首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insertion of a stent-graft into an aneurysm, especially abdominal aortic aneurysms (AAAs), is a very attractive surgical intervention; however, it is not without major postoperative complications, such as endoleaks. An endoleak is the transient accumulation of blood in the AAA cavity, which is formed by the stent-graft and AAA walls. Of the four blood pathways, a type I endoleak constitutes the major one. Thus, focusing on both proximal and distal type I endoleaks, i.e., the minute net influx of blood past the attachment points of a stent-graft into the AAA cavity, the transient three-dimensional interactions between luminal blood flow stent-graft wall, leakage flow, and AAA wall are computationally simulated. For different type I endoleak scenarios and inlet pressure wave forms, the impact of type I endoleaks on cavity pressure, wall stress, and stent-graft migration force is analyzed. The results indicate that both proximal type I-a and distal type I-b endoleaks may cause cavity pressures close to a patient's systemic pressure; however, with reduced pulsatility. As a result, the AAA-wall stress is elevated up to the level of a nonstented AAA and, hence, such endoleaks render the implant useless in protecting the AAA from possible rupture. Interestingly enough, the net downward force acting on the implant is significantly reduced; thus, in the presence of endoleaks, the risk of stent-graft migration may be mitigated.  相似文献   

2.
During the last years endovascular aneurysm repair (EVAR) became the elective treatment for abdominal aortic aneurysms (AAAs) thanks to lower mortality and morbidity rates than open surgery. In face of these advantages, stent-graft performances are still clinically suboptimal. In particular, post-surgical complications derive from device migration as a consequence of the hemodynamic forces acting on the endograft. In this regard, while the importance of hemodynamic surface forces is well recognized, the role of the in-stent flow is still unclear. Here we hypothesize that in-stent helical blood flow patterns might influence the distribution of the displacement forces (DFs) acting on the stent-graft and, ultimately, the risk of stent migration. To test this hypothesis, the hemodynamics of 20 post-EVAR models of patients treated with two different commercial endografts was analyzed using computational hemodynamics.The main findings of the study indicate that: (1) helical flow intensity decreases the risk of endograft migration, as given by an inverse correlation between helicity intensity (h2) and time-averaged displacement forces (TADFs) (p < 0.05); (2) unbalanced counter-rotating helical structures in the legs of the device contribute, in particular along the systole, to significantly suppress TADFs (p < 0.01); (3) as expected, helical flow intensity is positively correlated with pressure drop and resistance to flow (p < 0.001). The findings of this study suggest that a design strategy promoting in-stent helical flow structures could contribute to minimize the risk of migration of implanted EVAR devices.  相似文献   

3.
Insertion of a stent-graft into an aneurysm to form a new (synthetic) blood vessel and prevent the weakened artery wall from rupture is an attractive surgical intervention when compared to traditional open surgery. However, focusing on a stented abdominal aortic aneurysm (AAA), post-operative complications such as endoleaks may occur. An endoleak is the net influx of blood during the cardiac cycle into the cavity (or sac) formed by the stent-graft and the AAA wall. A natural endoleak source may stem from one or two secondary branches leading to and from the aneurysm, labeled types IIa and IIb endoleaks. Employing experimentally validated fluid-structure interaction solvers, the transient 3-D lumen and cavity blood flows, wall movements, pressure variations, maximum wall stresses and migration forces were computed for types IIa and IIb endoleaks. Simulation results indicate that the sac pressure caused by these endoleaks depends largely on the inlet branch pressure, where the branch inlet pressure increases, the sac pressure may reach the systemic level and AAA-rupture is possible. The maximum wall stress is typically located near the anterior-distal side in this model, while the maximum stent-graft stress occurs near the bifurcating point, in both cases, due to local stress concentrations. The time-varying leakage rate depends on the pressure difference between AAA sac and inlet branch. In contrast, the stent-graft migration force is reduced by type II endoleaks because it greatly depends on the pressure difference between the stent-graft and the aneurysm cavity.  相似文献   

4.
An abdominal aortic aneurysm (AAA) is an irreversible dilation of the abdominal artery. Once an aneurysm is detected by doctors, clinical intervention is usually recommended. The interventions involve traditional open surgery repair and endovascular aneurysm repair with a stent graft. Both types of prophylactic procedures are expensive and not without any risk to the patient. It is very difficult to balance the risk of aneurysm repair and the chance of rupture. The reason lies in that the changing trend of characteristic physical quantities with the evolution of AAA and the mechanisms that give rise to it are still not completely clear. In this study, computational 3D patient-specific model for investigating AAA development was established based on computed tomography (CT) images. Results showed that as the aneurysm evolved, peak wall stress and time-averaged wall shear stress distribution patterns changed. The expansion of AAA wall resulted in the increment of peak stress. The AAA wall compliance not only showed different magnitudes at different cross-sections of the aneurismal body, but also changed with the development of the aneurysm. Furthermore, minimum wall strength and rupture potential index during the three stages of AAA evolution were also investigated in detail. This study might provide valuable information on how to further explore the mechanical basis and the rupture potential during AAA evolution, and that it may assist clinical diagnostic procedures and avoid the potential risk of unnecessary surgical intervention.  相似文献   

5.

Introduction

We analyzed the short-term efficacy of endovascular treatment for aortic diseases by summarizing all available published data on endovascular stent-graft treatment for abdominal aortic aneurysm (AAA), thoracic aortic aneurysm (TAA), type A aortic dissection (type A AD) and type B aortic dissection (type B AD) in China.

Methods

We performed a systematic analysis of 935 published series on retrograde endovascular treatment for aortic diseases in China from January 1996 to November 2010. Based on the inclusion criteria, 159 studies, involving a total of 5531 patients, were included.

Results

There were no significant differences in procedural success among the studies (P>0.05). The rates of overall neurologic complications and stroke were significantly different in all two-group comparisons (P<0.01). The type A AD patients had the highest rates of neurologic complications (both 6.67±0.00%), and the AAA patients had the lowest rates (0.31±0.04% and 0.11±0.02%). Significant differences were noted in the rates of cardiac, renal, pulmonary and visceral complications, which were all higher in the type A AD patients than in the other three groups (P<0.01). The endoleak rate was highest in the TAA patients (19.27±5.74%) and was similar in the type A AD patients (P>0.05). A significant difference was noted between the 30-day mortality rate of the type A AD patients and the AAA or type B AD patients (P<0.05).

Conclusion

Endovascular stent-graft is a feasible and safe treatment for aortic diseases, with high procedural success and low incidences of post-procedural complications and short-term mortality. Endovascular treatment for AAA and type B AD is more efficient than for type A AD and TAA.  相似文献   

6.
Pulsatile, three-dimensional hemodynamic forces influence thrombosis, and may dictate progression of aortic dissection. Intimal flap fenestration and blood pressure are clinically relevant variables in this pathology, yet their effects on dissection hemodynamics are poorly understood. The goal of this study was to characterize these effects on flow in dissection models to better guide interventions to prevent aneurysm formation and false lumen flow. Silicone models of aortic dissection with mobile intimal flap were fabricated based on patient images and installed in a flow loop with pulsatile flow. Flow fields were acquired via 4-dimensional flow MRI, allowing for quantification and visualization of relevant fluid mechanics. Pulsatile vortices and jet-like structures were observed at fenestrations immediately past the proximal entry tear. False lumen flow reversal was significantly reduced with the addition of fenestrations, from 19.2 ± 3.3% in two-tear dissections to 4.67 ± 1.5% and 4.87 ± 1.7% with each subsequent fenestration. In contrast, increasing pressure did not cause appreciable differences in flow rates, flow reversal, and vortex formation. Increasing the number of intermediate tears decreased flow reversal as compared to two-tear dissection, which may prevent false lumen thrombosis, promoting persistent false lumen flow. Vortices were noted to result from transluminal fluid motion at distal tear sites, which may lead to degeneration of the opposing wall. Increasing pressure did not affect measured flow patterns, but may contribute to stress concentrations in the aortic wall. The functional and anatomic assessment of disease with 4D MRI may aid in stratifying patient risk in this population.  相似文献   

7.
Focusing on a representative abdominal aortic aneurysm (AAA) with a bifurcating stent-graft (SG), a fluid-structure interaction (FSI) solver with user-supplied programs has been employed to solve for blood flow, AAA/SG deformation, sac pressure and wall stresses, as well as the downward forces acting on the SG. Simulation results indicate that implanting a SG can significantly reduce sac pressure, mechanical stress, pulsatile wall motion, and maximum diameter change in AAAs; hence, it may restore normal blood flow and prevent AAA rupture effectively. The transient SG drag force is similar in trend as the cardiac pressure. Its magnitude depends on multi-factors including blood flow conditions, as well as SG and aneurysm geometries. Specifically, AAA neck angle, iliac bifurcation angle, neck aorta-to-iliac diameter ratio, SG size, and blood waveform play important roles in generating a fluid flow force potentially leading to SG migration. It was found that the drag force can exceed 5N for an AAA with a large neck or iliac angle, wide aortic neck and narrow iliac arteries, large SG size, and/or abnormal blood waveform. Thus, the fixation of self-expandable or balloon-expandable SG contact may be inadequate to withstand the forces of blood flowing through the implant and hence means of extra fixation should be considered. A comprehensive FSI analysis of the coupled SG-AAA dynamics provides physical insight for evaluating the luminal hemodynamics, and maximum AAA-stresses as well as biomechanical factors leading potentially to SG migration.  相似文献   

8.

Background  

Abdominal aortic aneurysms (AAA) are local dilatations of the infrarenal aorta. If left untreated they may rupture and lead to death. One form of treatment is the minimally invasive insertion of a stent-graft into the aneurysm. Despite this effective treatment aneurysms may occasionally continue to expand and this may eventually result in post-operative rupture of the aneurysm. Fluid-structure interaction (FSI) is a particularly useful tool for investigating aneurysm biomechanics as both the wall stresses and fluid forces can be examined.  相似文献   

9.
Renal artery stenosis (RAS) and renal complications emerge in some patients after endovascular aneurysm repair (EVAR) to treat abdominal aorta aneurysm (AAA). The mechanisms for the causes of these problems are not clear. We hypothesized that for EVAR patients, lower limb exercise could negatively influence the physiology of the renal artery and the renal function, by decreasing the blood flow velocity and changing the hemodynamics in the renal arteries. To evaluate this hypothesis, pre- and post-operative models of the abdominal aorta were reconstructed based on CT images. The hemodynamic environment was numerically simulated under rest and lower limb exercise conditions. The results revealed that in the renal arteries, lower limb exercise decreased the wall shear stress (WSS), increased the oscillatory shear index (OSI) and increased the relative residence time (RRT). EVAR further enhanced these effects. Because these parameters are related to artery stenosis and atherosclerosis, this preliminary study concluded that lower limb exercise may increase the potential risk of inducing renal artery stenosis and renal complications for AAA patients. This finding could help elucidate the mechanism of renal artery stenosis and renal complications after EVAR and warn us to reconsider the management and nursing care of AAA patients.  相似文献   

10.

Background

Treatment of arterial bifurcation lesions using drug-eluting stents (DES) is now common clinical practice and yet the mechanisms governing drug distribution in these complex morphologies are incompletely understood. It is still not evident how to efficiently determine the efficacy of local drug delivery and quantify zones of excessive drug that are harbingers of vascular toxicity and thrombosis, and areas of depletion that are associated with tissue overgrowth and luminal re-narrowing.

Methods and Results

We constructed two-phase computational models of stent-deployed arterial bifurcations simulating blood flow and drug transport to investigate the factors modulating drug distribution when the main-branch (MB) was treated using a DES. Simulations predicted extensive flow-mediated drug delivery in bifurcated vascular beds where the drug distribution patterns are heterogeneous and sensitive to relative stent position and luminal flow. A single DES in the MB coupled with large retrograde luminal flow on the lateral wall of the side-branch (SB) can provide drug deposition on the SB lumen-wall interface, except when the MB stent is downstream of the SB flow divider. In an even more dramatic fashion, the presence of the SB affects drug distribution in the stented MB. Here fluid mechanic effects play an even greater role than in the SB especially when the DES is across and downstream to the flow divider and in a manner dependent upon the Reynolds number.

Conclusions

The flow effects on drug deposition and subsequent uptake from endovascular DES are amplified in bifurcation lesions. When only one branch is stented, a complex interplay occurs – drug deposition in the stented MB is altered by the flow divider imposed by the SB and in the SB by the presence of a DES in the MB. The use of DES in arterial bifurcations requires a complex calculus that balances vascular and stent geometry as well as luminal flow.  相似文献   

11.
《Gender Medicine》2008,5(1):36-43
Background: Abdominal aortic aneurysm (AAA) accounts for ∼45,000 deaths per year in the United States. Despite a striking male predominance of AAA (4:1 male to female), mortality from this disease is almost as high in women (20th leading killer of women and 15th leading killer of men in this country).Objective: The purpose of this review is to highlight the differences in diagnosis, treatment, and treatment outcomes for women with AAA to determine avenues of potential improvement in their care.Methods: Published articles relevant to this review were determined by the experience of the author, by PubMed and MEDLINE searches, and by reviewing the references cited in the reports identified by the first 2 methods. The database searches were performed using the following terms: abdominal aorta, aneurysm, gender, endovascular, and outcomes. Reports were limited to the English language and publication since 1995.Results: Compared with men, women are older when their AAA is diagnosed and treated. Women have higher mortality than do men while undergoing elective open and endovascular repairs, and emergency surgery for ruptured AAAs. Owing to the anatomic complexity of their arterial anatomy, women are less frequently candidates for endovascular repair. Women receive treatment for rupture of AAA less frequently than do men. On Medicare induction, both men and women are eligible for a one-time screening for AAA; however, women qualify for this exam only if they have a family history of AAA.Conclusions: Opportunities to advance the care of women with AAA include improving screening techniques to find AAA prior to rupture and when women are younger and more likely to be candidates for repair. Current clinical practice should focus on decreasing mortality for open surgical repair and developing better endovascular devices so that anatomic obstacles can be overcome and more women can be candidates for this technology. In addition, furthering the understanding of gender differences in the pathophysiology of AAA disease may provide insights into treatments that could prevent the formation of aneurysms.  相似文献   

12.
Computational mechanics of Nitinol stent grafts   总被引:1,自引:0,他引:1  
A finite element analysis of tubular, diamond-shaped stent grafts under representative cyclic loading conditions for abdominal aortic aneurysm (AAA) repair is presented. Commercial software was employed to study the mechanical behavior and fatigue performance of different materials found in commercially available stent-graft systems. Specifically, the effects of crimping, deployment, and cyclic pressure loading on stent-graft fatigue life, radial force, and wall compliances were simulated and analyzed for two types of realistic but different Nitinol materials (NITI-1 and NITI-2) and grafts (expanded polytetrafluoroethylene-ePTFE and polyethylene therephthalate-PET). The results show that NITI-1 stent has a better crimping performance than NITI-2. Under representative cyclic pressure loading, both NITI-1 and NITI-2 sealing stents are located in the safe zone of the fatigue-life diagram; however, the fatigue resistance of an NITI-1 stent is better than that of an NITI-2 stent. It was found that the two types of sealing stents do not damage a healthy neck artery. In the aneurysm section, the NITI-1&ePTFE, NITI-1&PET, and NITI-2&PET combinations were free of fatigue fracture when subjected to conditions of radial stress between 50 and 150mmHg. In contrast, the safety factor for the NITI-2&ePFTE combination was only 0.67, which is not acceptable for proper AAA stent-graft design. In summary, a Nitinol stent with PET graft may greatly improve fatigue life, while its compliance is much lower than the NITI-ePTFE combination.  相似文献   

13.
The performance of the heart after a mitral valve replacement operation greatly depends on the flow character downstream of the valve. The design and implanting orientation of valves may considerably affect the flow development. A study of the hemodynamics of two orientations, anatomical and anti-anatomical, of the St. Jude Medical (SJM) bileaflet valve are presented and compared with those of the SJM Biocor porcine valve, which served also to represent the natural valve. We document the velocity field in a flexible, transparent (LV) using time-resolved digital particle image velocimetry (TRDPIV). Vortex formation and vortex interaction are two important physical phenomena that dominate the filling and emptying of the ventricle. For the three configurations, the following effects were examined: mitral valve inlet jet asymmetry, survival of vortical structures upstream of the aortic valve, vortex-induced velocities and redirection of theflow in abidance of the Biot-Savart law, domain segmentation, resonant times of vortical structures, and regions of stagnantflow. The presence of three distinct flow patterns, for the three configurations, was identified by the location of vortical structures and level of coherence corresponding to a significant variation in the turbulence level distribution inside the LV. The adverse effect of these observations could potentially compromise the efficiency of the LV and result in flow patterns that deviate from those in the natural heart.  相似文献   

14.
A 76-year-old man with an ascending arch and proximal descending aortic aneurysm underwent a complex aortic replacement through a sternotomy with ligation of a right aberrant subclavian artery (RASA) distal to the right vertebral artery. The second-stage procedure was performed with a stent-graft deployed within the elephant trunk. At 6- and 12-month follow-up, the RASA was opacified by the patent right vertebral artery. Under ultrasound guidance, the patient's RASA stump was occluded by coils. Management of an RASA during complex hybrid stent-graft procedures is discussed.  相似文献   

15.
The intraluminal thrombus (ILT) commonly found within abdominal aortic aneurysm (AAA) may serve as a barrier to oxygen diffusion from the lumen to the inner layers of the aortic wall. The purpose of this work was to address this hypothesis and to assess the effects of AAA bulge diameter (dAAA) and ILT thickness (delta) on the oxygen flow. A hypothetical, three-dimensional, axisymmetric model of AAA containing ILT was created for computational analysis. Commercial software was utilized to estimate the volume flow of O2 per cell, which resulted in zero oxygen tension at the AAA wall. Solutions were generated by holding one of the two parameters fixed while varying the other. The supply of O2 to the AAA wall increases slightly and linearly with dAAA for a fixed delta. This slight increase is due to the enlarged area through which diffusion of O2 may take place. The supply of O2 was found to decrease quickly with increasing delta for a fixed dAAA due to the increased resistance to O2 transport by the ILT layer. The presence of even a thin, 3 mm ILT layer causes a diminished O2 supply (less than 4 x 10(-10) mumol/min/cell). Normally functioning smooth muscle cells require a supply of 21 x 10(-10) mumol/min/cell. Thus, our analysis serves to support our hypothesis that the presence of ILT alters the normal pattern of O2 supply to the AAA wall. This may lead to hypoxic cell dysfunction in the AAA wall, which may further lead to wall weakening and increased potential for rupture.  相似文献   

16.
Recent numerical studies of abdominal aortic aneurysm (AAA) suggest that intraluminal thrombus (ILT) may reduce the stress loading on the aneurysmal wall. Detailed fluid structure interaction (FSI) in the presence and absence of ILT may help predict AAA rupture risk better. Two patients, with varied AAA geometries and ILT structures, were studied and compared in detail. The patient specific 3D geometries were reconstructed from CT scans, and uncoupled FSI approach was applied. Complex flow trajectories within the AAA lumen indicated a viable mechanism for the formation and growth of the ILT. The resulting magnitude and location of the peak wall stresses was dependent on the shape of the AAA, and the ILT appeared to reduce wall stresses for both patients. Accordingly, the inclusion of ILT in stress analysis of AAA is of importance and would likely increase the accuracy of predicting AAA risk of rupture.  相似文献   

17.
Recent numerical studies of abdominal aortic aneurysm (AAA) suggest that intraluminal thrombus (ILT) may reduce the stress loading on the aneurysmal wall. Detailed fluid structure interaction (FSI) in the presence and absence of ILT may help predict AAA rupture risk better. Two patients, with varied AAA geometries and ILT structures, were studied and compared in detail. The patient specific 3D geometries were reconstructed from CT scans, and uncoupled FSI approach was applied. Complex flow trajectories within the AAA lumen indicated a viable mechanism for the formation and growth of the ILT. The resulting magnitude and location of the peak wall stresses was dependent on the shape of the AAA, and the ILT appeared to reduce wall stresses for both patients. Accordingly, the inclusion of ILT in stress analysis of AAA is of importance and would likely increase the accuracy of predicting AAA risk of rupture.  相似文献   

18.
The branching pattern of epicardial coronary arteries is clearly three-dimensional, with correspondingly complex flow patterns. The objective of the present study was to perform a detailed hemodynamic analysis using a three-dimensional finite element method in a left anterior descending (LAD) epicardial arterial tree, including main trunk and primary branches, based on computed tomography scans. The inlet LAD flow velocity was measured in an anesthetized pig, and the outlet pressure boundary condition was estimated based on scaling laws. The spatial and temporal wall shear stress (WSS), gradient of WSS (WSSG), and oscillatory shear index (OSI) were calculated and used to identify regions of flow disturbances in the vicinity of primary bifurcations. We found that low WSS and high OSI coincide with disturbed flows (stagnated, secondary, and reversed flows) opposite to the flow divider and lateral to the junction orifice of the main trunk and primary branches. High time-averaged WSSG occurs in regions of bifurcations, with the flow divider having maximum values. Low WSS and high OSI were found to be related through a power law relationship. Furthermore, zones of low time-averaged WSS and high OSI amplified for larger diameter ratio and high inlet flow rate. Hence, different focal atherosclerotic-prone regions may be explained by different physical mechanism associated with certain critical levels of low WSS, high OSI, and high WSSG, which are strongly affected by the diameter ratio. The implications of the flow patterns for atherogenesis are enumerated.  相似文献   

19.
An experimental study was carried out on asymmetrical abdominal aortic aneurysm (AAA) to analyse the physiological flows involved. Velocity measurements were performed using particle image velocimetry. Resting and exercise flow rates were investigated in models with rigid and compliant walls to assess the parameters affecting the flow behaviour. The secondary flow patterns, and especially the evolution of the vortices within the AAA, were found to be highly dependent on both the flow waveforms and the wall behaviour. Vortices impacts on the distal walls of the AAA occur in the compliant model and can increase the local pressure on the AAA walls and thus increase the wall stresses; AAA wall stresses are one of the most important factors contributing to ruptured aneurysm.  相似文献   

20.
The total cavopulmonary connection (TCPC) is a palliative cardiothoracic surgical procedure used in patients with one functioning ventricle that excludes the heart from the systemic venous to pulmonary artery pathway. Blood in the superior and inferior vena cavae (SVC, IVC) is diverted directly to the pulmonary arteries. Since only one ventricle is left in the circulation, minimizing pressure drop by optimizing connection geometry becomes crucial. Although there have been numerical and in-vitro studies documenting the effect of connection geometry on overall pressure drop, there is little published data examining the effect of SVC-IVC flow rate ratio on detailed fluid mechanical structures within the various connection geometries. We present here results from a numerical study of the TCPC connection, configured with various connections and SVC:IVC flow ratios. The role of major flow parameters: shear stress, secondary flow, recirculation regions, flow stagnation regions, and flow separation, was examined. Results show a complex interplay among connection geometry, flow rate ratio and the types and effects of the various flow parameters described above. Significant changes in flow structures affected local distribution of pressure, which in turn changed overall pressure drop. Likewise, changes in local flow structure also produced changes in maximum shear stress values; this may have consequences for platelet activation and thrombus formation in the clinical situation. This study sheds light on the local flow structures created by the various connections andflow configurations and as such, provides an additional step toward understanding the detailed fluid mechanical behavior of the more complex physiological configurations seen clinically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号