregnancy and exercise yield substrate and endocrine patterns different from those expected during exercise alone, we compared the responses of glucose, lactate, free fatty acids, insulin, epinephrine (EP), norepinephrine (NE), human chorionic gonadotropin (HCG), human placental lactogen (HPL), estriol, and progesterone (P) in nonpregnant women (NP; n = 7) and pregnant women in the second (TR2; n = 6) and third trimester (TR3; n = 8) of pregnancy, before, during, and after 30 min of bicycle ergometer exercise at heart rates of 130-140 beats/min. In general, all substrates and hormone concentrations increased with exercise (P less than 0.05), except insulin, which decreased (P less than 0.05), and HCG, which did not change (P = 0.08). Differences in selected hormone concentrations (P, estriol, HCG, and HPL) among groups were already present at rest because of the different stages of pregnancy. Differences among groups at rest were also found in insulin and NE (P less than 0.05). Significantly different responses to exercise (i.e., group x time interactions) were as follows. NP vs. TR2:P, estriol, HCG, HPL, EP, and NE (P less than 0.05); NP vs. TR3: glucose, EP, and NE (P less than 0.05); TR2 vs. TR3: lactate, EP, and NE (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号